
A parallel resampling method for interactive deformation of volumetric models

Alejandro Rodrı́gueza, Alejandro Leóna, Domingo Martı́na, Miguel A. Otaduyb

aUniversity of Granada, Granada, Spain
bURJC, Madrid

Abstract

In this work, we propose a method to interactively deform high-resolution volumetric datasets, such as those obtained through
medical imaging. Interactive deformation enables the visualization of these datasets in full detail using state-of-the-art volume
rendering techniques as they are dynamically modified. Our approach relies on resampling the original dataset to a target regular
grid, following a 3D rasterization technique. We employ an implicit auxiliary mesh to execute resampling, which allows us to
decouple mapping of the deformation field to the volume from actual resampling. In this way, our method is practically independent
of the deformation method of choice, as well as of the resolution of the deformation meshes. We show how our method lends itself
nicely to an efficient, massively parallel implementation on GPUs, and we demonstrate its application on several high-resolution
datasets and deformation models.

Keywords:
Volume data, volume deformation, 3D rasterization

1. Introduction1

The tissue distribution of biological forms is often captured2

and visualized using volumetric representations, most notably3

in medical applications. Biological tissue is soft and deformable4

for the most part, hence applications dealing with biological5

tissue require methods to deform such volumetric representa-6

tions. Some common examples in the medical field include7

image registration, intra-operative navigation, or surgical plan-8

ning. Nowadays practical implementations of these applica-9

tions are often limited to rigid data or non-interactive solutions,10

due to the difficulty to deform volumetric representations in an11

interactive manner.12

Regardless of the particular deformation method of choice,13

one major challenge for the development of applications using14

deformed volume data is the visualization of dynamic volumet-15

ric representations. Traditionally, there are mainly two strate-16

gies to address this problem: (i) Segment and mesh the original17

volume data, and resort to visualization of surface meshes. This18

strategy fails to capture the full detail in the original volume19

data, and it does not allow interactive modification of the visual-20

ized isosurfaces as offered by volume rendering techniques. (ii)21

Execute volume rendering using unstructured meshes. Despite22

achieving interactive framerates, as demonstrated by Georgii et23

al. [1], the cost of unstructured volume rendering grows with24

mesh resolution. In addition, as remarked by Correa et al. [2],25

advanced lighting such as gradient-based lighting, which is an26

important feature in medical applications, becomes complex27

even in the case of static unstructured meshes.28

Email address: alejandrora@ugr.es (Alejandro Rodrı́guez)
1This manuscript version is made available under the CC-BY-NC-ND 4.0

license http://creativecommons.org/licenses/by-nc-nd/4.0/

In our work, we follow a different strategy. We propose29

to deform the original volume data by dynamically resampling30

it onto a regular grid, and then apply regular volume render-31

ing. Of course, this strategy is not new to computer graph-32

ics, as it constitutes the fundamental pipeline of raster graphics33

with deferred shading. This strategy has already been applied34

to volume data deformation, by other authors, e.g. Schulze et35

al. [3] and Gascón et al. [4], but we achieve more than one or-36

der of magnitude speed-up compared to previous methods. As37

a result, we can deform and render high-resolution volumetric38

objects with high-resolution deformable meshes at interactive39

rates.40

In our method, the input volumetric dataset is transformed41

into an implicit sampling mesh of the same resolution. At run-42

time, two steps are performed. First, after the deformation43

stage, the deformation field is applied to the positions of the44

nodes of the sampling mesh. And second, the deformed sam-45

pling mesh is resampled onto the target regular grid. Both46

steps are massively parallelized in our GPU implementation.47

With our two-step method, we decouple the resampling from48

the evaluation of deformations, and due to the implicit and reg-49

ular nature of the sampling mesh, we eliminate the need for50

any type of indirection or auxiliary data structure, and thus we51

maximize throughput, achieving better performance than pre-52

vious methods. Actual volume rendering is decoupled into yet53

a third step, which is executed efficiently on the target regular54

grid.55

The decoupling of deformation mapping, resampling, and56

volume rendering has several advantages over previous approaches.57

In contrast to methods based on unstructured volume rendering,58

one major advantage is the possibility to adopt advanced light-59

ing models efficiently, such as gradient-based volume lighting.60

Preprint submitted to Computers & Graphics January 20, 2016



Figure 1: A cutting operation is applied to a sheep heart dataset consisting of 12.4 million voxels, deformed using a Mass-Spring model. Our proposed resampling
algorithm allows us to deform and cut the model interactively. After each simulation step, our method outputs a resampled regular grid of the same resolution as
the input, which is visualized with a standard Ray-casting algorithm, revealing internal features due to the open cut. Resampling of this high-resolution dataset is
executed in just 26 ms per frame.

Moreover, the size of the visualization viewport and the reso-61

lution of the deformation model affect performance separately,62

and there is no extra penalty in combining a large viewport with63

a high-resolution deformation model. When compared with64

all previous methods, one general advantage of ours is that it65

can be coupled with any deformation technique by means of66

a mapping of the underlying deformation structure to the im-67

plicit sampling mesh. And yet a final but important advantage68

is that the performance of the resampling algorithm is inde-69

pendent of the resolution of the underlying deformation struc-70

ture, thus allowing interactive visualization when using defor-71

mation meshes several orders of magnitude denser than pre-72

vious methods. This feature becomes critical to support de-73

formation algorithms that support high-resolution meshes, such74

as GPU-parallel soft-tissue simulation algorithms based on im-75

plicit FEM [5] or Mass-Spring [6], coarsening algorithms that76

govern a heterogeneous high-resolution tetrahedral mesh through77

an efficient homogenized low-resolution simulation [7, 8, 9], or78

the ChainMail algorithm [3, 10], which can handle interactively79

models with millions of nodes.80

In our examples we have tested diverse models such as the81

Finite Element Method, the Mass-Spring Model and the Chain-82

Mail algorithm, and we also include extensions to handle topo-83

logical changes. We show that we can successfully deform84

and visualize a volume with 12.4 million voxels, using a mass-85

spring model with 2.4 million tetrahedra, at a rate of more than86

20 fps (Fig. 1).87

The remainder of this paper is organized as follows: Sec-88

tion 2 reviews related work. Our parallel resampling method is89

described in Section 3, including the definition of the implicit90

sampling mesh, the mapping process and the resampling algo-91

rithm, together with implementation details. Section 4 presents92

several results, coupling our pipeline with several deformation93

methods. Several experiments to analyze the properties of the94

method are also presented. Finally, our conclusions are listed95

in Section 5.96

2. Previous works97

Existing techniques for visualizing deformable volumetric98

models can be grouped into three main strategies.99

A first group of approaches relies on the concept of spatial100

deformation. Instead of applying a deformation to the model,101

an inverse deformation map is applied to the rays that traverse102

the space containing the volume. Rezk-Salama et al. [11] pro-103

posed a spatial deformation technique dividing the space into a104

hierarchical set of deforming sub-cubes, thus defining a piece-105

wise approximated inverse deformation field. Westermann et106

al. [12] proposed a set of local and global free-form space de-107

formations, applying the inverse deformations through tessel-108

lated slicing planes. H. Chen et al. [13] applied Ray-casting to109

volumetric models deformed through a free-form deformation110

(FFD) approach using an inverse ray deformation technique.111

M. Chen et al. [14] introduced the concept of Spatial Trans-112

fer Functions as a tool to define FFD operations. Correa et113

al. [15] presented a set of FFD spatial operators enforcing an114

alignment with the features present in the models to generate115

medical illustrations. These spatial deformation schemes en-116

able interactive frame rates, but at the price of low-resolution,117

non-physically based deformation.118

A second group of approaches deforms an unstructured vol-119

umetric mesh, and then executes volume rendering on this un-120

structured mesh. Classic and current unstructured volume ren-121

dering techniques aim for an accurate visualization of non-regular122

volumetric models that can be deformed over time (see the works123

of Miranda et al. [16] and Okuyan et at. [17] for recent GPU-124

based unstructured volume rendering techniques). However,125

a direct application to physically deformed medical volumes126

impedes interactive frame rates under high-resolution deforma-127

tion structures, since medical models may contain several or-128

ders of magnitude more elements than those handled by these129

techniques interactively. Inheriting many of the ideas of these130

approaches, Georgii et al. [1] proposed a system to perform un-131

structured volume rendering of tetrahedral meshes deformed by132

physical simulation schemes using the GPU rendering pipeline,133

2



Figure 2: An overview of our method. In a preprocessing step, the sampling mesh is created using the input dataset, and coupled with the underlying deformation
structure, generating static mapping information. After every deformation step, the resulting deformation is mapped to the sampling mesh, which is then resampled
to a regular grid.

also allowing the use of 3D texture mapping to increase the de-134

tail inside a tetrahedron. While the method achieves interactive135

framerates for relatively large models (i.e., 100 ms per frame136

for a tetrahedral mesh of 190,000 elements using a 512x512137

viewport), its cost grows bilinearly with mesh resolution and138

viewport size. Nakao et al. [18] proposed the use of a dynam-139

ically refined proxy mesh to adapt the mesh complexity to the140

deformations applied to the model. This scheme handles large141

volumes and allows topological changes in the model but, as142

the authors point out, the performance of the method depends143

on the number of nodes of the deformable model, and can only144

support a few hundred interactively.145

A third group of approaches, motivated by the superior per-146

formance of direct volume rendering (DVR) techniques over147

the unstructured volume rendering techniques, as well as the148

more advanced shading and illumination techniques available149

under DVR, performs a resampling of the deformed volume150

onto a regular grid which is later fed as input to a standard151

DVR pipeline. Schulze et al. [3] proposed a resampling algo-152

rithm based on a nearest neighbor search to relocate and in-153

terpolate the deformed voxels. However, the algorithm is de-154

signed to perform resampling only on small parts of the vol-155

ume, and performance degrades badly if the deformed volume156

is large. In addition, the resampling process is highly depen-157

dent on the ChainMail deformation technique. Gascón et al. [4]158

proposed a GPU-based tetrahedral mesh rasterization algorithm159

with 3D texture mapping. After each simulation step, the de-160

formed tetrahedra are rasterized onto a regular grid, and target161

voxels are mapped to the original volume for a texture lookup.162

The parallel implementation of the rasterization process achieves163

interactive frame rates for high-resolution volumes, but perfor-164

mance degrades under high-resolution meshes. In addition, the165

method only supports deformation techniques based on tetrahe-166

dral meshes.167

Our method also falls in this group, as it performs a parallel168

resampling of the original volume data set onto a regular grid.169

However, thanks to the use of an intermediate implicit sampling170

mesh that decouples the computation of the deformation from171

the rasterization, we avoid costly indirections during the actual172

rasterization, and the performance is independent of the resolu-173

tion of the underlying deformation structure.174

3. Volume resampling pipeline175

The key to the efficiency of our volume resampling method176

is the use of an implicit sampling mesh that effectively decou-177

ples the data structure of the particular deformation model of178

choice from the actual resampling of the volume. Fig. 2 out-179

lines the full resampling pipeline.180

In a preprocessing step, the sampling mesh is generated181

from the input dataset and it is coupled with the deformation182

method. At runtime, two steps are performed after each defor-183

mation stage on a massively parallel manner on the GPU: the184

mapping of the deformation to the sampling mesh, and the re-185

sampling of the deformed sampling mesh.186

This section starts with a description of the implicit sam-187

pling mesh, and continues with descriptions of the deformation188

mapping and the actual resampling.189

3.1. Implicit sampling mesh190

Given a regular grid as input dataset, we define a regular191

mesh of the same resolution that carries in its vertices the data192

associated to grid points. This regular mesh retains absolutely193

all the information present in the original dataset. When the194

mesh is deformed, a continuous field can be reconstructed on195

the entire volume occupied by the mesh through interpolation196

of the original data values inside each mesh element.197

Specifically, given an input dataset stored as a regular grid198

of l×m×n voxels, we create an array of l×m×n vertices, each of199

them associated to one voxel. Each vertex is assigned the data200

value of its corresponding voxel, and is placed at a position in201

3



Figure 3: A 5T tetrahedral decomposition generates five adjoining tetrahedra
covering the same volume as the original hexahedron.

space given by its indices and the spacing of the model in each202

dimension.203

Given the initial layout of the vertices, every eight adjacent204

vertices define a hexahedron. We implicitly decompose each205

hexahedron into five adjoining tetrahedra, following a 5T de-206

composition, as shown in Fig. 3.207

Each hexahedron can be decomposed into five adjoining208

tetrahedra (5T decomposition) partitioning the entire volume209

of the hexahedron as shown in Fig. 3. We transform the hex-210

ahedral mesh into an adjoining tetrahedral mesh by applying211

mirrored 5T decompositions to adjacent hexahedra [19], using212

the shared face as a mirror plane.213

The proposed decomposition scheme produces a mesh that214

is continuous and complete. These properties guarantee that,215

as long as the input deformation is self-intersection free, every216

point inside the mesh is bounded always by one and only one217

tetrahedron.218

Thanks to the regularity of the mesh, we can infer the tetra-219

hedra incident on each vertex simply from its indices. As a220

result, the sampling mesh is only implicitly defined, without221

the need to explicitly build it or store it. Therefore, the implicit222

sampling mesh does not add any overhead to the storage of the223

original dataset aside from the vertex positions, and it is visited224

on-the-fly during the resampling step.225

We have considered other options for the definition of the226

implicit sampling mesh, in particular the hexahedral mesh de-227

fined inherently by the grid. However, we have opted for our228

tetrahedral mesh because inclusion tests and interpolation func-229

tions are simpler (non-planar faces are avoided), hence more230

efficient at run-time. Despite having more elements than the231

hexahedral mesh, the implicit definition of our tetrahedral mesh232

avoids storage penalties.233

3.2. Deformation mapping234

The sampling mesh acts as an intermediate representation235

between each particular deformation method and the resam-236

pling process. The deformation method produces a deformation237

field that can be evaluated at any location in space. In order to238

carry out this evaluation efficiently, we set a static mapping be-239

tween the deformation method and the sampling mesh.240

In a preprocessing step, for each vertex of the sampling241

mesh, we store static mapping information, i.e., appropriate242

pointers to the elements of the deformation method, as well as243

static weights or coefficients needed for evaluating the deforma-244

tion field. The particular pointers, weights and/or coefficients245

Figure 4: Steps of the resampling process on a 2D example. a) The AABB
of the triangle is computed. b) An Inclusion test is performed for each voxel
in the AABB, using the barycentric coordinates of its center. c) Output data
values are assigned to the voxels lying inside the triangle through barycentric
interpolation.

stored per vertex depend on the particular deformation method246

of choice.247

At runtime, once the deformation model is updated, the248

mapping process is executed to define the updated positions of249

the sampling mesh vertices, according to the new deformation250

field. This mapping is executed on a massively parallel manner251

on the GPU, and the actual functions to be evaluated depend252

again on the particular deformation method of choice.253

In Section 4 we show examples with different deformation254

methods.255

3.3. Volumetric resampling256

At runtime, once the deformation is mapped onto the ver-257

tices of the sampling mesh, we execute the resampling of the258

original dataset onto a target regular grid. This process is exe-259

cuted in parallel for all the tetrahedra of the sampling mesh, and260

each tetrahedron contains all the information needed in the pro-261

cess, i.e., the target positions of its four vertices and the original262

data values to be interpolated.263

For each tetrahedron of the sampling mesh, we perform the264

following process. First, we select candidate target voxels by265

computing an axis-aligned bounding box (AABB) of the ver-266

tices of the tetrahedron. Then, we traverse all the candidate267

voxels, and compute their barycentric coordinates. For vox-268

els that lie inside the tetrahedron, we compute the output value269

through barycentric interpolation of the data values stored in270

the four vertices of the tetrahedron. A simplified 2D version of271

the resampling process is shown in Fig. 4.272

3.3.1. GPU implementation273

This algorithm is well suited for massive GPU paralleliza-274

tion. We have implemented it as a single GPU kernel that runs275

in parallel on the hexahedral decomposition of the sampling276

mesh, thus each thread visits the five tetrahedra defined implic-277

itly on each hexahedron.278

A high-level pseudo-code of the resampling kernel is out-279

lined in Code 1. Each thread loads the eight vertices of a hex-280

ahedron (lines 7-14), labeled as indicated in Fig. 3. Then, to281

ensure that the complete mesh remains adjoining, the vertices282

are reordered as necessary, thus the labels of the vertices are283

exchanged (lines 15-23) depending on the parity of the indices284

of the first vertex (vertex 1 in Fig. 3). Note that this operation285

4



1 kernel resample(tex3D outGrid)
2 int x,y,z;
3 x = getThreadIndexX();
4 y = getThreadIndexY();
5 z = getThreadIndexZ();
6 vertex v1, v2, v3, v4, v5, v6, v7, v8;
7 v1 = getVertex(x, y, z);
8 v2 = getVertex(x+1, y, z);
9 v3 = getVertex(x, y, z+1);

10 v4 = getVertex(x+1, y, z+1);
11 v5 = getVertex(x, y+1, z);
12 v6 = getVertex(x+1, y+1, z);
13 v7 = getVertex(x, y+1, z+1);
14 v8 = getVertex(x+1 ,y+1, z+1);
15 IF (x % 2 == 1)
16 swap(v1, v2);swap(v3, v4);swap(v5, v6);swap(v7, v8);
17 ENDIF
18 IF (y % 2 == 1)
19 swap(v1, v5);swap(v2, v6);swap(v3, v7);swap(v4, v8);
20 ENDIF
21 IF (z % 2 == 1)
22 swap(v1, v3);swap(v2, v4);swap(v5, v7);swap(v6, v8);
23 ENDIF
24 SampleTetrahedron (v1, v3, v4, v7, outGrid);
25 SampleTetrahedron (v7, v8, v4, v6, outGrid);
26 SampleTetrahedron (v4, v2, v1, v6, outGrid);
27 SampleTetrahedron (v1, v5, v7, v6, outGrid);
28 SampleTetrahedron (v7, v4, v6, v1, outGrid);
29 END
30

31 SampleTetrahedron (vertex v1, v2, v3, v4, Tex3D outGrid)
32 aabb boundingBox = outGrid.computeAABB(v1, v2, v3, v4);
33 FOREACH (voxel IN boundingBox)
34 float4 baryCoords = computeBaryCoords(voxel.center, v1,

v2, v3, v4);
35 IF (centerLiesInsideTetrahedron(baryCoords))
36 char newValue = interpolateValue(baryCoords, v1, v2, v3,

v4);
37 setValue(voxel, dataValue);
38 ENDIF
39 ENDFOREACH
40 END

Code 1: Pseudo-code of the resampling GPU kernel. Each thread handles one
hexahedron of the sampling mesh, the eight vertices of the hexahedron are
loaded. After that, the corresponding tetrahedra are deduced on-the-fly and
sampled onto the output grid.

is handled at runtime, without ever storing the tetrahedral mesh286

explicitly. Lastly, each tetrahedron is actually sampled on the287

target grid (lines 24-28) as explained earlier.288

Thanks to the regular and structured nature of our sampling289

mesh, consecutive threads access consecutive array positions290

and thus we achieve coalesced global memory read operations291

(lines 7-14). This coalesced access scheme is achieved indepen-292

dently of the current configuration of the mesh since it depends293

on the GPU thread ids alone. For this same reason, the access294

to vertex-based data (such as deformed positions and volume295

data) is easily optimized using shared memory since neighbor-296

ing threads belonging to the same thread warp access neigh-297

boring vertices. Moreover, the implicit definition of the mesh298

eliminates the need for any indirection scheme for the topology299

definition, saving both memory requirements and global and300

shared memory accesses.301

4. Results and discussion302

We have tested our volume deformation method with sev-303

eral different deformation models. In the following subsec-304

tions we discuss implementation details for each deformation305

model, along with performance data. We refer the reader to the306

video provided as additional material for more results. We also307

present the results of several tests performed in order to analyze308

the properties and limitations of our method.309

We have implemented our algorithm using OpenCL 1.2,310

running on an Intel Core i5-3570 machine with 8 GB RAM,311

equipped with an AMD Radeon R9 270X with 2 GB of video312

memory GDDR5.313

4.1. ChainMail deformation314

A parallel version of the ChainMail algorithm, similar to315

the one proposed by Rößler [20] has been implemented. The316

ChainMail algorithm, introduced by Gibson [21], applies elas-317

tic and plastic deformations to the model at the same resolu-318

tion of the input dataset by defining geometric constraints be-319

tween neighbor elements of the model. Heterogeneous defor-320

mations can be achieved by defining different restrictions to the321

elements, as explained in [22].322

Since the ChainMail algorithm works at the resolution of323

the input dataset, in this case the vertices of the sampling mesh324

are co-located with the ChainMail elements and the mapping is325

straightforward.326

We have integrated the possibility to execute simple topo-327

logical changes on the ChainMail model by implementing cut-328

ting and carving operations, following the approach in [23]. To329

apply the topological changes to the volume dataset for visual-330

ization purposes, we obtain acceptable results simply by delet-331

ing tetrahedra that are cut or carved, thanks to the high reso-332

lution of the implicit sampling mesh. We add a bitfield char333

value to each hexahedron to flag individual tetrahedra as ac-334

tive or inactive, and we check this bitfield as part of the resam-335

pling kernel in Code 1. When a new cutting/carving operation336

is applied to the model, we perform an intersection test with337

the cut surface (or carving volume) for each tetrahedron, and338

5



Figure 5: A foot dataset consisting of 16.7 million voxels is deformed using a corotational finite element method using a mesh of 16,000 tetrahedra. Our resampling
pipeline generates a resampled regular grid in 39 ms, which is then visualized with a standard Ray-casting algorithm.

flag new inactive tetrahedra accordingly. With simple cut sur-339

faces or carving volumes, a brute-force GPU parallelization of340

per-tetrahedron tests turned out to be fast enough. We refer the341

reader to the survey by Wu et al. [24] for more information on342

advanced cutting methods.343

Fig. 6 shows example applications of our method on two344

medical datasets. The knee model with 13.2 million voxels is345

deformed at 35 ms per frame. 11 ms are devoted to ChainMail346

deformation, 0.5 ms to map the deformation to the sampling347

mesh, and 23.5 ms to resample the volume. Cutting operations348

are performed in less than 21 ms, and they affect performance349

only at frames when the cut is actually executed, not in subse-350

quent frames. The head model with 6.6 million voxels is de-351

formed at 16 ms per frame. Carving operations are performed352

in less than 8 ms, and they also affect performance only while353

carving is executed.354

4.2. Mass-Spring deformation355

We have also tested our algorithm together with a dynamic356

simulation based on the mass-spring model, using tetrahedral357

meshes and explicit integration, parallelized on the GPU as pro-358

posed by Georgii et al. [25]. To implement the mapping from359

the mass-spring model to the implicit sampling mesh, as a pre-360

processing step we identify for each implicit node the mass-361

spring tetrahedron that contains it as well as its barycentric co-362

ordinates in the tetrahedron. At runtime we simply perform a363

barycentric combination of mass-spring node positions, which364

is trivially parallelized on the GPU.365

We have also integrated simple cutting operations on the366

mass-spring model, separating adjacent tetrahedra by their shared367

face. To apply the cutting operations on the volume dataset, we368

follow the same approach as for the ChainMail model described369

above, using a bitfield of active tetrahedra.370

Fig. 1 shows an example of a heart simulated with the mass-371

spring model that is deformed, cut, and resampled using our372

approach. With a volume dataset of 12.4 million voxels and373

a mass-spring model of 2.5 million tetrahedra, full volume de-374

formation takes only 45.7 ms per frame. Dynamic deforma-375

tions using explicit integration take 19 ms, deformation map-376

Figure 6: Interactive deformations of medical datasets using the ChainMail
model.Top: A cutting operation is applied to a knee model consisting of 13.2
million voxels, followed by a deformation to visualize internal structures. Our
pipeline resamples the volume in 24 ms. Bottom: A carving operation is ap-
plied to a head model consisting of 6.6 million voxels. Our pipeline resamples
the volume in 11 ms. The output regular grid can be visualized with different
direct volume rendering techniques, such as a standard Ray-casting volume ren-
dering technique (top, bottom-left and bottom-center) or a Ray-casting-based
isosurface extraction algorithm (bottom-right).

6



Table 1: Evaluation of the cost of the two steps of our algorithm (deformation mapping and resampling) for different deformation methods and deformation mesh
resolutions. The cost of ray-casting the resampled model for a 700 × 700 viewport with 500 samples per ray is also shown. Finally, the size of the sampling mesh
and its required GPU memory are also shown.

Deformation
algorithm

Deformation
nodes

Deformation
mapping

Parallel
resampling Ray-casting Sampling mesh

size (tetrahedra)
Sampling
mesh memory

ChainMail 13,200,705 0.4 ms 23.3 ms 8.2 ms 65,153,280 188.84 MB
Mass-Spring 2,000 5.7 ms 24.2 ms 7.5 ms 65,153,280 390.27 MB
Mass-Spring 512,000 7.4 ms 23.7 ms 8.3 ms 65,153,280 390.27 MB
FEM 125 5.9 ms 24.1 ms 7.3 ms 65,153,280 390.27 MB
FEM 3,200 5.9 ms 23.9 ms 7.2 ms 65,153,280 390.27 MB

ping takes 5.3 ms, and actual resampling takes 21.4 ms. Cuts377

applied to the model are computed in less than 50 ms.378

4.3. FEM deformation379

Finally, we have tested our algorithm with a corotational380

finite element method (FEM) [26], using a quasi-static solver381

with tetrahedral elements.382

The deformation field is mapped to the sampling mesh us-383

ing the exact same approach as for the mass-spring model de-384

scribed above. Fig. 5. shows an interactive deformation of a385

foot.386

4.4. Performance analysis387

We have carried out several tests to analyze the performance388

and scalability of our algorithm. The factors that we analyze389

are: the deformation method and its resolution, the resolution of390

the input volume dataset, the application of large deformations,391

and the size of the viewport. We also analyze preprocessing and392

memory costs.393

4.4.1. Deformation methods and their resolution394

We have compared performance on the same input volume395

dataset for the three deformation methods listed earlier in this396

section. We have used the knee MRI dataset shown on the top397

row of Fig. 6, with a resolution of 189×305×229 = 13, 200, 705398

voxels (leading to a sampling mesh of approximately 65 million399

tetrahedra). We have tested the ChainMail model at the same400

resolution as the volume, and the Mass-Spring and FEM mod-401

els on two different resolutions each. Table 1 reports the reso-402

lutions of the deformation models, the time spent on mapping403

the deformation to the sampling mesh, and the time spent on404

actual resampling. Timings were averaged over several runs of405

the algorithm.406

As the results indicate, the cost of deformation mapping is407

notably lower than the cost of resampling. Furthermore, the408

cost of resampling is practically independent of the deformation409

model and its underlying resolution. This result was expected,410

as our sampling mesh succeeds to decouple deformation map-411

ping from resampling. The cost of deformation mapping is also412

fairly insensitive to the resolution of the deformation mesh.413

With the ChainMail model, deformation mapping is negli-414

gible. With the Mass-Spring and FEM models it grows slightly415

with the resolution of the deformation model, but even with a416

1K 2K 4K 8K 16K
32K

64K
128K

0

100

200

300

400

500

Deformation mesh size (in tetrahedra)

Ti
m

e
(m

s)

Our method
Gascón et al.

Figure 7: Scalability comparison of our method and the one by Gascón et al. [4]
w.r.t. the resolution of the deformation mesh.

Mass-Spring model with over half a million nodes the cost re-417

mains low. It is important to note that we used much coarser418

meshes with the quasi-static FEM solver running on the CPU419

because with high-resolution meshes the actual deformation solver420

becomes the bottleneck. This was not the case with our Mass-421

Spring solver because of explicit time integration.422

For the case of tetrahedral deformation meshes (either with423

the Mass-Spring or FEM models), we also performed a more424

extensive scalability analysis as a function of mesh resolution.425

And we compared the results of our algorithm to the results of426

the rasterization algorithm by Gascón et al. [4]. For this pur-427

pose, we used the foot dataset shown in Fig. 5. Fig. 7 shows428

scalability plots with our method and with the method of Gascón429

et al. Ours is fairly independent of mesh resolution, while430

theirs is largely penalized under high-resolution meshes. The431

reason is that their algorithm uses indirection mechanisms that432

depend on the deformation mesh during resampling. Ours, in-433

stead, takes advantage of the implicit sampling mesh to decou-434

ple deformation mapping and resampling, avoiding costly indi-435

rections.436

4.4.2. Volume resolution437

In order to study the scalability of our resampling algorithm438

w.r.t. the resolution of the input volume dataset, we have mea-439

sured the resampling time for several datasets. For this pur-440

pose, we have generated synthetically homogeneous data cubes441

of varying size. We have tested the three deformation meth-442

7



Table 2: Performance results of the large deformation test shown in Fig. 9. The table show resampling times for the five proposed scenarios, samples per tetrahedron
(average, minimum, and maximum), resampling throughput measured as samples per millisecond, grid size, and required memory.

Deformation Resampling
time

Average samples per
tetrahedron (min, max)

Samples per
millisecond

Output
grid size

Output grid
memory

Undeformed 14.6 ms 1.07 (1, 3) 2,670,286 256 × 256 × 113 14.2 MB
Local deformation 14.8 ms 1.08 (1, 12) 2,667,913 256 × 256 × 113 14.2 MB
Rotated 23.6 ms 1.83 (2, 6) 2,821,122 360 × 372 × 216 55.2 MB
Spatially varying scaling 42.7 ms 3.25 (1, 8) 2,769,767 384 × 384 × 170 47.8 MB
Scaling 1.5x 51.2 ms 4.21 (3, 5) 2,997,839 384 × 384 × 170 47.8 MB

1M 5M 10M
15M

20M
25M

30M

0

20

40

60

Dataset size (voxels)

Ti
m

e
(m

s)

ChainMail
Mass-Spring

FEM

Figure 8: Scalability of our resampling pipeline w.r.t. the size of the input vol-
ume dataset. The three deformation methods have been applied to each tested
dataset.

ods on each dataset, using a mesh with 512,000 nodes for the443

Mass-Spring model and a mesh with 3,200 nodes for the FEM444

simulation.445

As shown in Fig. 8, our resampling pipeline (including times446

of both deformation mapping and resampling) exhibits a linear447

growth with respect to the size of the input dataset for the three448

tested deformation methods. Notice that when coupled with the449

ChainMail algorithm, the growth rate is slightly lower due to450

the simpler mapping scheme.451

4.4.3. Performance under large deformations452

We have conducted another experiment to analyze the be-453

havior of our resampling algorithm when large deformations454

are applied to the model. For this purpose, we have used a head455

dataset consisting of 256×256×113 voxels (Fig. 9.a) ), and we456

have analyzed different deformed scenarios with respect to the457

undeformed configuration. The first scenario comprises a local-458

ized load on the nose (Fig. 9.b). The second scenario consists of459

a rotation of 45 degrees on each axis to maximize the misalign-460

ment of the sampling grid and the output grid (Fig. 9.c), increas-461

ing the size of the axis-aligned bounding box of the dataset by462

a factor of 3.9. The third scenario consists of a spatially vary-463

ing scaled model, using a scaling factor going from 1.0 at the464

bottom to 1.5 at the top of the head (Fig. 9.d). The last scenario465

consists of a uniform scaling of the model by a factor of 1.5466

(Fig. 9.e). In the last two cases, the volume of the axis-aligned467

bounding box of the dataset grows by a factor of 3.375.468

Table 2 analyzes the cost of resampling for this experiment.469

Figure 9: a) A head dataset consisting of 7.4 million voxels undergoes different
large deformations. The model is b) deformed by a localized load on the nose,
c) rotated 45 degrees on each axis, d) deformed using spatially varying scaling,
and e) deformed using uniform scaling with a factor of 1.5.

Note that the amount of deformation affects only the cost of470

resampling, and the costs of deformation mapping and volume471

rendering are equal in all five cases. The localized load pro-472

duces the highest peak in maximum samples per element for the473

elements affected but, due to its local scope, the performance of474

the algorithm is barely affected. The rotated configuration max-475

imizes the misalignment of the sampling and the output grids,476

increasing the samples tested per element, and the resampling477

time grows by a factor of 1.61.478

As expected, for the uniform scaling, the cost grows roughly479

linearly with the output volume. Both under uniform and spa-480

tially varying scaling, the size of the dataset grows from 7.4481

million to 25.1 million voxels, but under spatially varying scal-482

ing the deformed model does not cover the entire grid. For483

this reason, it yields a slightly lower resampling cost. It is484

particularly interesting to analyze the throughput of the resam-485

pling algorithm, measured in terms of the grid samples handled486

per millisecond, and the uniform scaling case yields a higher487

throughput. The reason is that, under spatially varying scaling,488

the deformed tetrahedra do not have equal volumes. These size489

differences, together with the misalignment of the sampling and490

the output grids produced by the inhomogeneous scaling, lead491

to imbalanced workloads for the GPU threads, reducing the de-492

gree of parallelism. Notice how, for this example, the number493

of samples per tetrahedron may vary by a factor of 8. We can494

conclude that the performance of our method may become sub-495

optimal under an extreme imbalance in the sizes of deformed496

tetrahedra, due to reduced parallelism.497

4.4.4. Viewport size498

Thanks to the decoupling of the resampling and the actual499

visualization, in our algorithm, the size of the viewport affects500

only the performance of visualization, not the resampling step.501

8



This is different from the behavior of unstructured volume ren-502

dering methods, where the size of the viewport affects the cost503

of all major steps, as analyzed by Okuyan et al. [17]. In ad-504

dition, unstructured volume rendering methods pay a perfor-505

mance penalty when they use both high-resolution meshes and506

large viewports. This is not the case with our algorithm, be-507

cause mesh resolution and viewport size affect the cost of dis-508

joint steps.509

In most of our experiments, we have used a viewport of510

700 × 700 pixels, with 500 samples per ray. Under this reso-511

lution, the cost of ray casting was of 7.4 ms per frame on av-512

erage, and went up to 24.1 ms per frame on average with the513

addition of on-the-fly gradient-based lighting. With a viewport514

of 1920 × 1080 pixels, the average cost per frame of ray cast-515

ing was 40.3 ms, and with gradient-based lighting it rose to516

107.7 ms. All the images in the paper were generated using517

gradient-based lighting.518

4.4.5. Preprocessing519

Although less relevant than the runtime cost, the prepro-520

cessing cost of our method is low. It grows linearly with both521

the size of the volume dataset and the resolution of the deforma-522

tion method. In the most demanding scenario we have tested,523

a volume with 30 million voxels and a Mass-Spring mesh with524

512,000 nodes, the preprocessing step took less than 15 sec-525

onds.526

4.4.6. Memory527

Last, our method is limited by GPU memory, as memory528

requirements grow linearly with the size of the dataset. In single529

precision, each voxel requires a total of up to 31 bytes: 2 to530

store its data value, 12 for its deformed position, 16 for indices531

and barycentric weights of deformation nodes to implement the532

deformation mapping, and 1 to flag topological changes. All533

in all, our algorithm requires 29.5 MB of memory per million534

voxels in the original dataset. For the ChainMail algorithm, the535

memory requirements are lower, as shown in Table 1, because536

there is no need to store deformation mapping information.537

The GPU memory required by the output regular grid is538

comparatively lower, with only 2 bytes per voxel in our exam-539

ples. This amounts to roughly 1.9 MB per million voxels.540

If the memory limit is met and a higher visual detail is de-541

sired, a higher resolution volumetric model could be mapped to542

the sampling mesh by applying 3D texturing to its tetrahedra,543

as in [4], instead of using direct interpolation of the data values544

stored at their vertices.545

5. Conclusions and future work546

We have presented an algorithm to interactively resample547

deformable volumetric models onto a regular grid, which can548

be fed as input to standard direct volume rendering techniques.549

Our algorithm relies on an implicit sampling mesh, making the550

resampling process independent of the underlying deformation551

method.552

This independence has been demonstrated in our experi-553

ments, and it grants two major advantages over previous ap-554

proaches: First, a great variety of deformation methods can be555

coupled with our algorithm by means of a deformation mapping556

scheme. We have demonstrated the coupling with three defor-557

mation methods in this paper. Second, the cost of the resam-558

pling step is independent of the deformation method and its res-559

olution, thus allowing the interactive visualization of datasets560

deformed using dense meshes.561

All the stages of our implementation run in parallel using562

the GPU, and the execution time scales linearly with respect to563

the size of the input volume dataset. However, the amount of564

required dedicated memory also scales linearly with respect to565

the size of the dataset, hence for very large datasets it is possible566

to reach the memory limits of commodity GPUs.567

Our algorithm admits several lines of future work to further568

enhance its performance and accuracy. They include the use569

of our regular sampling mesh at medium-high resolution com-570

bined with 3D texture mapping, adaptive resampling only in571

regions where deformation exceeds a threshold, more accurate572

handling of topological changes, or integration with advanced573

illumination techniques.574

References575

[1] Georgii J, Westermann R. A generic and scalable pipeline for gpu tetrahe-576

dral grid rendering. Visualization and Computer Graphics, IEEE Trans-577

actions on 2006;12(5):1345–52.578

[2] Correa CD, Hero R, Ma KL. A comparison of gradient estimation meth-579

ods for volume rendering on unstructured meshes. Visualization and580

Computer Graphics, IEEE Transactions on 2011;17(3):305–19.581

[3] Schulze F, Bühler K, Hadwiger M. Interactive deformation and visual-582

ization of large volume datasets. In: GRAPP (AS/IE). Citeseer; 2007, p.583

39–46.584

[4] Gascon J, Espadero JM, Perez AG, Torres R, Otaduy MA. Fast deforma-585

tion of volume data using tetrahedral mesh rasterization. In: Proceedings586

of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer587

Animation. ACM; 2013, p. 181–5.588

[5] Allard J, Courtecuisse H, Faure F. Implicit fem solver on gpu for in-589

teractive deformation simulation. GPU Computing Gems Jade Edition590

2011;:281–94.591

[6] Etheredge C. A parallel mass-spring model for soft tissue simulation with592

haptic rendering in cuda. In: 15th Twente Student Conference. 2011,.593

[7] Kharevych L, Mullen P, Owhadi H, Desbrun M. Numerical coarsening of594

inhomogeneous elastic materials. ACM Transactions on Graphics (TOG)595

2009;28(3):51.596

[8] Torres R, Espadero JM, Calvo FA, Otaduy MA. Interactive deforma-597

tion of heterogeneous volume data. In: Biomedical Simulation. Springer;598

2014, p. 131–40.599

[9] Nesme M, Kry PG, Jeřábková L, Faure F. Preserving topology and elas-600

ticity for embedded deformable models. ACM Transactions on Graphics601

(TOG) 2009;28(3):52.602

[10] Fortmeier D, Mastmeyer A, Handels H. Image-based palpation simula-603

tion with soft tissue deformations using chainmail on the gpu. In: Bild-604

verarbeitung für die Medizin 2013. Springer; 2013, p. 140–5.605

[11] Rezk-Salama C, Scheuering M, Soza G, Greiner G. Fast volumetric de-606

formation on general purpose hardware. In: Proceedings of the ACM607

SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware. ACM;608

2001, p. 17–24.609

[12] Westermann R, Rezk-Salama C. Real-time volume deformations. In:610

Computer Graphics Forum; vol. 20. Wiley Online Library; 2001, p. 443–611

51.612

[13] Chen H, Hesser J, Männer R. Ray casting free-form deformed-613

volume objects. The Journal of Visualization and Computer Animation614

2003;14(2):61–72.615

9



[14] Chen M, Silver D, Winter AS, Singh V, Cornea N. Spatial transfer func-616

tions: a unified approach to specifying deformation in volume modeling617

and animation. In: Proceedings of the 2003 Eurographics/IEEE TVCG618

Workshop on Volume graphics. ACM; 2003, p. 35–44.619

[15] Correa C, Silver D, Chen M. Feature aligned volume manipulation for il-620

lustration and visualization. Visualization and Computer Graphics, IEEE621

Transactions on 2006;12(5):1069–76.622

[16] Miranda FM, Celes W. Volume rendering of unstructured hexahedral623

meshes. The Visual Computer 2012;28(10):1005–14.624

[17] Okuyan E, Güdükbay U. Direct volume rendering of unstructured tetra-625

hedral meshes using cuda and openmp. The Journal of Supercomputing626

2014;67(2):324–44.627

[18] Nakao M, Minato K. Physics-based interactive volume manipulation for628

sharing surgical process. Information Technology in Biomedicine, IEEE629

Transactions on 2010;14(3):809–16.630

[19] Hacon D, Tomei C. Tetrahedral decompositions of hexahedral meshes.631

European Journal of Combinatorics 1989;10(5):435–43.632

[20] Rössler F, Wolff T, Ertl T. Direct gpu-based volume deformation. Pro-633

ceedings of Curac 2008;:65–8.634

[21] Gibson SF. 3d chainmail: a fast algorithm for deforming volumetric ob-635

jects. In: Proceedings of the 1997 symposium on Interactive 3D graphics.636

ACM; 1997, p. 149–ff.637

[22] Schill MA, Gibson SF, Bender HJ, Männer R. Biomechanical simula-638

tion of the vitreous humor in the eye using an enhanced chainmail algo-639

rithm. In: Medical Image Computing and Computer-Assisted Interven-640

tion, MICCAI’98. Springer; 1998, p. 679–87.641

[23] Frisken-Gibson SF. Using linked volumes to model object collisions,642

deformation, cutting, carving, and joining. Visualization and Computer643

Graphics, IEEE Transactions on 1999;5(4):333–48.644

[24] Wu J, Westermann R, Dick C. A survey of physically based simulation645

of cuts in deformable bodies. In: Computer Graphics Forum (to appear).646

Wiley Online Library; 2015,.647

[25] Georgii J, Echtler F, Westermann R. Interactive simulation of deformable648

bodies on gpus. In: SimVis. 2005, p. 247–58.649

[26] Müller M, Gross M. Interactive virtual materials. In: Proceedings of650

Graphics Interface 2004. Canadian Human-Computer Communications651

Society; 2004, p. 239–46.652

10


