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Abstract ChainMail algorithm is a physically-based deformation algorithm
that has been successfully used in virtual surgery simulators, where time is a
critical factor. In this paper, we present a parallel algorithm, based on Chain-
Mail, and its efficient implementation that reduces the time required to com-
pute deformations over large medical 3D datasets by means of modern GPU
capabilities. We also present a 3D blocking scheme that reduces the amount of
unnecessary processing threads. For this purpose, this paper describes a new
parallel boolean reduction scheme, used to efficiently decide which blocks are
computed. Finally, through an extensive analysis, we show the performance
improvement achieved by our implementation of the proposed algorithm and
the use of the proposed blocking scheme, due to the high spatial and temporal
locality of our approach.

Keywords GPU programming · stencil computation · physically-based
deformation · parallel algorithms

1 Introduction

Over the last years, Graphics Processing Units (GPUs) have been widely used
to accelerate a huge variety of algorithms in different fields. This is due to
the fact that modern GPUs are designed following a highly parallel Single
Instruction, Multiple Data (SIMD) scheme, containing hundreds or thousands
of processors and dedicated memory.

Many approaches for physically-based deformation of medical volumetric
models take advantage of these capabilities such as the parallel implementa-
tion of the Finite Element Method proposed by Comas et al. [2] or the parallel
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Mass-Spring system proposed by Georgii et al. [8], since they can be adapted
to operate in parallel over a huge amount of data elements. The ChainMail
algorithm, introduced by Gibson [10], is a two-stage physical deformation al-
gorithm which, unlike other physically-based deformation algorithms, follows
a purely geometrical approach that is therefore capable of handling several
orders of magnitude more elements. It has been successfully used to simulate
surgical procedures, such as a vitrectomy [19] or arthroscopic knee surgery [9],
where a low response time is a strong requirement.

In this paper we present a parallel version of the ChainMail algorithm
which efficiently handles deformations over large areas of the dataset. Our al-
gorithm allows a parallel implementation of the tasks that are computationally
intensive using the GPU, thus avoiding costly memory transfers to visualize
the deformations since the rendering is also carried out using the GPU. Unlike
previous approaches, our algorithm is capable of interleaving its two stages,
allowing intermediate visualizations of the current state of the deformation.
Therefore, our algorithm is able to provide a more interactive visual feedback.

We also propose a partitioning method that, taking into account the sparse
nature of our algorithm, splits up the computation of the dataset elements into
blocks that can be processed independently. This blocking method prevents
the processing of blocks that do not require any computation, reducing the
number of idle threads, thus decreasing the overall computation time.

Additionally, we present a novel parallel reduction approach that is limited
to reduction of boolean sets, but improves the performance of the general
parallel reduction approach.

This paper is organized as follows: In Section 2, previous related work is
reviewed. Our parallel ChainMail algorithm is described in Section 3, which
also includes a brief introduction to the original ChainMail algorithm, as well
as details about the implementation. In Section 4, the blocking method is de-
scribed and the required algorithms and data structures to efficiently handle
the blocks are detailed. Also, the proposed boolean reduction mechanism is
presented. In Section 5 we present an analysis of results, testing our approach
under different blocking configurations and several datasets, comparing its per-
formance against an optimized multithreaded implementation of the original
ChainMail algorithm. We extend the analysis to several hardware configura-
tions, demonstrating the portability and scalability of the blocking scheme and
the benefits achieved by our approach. Finally, our conclusions are exposed in
Section 6.

2 Related Works

In order to take advantage from General-Purpose Computing on Graphics Pro-
cessing Units (GPGPU), it is necessary to map the algorithms to the graphics
hardware, which is not always an easy task. Kirk et al. [11] presented an
excellent introduction to massively parallel general-purpose computation us-
ing modern graphics hardware, compiling recent developments, common tech-



SP-ChainMail: A Parallel ChainMail Algorithm for Deforming Volumes 3

niques and several practical examples. Due to the SIMD nature of modern
GPUs, a common approach to perform parallel computation is the iterative
stencil computation scheme [3]. This scheme consists of a sequence of itera-
tions over a given dataset, stored in a grid of cells. Each iteration performs
local neighborhood computations to obtain new values for the cells. Examples
of this approach are the stencil based GPU algorithm proposed by Micikevi-
cius [14] to perform 3D finite difference calculations, and the iterative parallel
approach proposed by De la Asunción et al. [4] to simulate shallow water
systems on the GPU.

The original ChainMail algorithm [10] has been used by many authors for
medical applications, such as angioplasty simulation [12] , heterogeneous de-
formation of medical datasets [20] and generation of medical illustrations [13].
Unfortunately, interactivity is only achieved if the amount of affected elements
is relatively small. Since the original ChainMail algorithm presents an impor-
tant computational stage which is inherently sequential, a direct mapping to
parallel platforms computation has a very limited impact on the performance.

A two-stage parallel approach based on the ChainMail algorithm was in-
troduced by Rößler [17], and has been also used in medical applications by
Fortmeier et al. [5,6]. This parallel approach achieves good performance for
small deformations, but suffers from a high amount of idle computation when
large deformations are applied, hurting the overall performance. Moreover, the
visualization can only be performed after the whole deformation is completed,
decreasing the visual feedback and interactivity during large deformations.

Unlike previous approaches, our algorithm handles both the propagation
and the relaxation stage at iteration level following a stencil computation
scheme, allowing overlapping both stages in order to generate partial visual-
izations of the deformations. Moreover, the use of our blocking scheme avoids
unnecessary computation, increasing the performance of the overall process.

Bandwidth and computation problems associated with the stencil compu-
tation approach have been widely studied. Many cache-based blocking schemes
palliate bandwidth problems. An example is discussed in the work of Nguyen
et al. [16], introducing a 3.5D spatial and temporal blocking scheme applied
to the input grid into on-chip memory to optimize bandwidth bounded ker-
nels. Brodtkorb et al. [1] proposed an early exit mechanism to avoid further
computation of blocks marked as non-contributing in the previous iteration.
Sætra [18] proposed methods to reduce the computational burden and required
memory in order to perform stencil operations over sparse domains.

Our blocking scheme extends the work of Brodtkorb et al. [1] to efficiently
handle the activation and deactivation of the blocks, further reducing the un-
necessary computation performed in each iteration of our stencil computation.

3 SP-ChainMail

The original ChainMail algorithm [10] defines a mesh structure over the ele-
ments of the volumetric model. Each element is connected to its six adjacent
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Fig. 1 2D depiction of an element deformation using the ChainMail algorithm. (a) Given
an initial configuration: (b) the element defines valid regions for its neighbors; (c) when
the element is displaced, it defines new valid regions; (d) the neighbors violating those new
constraints are shifted to fulfill them. (e) The final stable state is reached when all the
constraints are satisfied.

neighbors. A deformation is handled by two separate stages: propagation stage
and relaxation stage.

In the propagation stage, a valid spatial region is defined for each neighbor
of a given element. While a neighbor remains within that region, the state
is valid and no updates are needed. Since the regions are defined relative to
the current position of each element, the valid regions for the neighbors of an
element are displaced when that element is displaced. Due to this displacement,
a neighbor may be outside the new valid region. If this happens, the neighbor
is shifted to a new location in order to fulfill the constraint, as shown in Fig. 1.
The shifting of a neighbor may, in turn, lead to new constraint violations and
cause further displacement of elements, propagating the deformation through
the mesh elements.

Once all the constraints are satisfied, the relaxation stage begins: each
element is iteratively displaced towards its equilibrium position based on a
midpoint calculation of the positions of its neighbors. Rigid, plastic and elastic
behaviors can be achieved by tuning up the geometric constraints between
elements and modifying the relaxation scheme, as described by Gibson [7].

The ChainMail algorithm is implemented using the CPU since the propa-
gation stage of the algorithm is inherently sequential, and the deformed mesh
must be transferred to the graphics device memory to perform the visual-
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ization. For large models, this memory transfer is expensive and impedes an
interactive visualization of the applied deformations.

3.1 Sparse Parallel ChainMail

In our approach, the volumetric model is arranged as a regular, structured 3D
grid of cells. Each cell corresponds to an element of the ChainMail mesh. Hence,
a cell stores the 3D position of its associated element and the connections with
its neighbors.

Two copies of the grid are used following a Jacobi sweep scheme [16]:
one grid is designated to stencil read operations and other grid is designated
to stencil write operations, swapping roles after each iteration. Both grids are
stored in the device memory (dedicated memory of the GPU). Operations over
cells corresponding to the propagation and relaxation stages are performed
following a stencil computation approach:

– In the propagation stage the original propagation mechanism is inverted
as explained by Rößler [17], adapting it to follow an iterative stencil-based
approach: for each cell, if a neighbor has been displaced on the previous
iteration, the new constraint is checked. If the constraint is not satisfied,
the element is shifted to meet the existing geometric constraint with its
neighbor. This process is repeated iteratively until all the constraints are
satisfied.

– In the relaxation stage, a minimization process is applied based on the
elastic and plastic properties of the model as explained by Gibson [7].
This energy minimization process also follows an iterative stencil-based
approach, since each cell updates its position as a result of a computation
regarding the current positions of its neighbors.

The computation performed for each cell during a propagation iteration,
as well as during a relaxation iteration, is independent from the computation
performed for the rest of the cells, allowing a parallel computation of each
iteration.

Unlike the previous solutions, we introduce a mechanism to handle the
stages at iteration level. This mechanism requires adding a control flag for each
cell. This flag tracks whether the cell has already been reached by the current
propagation front. Therefore, when a new external deformation is applied to a
cell, it is flagged as reached and the rest of the cells are flagged as not reached.
During subsequent propagation iterations, when an element is reached by the
propagation front, it is flagged as reached.

After each iteration of the propagation stage, this flag allows to identify the
cells that have already been reached by the propagation front. If a cell and its
neighbors have already been reached, the cell is ready to perform the relaxation
stage. Therefore, this flag allows overlapping the propagation and relaxation
stages by alternating propagation and relaxation iterations. This overlapping
mechanism allows to visualize partial results of the deformations and, since the
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Fig. 2 Overview of the simulation system. The SP-ChainMail algorithm runs in parallel
on the GPU, allowing partial visualizations of the deformations. Blue stages are carried out
using the GPU, and red stages are carried out using the CPU.

updated data after any propagation or relaxation iteration is already present
in the device memory, no memory transfers are required, allowing a more
interactive visual feedback. An overview of the proposed algorithm integrated
in a virtual surgery system is depicted in Fig. 2.

3.2 Parallel Implementation

In our approach, all the computationally intensive tasks are executed in par-
allel using the GPU. Hence, the 3D dataset is loaded into the device global
memory as an array of cells. Each cell stores the following information:

– Element data: position and constraint values.
– Neighbors flags: a set of six flags indicating whether the element is con-

nected or not with each of its neighbors (its six surrounding cells in the
grid).

– Activity flag : a flag indicating if the element has been displaced in the
preceding propagation iteration.

– Reach flag : a flag indicating if the element has already been reached by the
current propagation.

In order to cope with the Jacobi sweep scheme, we duplicate the whole
array supporting read and write operations. The current read array will be
referred to as global read array, and the current write array will be referred to
as global write array.

3.2.1 Propagation Stage

The propagation stage is implemented as a GPU kernel that is iteratively
invoked. Each kernel invocation computes a single iteration of the propagation,
generating one thread per cell. The kernel is described in Algorithm 1:



SP-ChainMail: A Parallel ChainMail Algorithm for Deforming Volumes 7

1 propagation_kernel (Cell readArray[], Cell writeArray[])
2 Integer id = get_thread_id();
3 Cell current = readArray[id];
4 current.activityFlag = False;
5 FOREACH neighbor IN activeNeighbors(current)
6 IF ( (neighbor.activityFlag == True) AND (

restrictionsNotSatisfied(current, neighbor)) )
7 relocate(current);
8 current.activityFlag = True;
9 current.reachFlag = True;

10 ENDIF
11 ENDFOREACH
12 writeArray[id] = current;
13 END

Algorithm 1 Pseudo-code of the propagation kernel. During the kernel
invocation, each instance of this kernel operates over a single cell, writing
the resulting updated cell to the current global write array.

1. The cell data corresponding to the current thread is read from the global
read array (lines 2-3).

2. For each neighbor, the following condition is checked (lines 5-6): the neigh-
bor has been shifted in the previous propagation iteration and the new
restrictions are violated.

3. If this condition is met, the current element is shifted in order to fulfill the
new constraints, and it is flagged as reached and active (lines 7-9).

4. Otherwise, the current element is flagged as inactive (line 4).
5. Finally, the cell data is written to the global write array (line 12).

If no elements are shifted during the kernel invocation, the propagation
stage finishes, and no more propagation iterations are needed.

3.2.2 Relaxation stage

The relaxation stage is also implemented as a GPU kernel that is iteratively
invoked. Each invocation of the kernel computes a single relaxation iteration,
generating one thread per cell. The kernel is described in Algorithm 2:

1. The cell data corresponding to the current thread is read from the global
read array (lines 2-3).

2. The following condition is checked (line 4): the current element has already
been reached but it is not active.

3. If this condition is met and all the neighbors of the current element have
already been reached (lines 5-11), the relaxation process is applied to the
current element (line 12).

4. Finally, the cell data is written to the global write array (line 15).

If none of the elements is shifted during a relaxation iteration and the
propagation stage has already finished, the relaxation stage also finishes and
the deformation is completed.
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1 relaxation_kernel (Cell readArray[], Cell writeArray[])
2 Integer id = get_thread_id();
3 Cell current = readArray[id];
4 IF ( (current.reachFlag == True) AND (current.

activityFlag == False ) )
5 Boolean continue = True;
6 FOREACH neighbor IN activeNeighbors(current)
7 IF (neighbor.reachFlag == False)
8 continue = False;
9 ENDIF

10 ENDFOREACH
11 IF (continue == True)
12 applyRelaxationFunction(current);
13 ENDIF
14 ENDIF
15 writeArray[id] = current;
16 END

Algorithm 2 Pseudo-code of the relaxation kernel. During the kernel
invocation, each instance of this kernel operates over a single cell, writing
the resulting updated cell to the current global write array.

After an invocation of any of these kernels, the global arrays switch their
roles, allowing the next kernel invocation to read from the updated array. Since
the relaxation kernel only affects the elements already reached by the propaga-
tion, excluding those belonging to the current propagation front, both kernels
can be interleaved. The visualization of the current state of the deformation
is also possible by accessing the array data updated by the latest iteration.

Some details regarding our implementation have been omitted for the sake
of clarity. In order to improve the efficiency of the GPU kernels we have
adopted the following strategies:

– The foreach loops are completely unrolled.
– The GPU shared memory is used in order to optimize the access to neigh-

boring cells.
– The actual data of the cells are stored in a Structure-of-Arrays fashion,

more amenable to the regular memory access patterns of the kernels.

4 Computational Blocking Method

Our stencil approach presents a high spatial and temporal locality of the com-
putational burden since the deformations applied to the model propagate it-
eratively through the regular grid following a wavefront pattern. This leads
to a highly sparse computation in the propagation stage, resulting in a high
amount of unnecessary computation.

This unnecessary computation is produced because many of the elements
may have already been shifted in a previous iteration or have not yet been
reached by the current propagation. A less severe sparse computation is also
present in the relaxation stage because of the same reason. Due to this sparse
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computation, many of the launched threads would be idle, wasting GPU re-
sources since these threads also need to read from the device global memory
to compute the data.

Since our solution follows an iterative stencil computation approach, we can
introduce a blocking method to reduce the number of idle threads, optimizing
the usage of the computation power offered by the GPU.

For this purpose, the computational domain is divided into blocks that can
be computed independently. The storage of the dataset in the device memory
remains the same, but each block is handled by an independent kernel launch
instead of a single kernel launch over the whole dataset.

In order to maintain this structure, we store the corresponding 3D offset for
each block. During a kernel launch for a particular block, the kernel receives
this offset information to access the data of the cells in that block.

After each iteration, the blocks are flagged as active or inactive. Active
means that the block may require further computation in the next iteration,
while inactive means that the block will not need further computation in the
following iteration. These flags allow launching the kernel only over active
blocks in order to avoid unnecessary computation. This blocking scheme is
applied to both stages of our algorithm in an efficient way as explained in the
following subsections.

4.1 Efficient Activation and Deactivation of Blocks

In order to handle the activation and deactivation of blocks, we extend the
solution proposed by Brodtkorb et al. [1], which involves the use of an auxiliary
boolean buffer in order to indicate whether a block requires computation in
the next iteration or not. In our approach, we use several of these buffers,
referred to as boolean maps, to update and control the state of the blocks.

Each boolean map is stored as a global array on device memory containing
one binary flag per block in the partition. A first boolean map is associated to
the propagation stage. A second boolean map is associated to the relaxation
stage.

In each iteration, for any of the both stages, the blocks that need to be
computed in the next iteration are flagged as active in the corresponding
boolean map. A new condition test, added to the end of the kernels code,
decides whether a block requires further computation or not by checking if
any element in the block has been updated. An element is considered updated
by a propagation iteration if it has been reached by the propagation front. An
element is considered updated by a relaxation iteration if it has been displaced
by the relaxation function. On the other hand, if none of the elements in a
block have been updated during the current iteration, the block is flagged as
inactive. Fig. 3 shows a 2D illustration of this mechanism.
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Propagation
Boolean Map

Relaxation
Boolean Map

Cell shifted in the
last relaxation
iteration

Cell reached in the
last propagation
iteration

Fig. 3 2D simplification of the boolean map mechanism. Blocks containing cells reached
in the last propagation iteration are flagged in the propagation boolean map, and blocks
containing cells shifted in the last relaxation iteration are flagged in the relaxation boolean
map.

4.1.1 Activation of Neighboring Blocks

When the propagation front or the relaxation process reaches the border of a
block, the neighboring block must be activated. Six additional boolean maps
are defined, each one associated to one of the borders for all the blocks.

Therefore, if an element belonging to the border of a block is updated in the
current iteration, the position of that block in the boolean map corresponding
to that border is set as active.

In the host memory (main memory), two lists of active blocks are main-
tained. At the end of each iteration, for any of the both stages, the correspond-
ing boolean maps are copied to the host memory and the corresponding list
is updated using the boolean maps as look-up tables. At the beginning of the
next iteration, only the blocks indexed in the corresponding list are processed
by the kernel.

Fig. 4 presents the steps and memory accesses during an iteration of the
algorithm. Notice that the dataset is always stored in the device memory and
operated from the GPU, and only the boolean maps are transferred to host
memory.

4.2 Parallel Boolean Reduction

As mentioned earlier, the boolean maps are updated by the kernels but, since
each launched thread handles only one cell, it is necessary to perform a gath-
ering process regarding each block. Instead of a parallel reduction approach as
in [1] and [18], we propose a novel two-step Parallel Boolean Reduction (PBR)
mechanism:
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Fig. 4 Steps and memory accesses during an iteration. The blue steps (steps 1 and 3) run
on the GPU, while the red steps (steps 2 and 4) run on the CPU. The only memory transfer
between device memory and host memory is performed in the step 4 in order to update the
active blocks list.

1. All the flags of the boolean maps are set as inactive before launching the
kernels corresponding to the active blocks, assuming that none of the blocks
will need further computation in the next iteration.

2. The kernels corresponding to the active blocks are launched. If an element
of a block is updated, a write operation is performed to set as active the
position of that block in the corresponding boolean map.

Although the concurrent writing of several threads to the same variable
does not guarantee the integrity of data, in this case all the threads write
the same value. This fact ensures the final state of the boolean values while
avoiding the additional latency introduced by a parallel reduction approach.
A depiction of both approaches operating over the same set of values is shown
in Fig. 5. A performance comparison of both methods is presented in the next
section.

5 Experiments and Results

In order to demonstrate the benefits of the proposed methods, several tests
have been conducted using different hardware configurations to also evaluate
the portability and scalability of the proposed blocking scheme. Three hard-
ware configurations have been used:

– GTS-250 configuration: Intel Core i3-530 2.93 GHz, 4 GB RAM, Nvidia
GeForce GTS 250 (Tesla microarchitecture, 128 cores) with 1 GB of video
memory GDDR3. OpenCL 1.1 driver included in CUDA 6.

– R9-270X configuration: Intel Core i5-3570 3.4 GHz, 8 GB RAM, AMD
Radeon R9 270X (1280 cores) with 2 GB of video memory GDDR5. OpenCL
1.2 driver.
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Parallel reduction PBR

Fig. 5 Left: parallel reduction of eight boolean values using the binary OR operation. Right:
parallel boolean reduction (PBR) of the same eight boolean values.

– GTX-670 configuration: Intel Core i7-3770 3.4 GHz, 16 GB RAM, Nvidia
GeForce GTX 670 (Kepler microarchitecture, 1344 cores) with 2 GB of
video memory GDDR 5. OpenCL 1.1 driver included in CUDA 6.

Two different datasets have been used for the tests. The first dataset,
referred to as Cube dataset, is a synthetic regular 3D cube, consisting of 96 ×
96 × 96 elements. The second dataset, referred to as Leg dataset is a section
of a leg from the Visible Human Project of the National Library of Medicine
(see Fig. 6), consisting of 160 × 160 × 160 elements.

5.1 SP-ChainMail Performance

To evaluate the performance of our approach, the SP-ChainMail algorithm
has been implemented, together with the blocking scheme, using OpenCL [15],
integrating it into a virtual surgery system prototype.

The original ChainMail algorithm [10] has also been implemented as a ref-
erence. The propagation stage of the original algorithm is inherently sequential
and cannot be parallelized for multicore processors, but the relaxation stage
has been parallelized using OpenMP by dividing the ChainMail elements in
balanced groups and assigning the computation of each group to one thread.

A deformation has been applied to each dataset, causing a propagation-
relaxation through the whole dataset affecting all the elements. For the Cube
dataset, the SP-ChainMail algorithm took 285 propagation iterations and
468 relaxation iterations until a completely stable configuration was reached.
The original ChainMail algorithm also required 468 relaxation iterations af-
ter the propagation (not measurable in iterations). For the Leg dataset the
SP-ChainMail algorithm took 477 propagation iterations and 788 relaxation
iterations. The original ChainMail algorithm also required 788 relaxation iter-
ations after the propagation. Each test has been repeated five times, although
no noticeable differences were encountered through the different executions
due to the deterministic behavior of the algorithms. The results presented
here report the average of the measured times.
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Fig. 6 Left: The Leg dataset, used in the performance tests. Right: The Leg dataset de-
formed by the Sparse Parallel ChainMail algorithm, using the developed virtual surgery
system.

The original ChainMail was tested only on the GTX-670 configuration,
our most modern hardware configuration. Using 8 threads for the relaxation
computation (grouping the elements in 8 groups), the stable state was reached
after 10,648 ms for the Cube dataset and 49,283 ms for the Leg dataset.

We tested the SP-ChainMail implementation on both datasets using differ-
ent block sizes for the blocking scheme, resulting in different rates of reduction
on the total number of launched GPU threads. As can be seen in Table 1, a
smaller block size always implies a higher reduction in the number of launched
threads, which is expected since the smaller block sizes lead to a finer adjust-
ment of the active blocks to the actual propagation front.

Table 2 shows the measured times using the Cube dataset and Table 3
shows the measured times using the Leg dataset. The times reported represent
the time taken to reach the stable state for the same applied deformation to
the dataset. The speed-up with respect to the original ChainMail (running on
the GTX-670 configuration) is also reported in both tables.

The tests reveal that the SP-ChainMail outperforms the original Chain-
Mail even using relatively old GPUs, achieving notable speed-up factors higher
than 20x when using a modern GPU. Interestingly, the results show that
smaller blocks do not always lead to a higher speed-up although the number
of launched threads is smaller. This is due to the fact that the smaller kernel
launches do not create enough parallel threads to fully hide the memory access
latency, and this overhead, added to the overhead of managing more kernel
launches, gradually decimates the gain of the reduced computation load.
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Table 1 Thread launch reduction achieved using different block sizes.

Cube dataset Leg dataset

Block

size

# of

Blocks

Launched

threads

Thread

launch

reduction

# of

Blocks

Launched

threads

Thread

launch

reduction

No blocks - 666,206,208 - - 5,181,440,000 -

32x32x32 27 234,553,344 64.79% 125 1,018,888,192 80.33%

32x16x16 108 148,873,216 77.65% 500 639,262,720 87.66%

16x16x16 216 107,683,840 83.83% 1,000 465,821,696 91.01%

32x8x8 432 103,868,416 84.40% 2,000 451,835,904 91.27%

16x8x8 864 67,950,592 89.80% 4,000 297,355,264 94.26%

8x8x8 1,728 49,827,840 92.52% 8,000 219,824,128 95.75%

Table 2 Measured times of our SP-ChainMail implementation using the Cube dataset.
Speed-up factors relative to the original ChainMail are also shown.

GTS-250 R9-270X GTX-670

Block

Size

Time

(ms)
Speed-up

Time

(ms)
Speed-up

Time

(ms)
Speed-up

No blocks 8,159 1.31x 1,131 9.41x 1,545 6.89x

32x32x32 4,293 2.48x 693 15.36x 705 15.10x

32x16x16 3,476 3.06x 815 13.06x 635 16.76x

16x16x16 3,720 2.86x 1,015 10.49x 598 17.80x

32x8x8 3,923 2.71x 1,484 7.17x 893 11.92x

16x8x8 4,363 2.44x 1973 5.39x 1,064 10.01x

8x8x8 5,668 1.87x 2,678 3.97x 1,443 7.37x

Table 3 Measured times of our SP-ChainMail implementation using the Leg dataset. Speed-
up factors relative to the original ChainMail are also shown.

GTS-250 R9-270X GTX-670

Block

Size

Time

(ms)
Speed-up

Time

(ms)
Speed-up

Time

(ms)
Speed-up

No blocks 61,271 0.80x 7,601 6.48x 11,448 4.30x

32x32x32 20,658 2.39x 2,683 18.36x 2,810 17.53x

32x16x16 16,130 3.05x 3,207 15.36x 2,428 20.29x

16x16x16 17,261 2.85x 3,910 12.60x 2,243 21.97x

32x8x8 18,128 2.72x 5,742 8.58x 3,438 14.33x

16x8x8 19,030 2.59x 7,718 6.39x 4,207 11.71x

8x8x8 25,291 1.95x 11,240 4.38x 5,960 8.27x

5.2 Blocking Method Portability

For the GTS-250 configuration, any of the tested block sizes leads to a signifi-
cant speed-up with respect to the non-partitioned case (i.e., the SP-ChainMail
witouth using the blocking scheme), being the speed-up factor higher when us-
ing the Leg dataset, since the thread launch reduction is higher. As already
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mentioned, the gain is gradually decimated as the block size is reduced, due
to the added overhead, as can be seen in Fig. 7.a and Fig. 7.d.
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a) GTS 250: Cube dataset
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b) R9 270X: Cube dataset
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c) GTX 670: Cube dataset

1

1.5

2

2.5

S
p

ee
d

u
p

1

1.5

N
o

B
lo

ck
s

3
2
×

3
2
×

3
2

3
2
×

1
6
×

1
6

1
6
×

1
6
×

1
6

3
2
×

8
×

8

1
6
×

8
×

8

8
×

8
×

8

d) GTS 250: Leg dataset
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e) R9 270X: Leg dataset
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f) GTX 670: Leg dataset
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Fig. 7 Plots showing the time reduction and speed-up factor measured for the different
block sizes with respect to the non-partitioned SP-ChainMail case. The top row shows the
results using the Cube dataset. The bottom row shows the results using the Leg dataset.

R9-270X and GTX-670 configurations exhibit a similar behavior (Figs. 7.b,
7.c, 7.e and 7.f ) but, since the more recent GPUs present in those config-
urations have a much higher amount of stream processing units, they require
an even higher amount of parallel threads to hide memory latency, and the
smaller block sizes cannot even fully populate the GPU cores, leading to a
loss of effective computation power. This loss is most severe in the case of the
R9-270X configuration, on which the use of small block sizes even yields a
worse performance than the non-partitioned case.

Despite this effect, the use of a reasonable block size (which depends on the
particular GPU architecture) leads to a noticeable speed-up using any of the
three configurations, showing the portability of the proposed blocking method
and the performance gain obtained through its use.

5.3 Scalability Test

Notice that the previous tests on the Leg dataset achieve a higher speed-up
than their counterparts using the Cube dataset, suggesting a good scalability
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of the blocking method regarding the dataset size. In order to further analyze
the scalability of our blocking method with respect to the dataset size, a second
test using synthetic regular datasets, with dimensions ranging from 32×32×32
to 224 × 224 × 224, has been performed.
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Fig. 8 Measured times of the scalability test, using the GTX-670 configuration.
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Fig. 9 Speed-up factor achieved for the increasing dataset size of the scalability test, using
the GTX-670 configuration.

The most modern configuration (the GTX-670 configuration) has been used
to perform this test. A deformation affecting all the elements of the dataset
has been applied, measuring the propagation time without using the blocking
method and measuring the propagation time of the same deformation using a
block size of 16 × 16 × 16, which achieved the best performance gain on the
GTX-670 configuration.

The measured times corresponding to this second test, presented in Fig. 8,
show a significant reduction of the propagation time for all the tested dataset
sizes, and they also show a good scalability of the proposed method since the
speed-up factor, shown in Fig. 9, also increases when increasing the dataset
size.
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5.4 Memory Requirements

5.4.1 SP-ChainMail Memory Requirements

The memory requirements of our SP-ChainMail algorithm (corresponding to
the Global Arrays in Fig. 4) scale linearly with the number of elements in the
input dataset.

For each element, 30 bytes of device memory are required, which leads to a
total amount of 480 MB for an input dataset of 256× 256× 256 elements, and
a total amount of 3.75 GB for an input dataset of 512 × 512 × 512 elements,
an amount currently offered only by high-end GPUs. However, this limitation
is not reached in most scenarios, such as virtual surgery applications, since
the simulation is usually performed on a sub-region of the dataset, and SP-
ChainMail information would only be generated for the elements of the sub-
region in those cases.

5.4.2 Blocking Method Memory Requirements

The blocking method has very low host and device memory requirements.
In host memory (List of active blocks in Fig. 4), 64 bytes are required per

block. In device memory, only 8 bytes are required per block.
In our most memory demanding test (the Leg dataset with a 8 × 8 × 8

block size, generating 8,000 blocks in the partition) required 500 KB of device
memory and 62.5 KB of device memory. As mentioned in section 4.1.1, only
the boolean maps are transferred from device memory to host memory at
the end of each iteration. Even in our most memory demanding test, this
transfer consumes less than 1 ms, which is a negligible overhead considering
the achieved gain.

5.5 PBR performance Test

A performance test comparing the proposed Parallel Boolean Reduction (PBR)
algorithm with a general parallel reduction algorithm has been conducted.
Both algorithms have been applied to reduce several arrays of boolean ele-
ments of a wide range of sizes.

The measured times of both algorithms using the GTX-670 configuration
are shown in Fig. 10. The PBR algorithm shows a better performance for all the
array sizes, since less read/write operations are needed and no synchronization
steps are required.

6 Conclusions and Future Work

In this work we have presented a Sparse Parallel ChainMail algorithm. The
proposed algorithm has been implemented and integrated into a virtual surgery
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Fig. 10 Comparison of the times required by the parallel reduction algorithm and the
PBR algorithm to perform a reduction over several boolean arrays, using the GTX-670
configuration.

system, allowing an interactive visual feedback during the manipulation of
large volumetric models. Following a stencil computation approach, our algo-
rithm adapts to the modern GPU computation paradigm.

We have proposed and implemented a 3D blocking method to deal with
the sparse nature of the SP-ChainMail computation, drastically reducing the
amount of idle GPU threads created.

A novel parallel boolean reduction mechanism has been used to efficiently
handle the activation and deactivation of blocks. This reduction approach has
been proven faster than a generic parallel reduction approach, and it can be
used in any context in which the reduced value has a boolean nature, i.e., there
are only two possible output values.

The tests conducted in this work show that our implementation consid-
erably outperforms a parallel multithreaded implementation of the original
ChainMail algorithm, and our blocking method effectively reduces the compu-
tation time required for the deformations, enhancing the interactivity of the
simulation system. The tests also show a good portability and scalability of the
blocking scheme, which increases its effectiveness as the dataset size increases,
while the required additional memory is negligible.

As future lines of research, we intend to include an auto-tuning mecha-
nism to determine the optimal block size automatically for each hardware and
software configuration. Another interesting future line of work is the gener-
alization and further testing of the blocking scheme for stencil computation
approaches. Moreover, it would be interesting to test the use of dynamic par-
allelism to perform the handling and launching of the blocks directly from the
GPU.
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