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Abstract

In this work we present a new solution for correctly handling heterogeneous materials in Chain-

Mail models, which are widely used in medical applications. Our core method relies on two

main components: (1) a novel timestamp-based propagation scheme that tracks the propagation

speed of a deformation through the model and allows to correct ambiguous configurations, and

(2) a novel relaxation stage that performs an energy minimization process taking into account the

heterogeneity of the model. In addition, our approach extends the SP-ChainMail algorithm by

supporting interactive topology changes and handling multiple concurrent deformations, increas-

ing its range of applicability. Finally, we present an improved blocking scheme that efficiently

handles the sparse computation, greatly increasing the performance of our algorithm.

Our proposed solution has been applied to interactive deformation of large medical datasets.

The simulation model is directly generated from the input dataset and an user defined material

transfer function, while the visualization of the deformations is performed by rendering the re-

sampled deformed model using direct volume rendering techniques. In our results, we show

that our parallel pipeline is capable of interactively deforming models with several million ele-

ments. A comparison is finally discussed, analyzing the properties of our approach with respect

to previous work. The results show that our algorithm correctly handles very large heteroge-

neous ChainMail models in an interactive manner, increasing the applicability of the ChainMail

approach for more demanding scenarios both in response time and material modeling.

Keywords: ChainMail, Soft tissue deformation, Volume rendering, GPU

∗Corresponding author. Tel.: +34 687 63 22 88; email: alejandrora@ugr.es

Preprint submitted to Computers in Biology and Medicine October 10, 2016



1. Introduction

The use of computational simulation methods is nowadays extensively used in the fields of bi-

ology and medicine. In particular, many simulation applications related to the medical field such

as the simulation of physiological processes [1, 2] or the simulation of surgical procedures [3],

require a complex simulation of the human anatomy. The deformation of human tissues exhibits

complex heterogeneous and non-linear behaviors that have been approached by many different

solutions over the years [4, 5]. In the case of interactive applications, a trade-off between perfor-

mance and deformation accuracy has to be reached, since the requirements regarding to visual

and interaction feedback impose strong response time restrictions [6].

Patient-specific data captured through CT or MRI scans include up to several million voxels,

each one storing information related to different tissues and organs. Physically-based simulation

methods such as mass-spring models or finite element methods reproduce many heterogeneous

behaviors accurately, but the computational cost of these approaches limits the resolution of the

models to a small fraction of the captured medical data resolution which is usually several orders

of magnitude higher. This disparity hinders the modeling process and leads to an inevitable loss

of heterogeneity and complexity of the source data.

In order to increase the resolution of the deformation models, Gibson proposed the ChainMail

algorithm [7] by following a geometrical approach that enables physically realistic deformations.

Since it is a purely geometrical approach, it is unconditionally stable and is computed in a well

bounded execution time, making it suitable for interactive applications. Moreover, it is capable

of simulating many complex human tissue behaviors such as non-linear stress-strain response,

hysteresis and asymptotic relaxation. Thanks to these properties, its usage has spread to many

medical applications, as we review in Section 2.

In our previous work, we proposed the SP-ChainMail algorithm [8], a parallel version of the

original ChainMail algorithm. It allows to interactively deform models for very high resolutions

by computing its propagation and relaxation stages using modern GPU parallel capabilities and

integrating a blocking scheme to handle the sparse computation.

Both the original and the SP-ChainMail assume a homogeneous material for the model, thus

the heterogeneity of the medical data is incorrectly handled in many situations. This limitation

motivates our work, since an efficient and correct handling of the heterogeneity in the models

would lead to a wider range of applicability of the ChainMail approach in medical contexts.
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In this work, we extend the SP-ChainMail algorithm to correctly manage heterogeneous ma-

terials in the model, interactive topology changes and multiple concurrent deformations while

preserving its efficient computation. We also propose a modification of the blocking scheme to

further improve the performance of the sparse parallel computation.

We have integrated the proposed algorithm into a GPU-based pipeline for direct deformation

of medical datasets. A ChainMail model is created from the input dataset, comprising all the

heterogeneous information present in the data since it is created at the same resolution. After

a deformation is applied, the deformed model is resampled in runtime into a voxel grid which

is then visualized using standard direct volume rendering. All the main stages of the proposed

pipeline are executed in parallel by the GPU, which allows to interactively deform and visualize

models up to several million elements.

The remainder of this paper is organized as follows. In Section 2 we review related work,

focusing on the ChainMail algorithm and its derived works. In Section 3 we present all the

aspects related to our proposed ChainMail algorithm. Section 4 describes the application of

the proposed algorithm for interactive manipulation of medical datasets, including the model

creation process from a source medical dataset and issues related to visualization and interaction

with the model. In Section 5, we present the results of several tests using the proposed pipeline,

including a comparative experiment with the SP-ChainMail algorithm. We also analyze and

discuss aspects related to the efficiency and memory requirements of our approach. Finally, our

conclusions are listed in Section 6.

2. Related Work

Interactive simulation of deformable models with biomechanical behaviors has been of inter-

est for several decades. During this period, many approaches have been proposed, although this

paper focuses on the ChainMail algorithm and its derived works. For a more general overview

of the different approaches, we refer the reader to the surveys of Meier et al. [4] and Moore et

al. [5].

The original ChainMail algorithm is a physically motivated approach that defines a Chain-

Mail model as a regular 3D mesh structure of elements arranged in a regular grid. Each element

is connected to its six nearest neighbors. These elements define geometrical limits for their

neighbors based on the current position of the elements and the properties of the tissue modeled
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by them. Henceforth, we will refer to these geometrical limits simply as constraints. The valid

regions that an element imposes to its neighbors are thus defined through geometric constraints

for the position Pn = (xn, yn, zn) of the neighbor. The constraints are defined by the maxD and

minD parameters, which control the stretching and contraction limits, and the maxHorizD1 and

maxHorizD2 parameters, which control shear limits. Fig. 1 shows the parametrization for a right

neighbor, yielding the constraints:

xe + minDx ≤ xn ≤ xe + maxDx, (1)

ye − maxHorizDx1 ≤ yn ≤ ye + maxHorizDx1, (2)

ze − maxHorizDx2 ≤ zn ≤ ze + maxHorizDx2, (3)

where Pe = (xe, ye, ze) is the current position of the element. These constraints are applied

for a right neighbor, and analogous constraint equations are found for the other neighbors (back,

front, top, bottom and left) using Dy and Dz-based parameters.

Thus when an element is displaced and the constraints are violated, the neighbors violating

the constraints are shifted to valid positions, which may lead to new constraint violations, and the

deformation is propagated through the model as a chain reaction by enforcing those constraints.

After all the constraints are met, the resulting configuration is relaxed in a second stage by adjust-

ing the elements towards an optimal energy configuration. Non-linear elastoplastic deformations

and other complex behaviors can be achieved by tuning the geometric constraints between el-

ements and by modifying the relaxation scheme, as described in [9]. This algorithm has been

used in many medical applications such as arthroscopic knee surgery [10], simulation of an an-

gioplasty procedure [11], liver biopsy simulation [12, 13], non-rigid image registration [14],

automatic segmentation [15] and interactive generation of medical illustrations by cutting and

deforming medical models [16].

Other versions of the original algorithm have been proposed for different applications, such

as real time haptic rendering [17, 18, 19], biomechanical modeling of organs [20, 21, 22, 23] or

patient palpation simulation [24, 25].

One of the most important lacking features of the ChainMail algorithm is the support of

heterogeneous materials, since a homogeneous material is assumed for the entire model, i.e.,

maxDx, minDx, maxHorizDx1, maxHorizDx2, used in Eqs. (1) – (3) (and their analogous Dy and
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Dz-based parameters) have to remain constant for all the elements of the model, which limits its

application to real data.

In order to overcome this limitation, Schill et al. [26] proposed a modification of the order of

propagation. A dynamic ordered list is maintained and, instead of a First-Moved-First-Processed

criterion for shifting the candidate elements, the element with highest constraint violation is

processed first. This propagation mechanism enables the use of heterogeneous materials in the

models, but makes the processing very slow since, after processing each element, all the new

candidate elements have to be inserted and sorted in the list prior to processing the next one.

Moreover, the relaxation stage is not modified and a homogeneous material is still considered,

which reduces the plausibility of the final achieved configuration. This algorithm has also been

used in medical applications such as vitrectomy simulation [26, 27] and heterogeneous deforma-

tion of large medical datasets [28].

The SP-ChainMail algorithm [8] increases the performance of the original algorithm by more

than one order of magnitude by mapping the computation of the propagations to the GPU. In

this algorithm, the propagation process is inverted: when an element is shifted due to a new

deformation, a parallel iterative process is launched on the GPU. For each iteration, a thread is

launched per element. Each thread checks whether any of the neighbors of the current element

has been moved in the previous iteration. If this condition is met, the new constraints imposed by

that neighbor are checked and the element is shifted if necessary in order to satisfy the constraints.

Each iteration is performed, and the process continues until no element is shifted during an

iteration.

This iterative approach propagates the deformations through the model following a wavefront

pattern, thus an element is always reached first by the propagation through the shortest path

from the source of the propagation to the element. In the presence of heterogeneous materials,

this treatment leads to incorrect and unpredictable behaviors, limiting its use to homogeneous

materials.

Our proposal extends the SP-ChainMail algorithm, modifying both the propagation and the

relaxation stages, generalizing its applicability to heterogeneous materials. Our solution also

implicitly copes with interactive topology changes in the model.
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3. Heterogeneous Parallel ChainMail

In this section we describe our extended ChainMail algorithm as well as many important

aspects related to its parallelization.

After defining our specification of constraints and links in the model, we detail the new

propagation and relaxation stages which ensure the correct handling of heterogeneous materials

in the model. This is achieved by means of a novel timestamp system and a heterogeneous energy

minimization process respectively. We also explain how interactive topological operations are

managed by the algorithm.

Finally, we detail important improvements that allow the concurrent handling of different

deformation wavefronts and a faster computation of the sparse blocking scheme.

3.1. Heterogeneous constraints

As in the original ChainMail algorithm, the elements in our models are initially arranged in

a regular grid structure. Each element is connected to its six nearest neighbors (back, front, top,

bottom, left and right) given this initial configuration.

We define the geometric constraints imposed by one element to a neighbor as shown in Fig. 2.

A box center, relative to the current position of the element, is calculated attending to the initial

separation of the elements. Three parameters, namely Dx, Dy and Dz, specify the dimensions

of the axis aligned box that define a valid region for the neighbor, controlling the stretching and

shearing limits, yielding the constraints:

xe + xsep − Dx ≤ xn ≤ xe + xsep + Dx, (4)

ye + ysep − Dy ≤ yn ≤ ye + ysep + Dy, (5)

ze + zsep − Dz ≤ zn ≤ ze + zsep + Dz, (6)

for the position Pn = (xn, yn, zn) of the neighbor, where Pe = (xe, ye, ze) is the current position

of the element and ∆e = (xsep, ysep, zsep) is the initial separation of the element and its neighbor.

Isotropic materials for an element can be defined by assigning the same constraints to each

neighbor of its neighborhood, whereas anisotropic materials can be defined by assigning different

constraints depending on the direction of the neighbor.
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Since every element may be defined with a specific material, the actual constraint parameters

are stored in the links, i.e., each link stores its own Dx, Dy and Dz parameters, which can be

different for each link. Thus the constraint parameters stored in a link are computed as a contri-

bution of the two connected elements by averaging their constraint parameters. These averaged

parameters stored in the link determine the constraints that both elements impose to each other.

For the sake of clarity we assume the same stretching and shearing limits for any material (i.e.,

Dxe = Dye = Dze ∀e ∈ L, being L the set of elements in the model) and thus a single parameter

per element is required, though the extension for generalized materials is straightforward.

An example of the computation of the heterogeneous constraints of a simple 2D model can

be seen in Fig. 3: the constraint parameters of the elements are averaged and stored on the

links between them (a); the averaged constraint parameter of elements A and B determines the

constraints imposed by element A on element B (b) and by element B on element A (c, left);

the averaged constraint parameter of elements B and C determines the constraints imposed by

element B on element C (c, right) and by element C on element B (d).

3.2. Heterogeneous propagation

In order to properly deal with heterogeneous materials using the ChainMail approach, the

propagation speed of a deformation through different tissues must be considered.

This evidence was first detected by Schill et al. [26]. Since the ChainMail algorithm follows

a purely geometric approach, the propagation speed is inversely proportional to the constraint

values. They addressed the issue using a priority queue; the neighbors of the last displaced

element are added to the queue, which is sorted attending to the amount of constraint violation.

Although this approach correctly propagates the heterogeneous deformations through the

volume, it is not suited for a parallel computation, since the next element to process is only

known after the last element has been processed and the priority queue has been updated, which

limits the processing to a strict serial computation.

To handle this phenomenon without losing the parallel nature of the SP-ChainMail algorithm,

our algorithm modifies the propagation process by taking into account the time required by the

wavefront to travel through the different materials. As we explain in the following subsection,

this allows to adjust already deformed elements in order to obey the priority of the constraints.
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3.2.1. Timestamp-based propagation

Our iterative algorithm propagates the deformation applied to an element as a wave through

the model. Thus, when a deformation is applied, a wavefront is generated and evolved iteratively,

which is composed by the elements reached by the propagation in the current iteration. For each

iteration, the deformation propagates from the elements reached on the previous iteration to their

neighbors, thus the wavefront advances in all the directions by one step. Due to the nature of

this process, the elements are always reached first by the shortest path from the epicenter of

the deformation to the element. For this reason, if an already reached element is later reached

by the same wavefront through a path composed by links with stronger constraints (i.e., shorter

propagation times), its position needs to be readjusted.

In order to detect and correct this casuistry, each link stores the time required to travel through

it. This time is directly proportional to the constraint value assigned to it. As the wavefront itera-

tively travels through the model, the algorithm tracks the speed at each point of the wavefront by

accumulating the time required in each step and storing it in the reached elements as a timestamp

mark. This mark intuitively indicates the time elapsed since the beginning of the propagation

until that element was reached, and depends on the stiffness of the links in the path that led the

propagation from the source of the deformation to the element. A simple 2D example is shown

in Fig. 4, where a deformation is applied on element A, setting its timestamp mark to 0 and initi-

ating a propagation, first reaching element B, updating its timestamp mark to 1.5 = 0 + 1.5, and

finally reaching element C, updating its timestamp mark to 4.5 = 1.5 + 3.

When an element reached by a previous iteration is reached again by the wavefront and the

current accumulated time of the wavefront is smaller than the stored timestamp mark, the algo-

rithm imposes the current propagation of the wavefront over the previous one, since it traveled

through a path with stronger constraints.

Regarding to the implementation of this algorithm, this can be easily adapted as a GPU ker-

nel that is iteratively launched over the elements of the model. For each element we add the

timestamp mark, and for each link we add the propagation time, i.e., the time required to travel

through it, which is directly derived from the constraint value of the link. When a new defor-

mation is applied to the model, the timestamp of the element receiving the deformation is set to

0. After that, the iterative propagation process starts. In each iteration, the kernel is launched

creating one GPU thread per element. The kernel is described in Algorithm 1. Each thread it-
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erates over the neighbors of its assigned element (lines 2-11). For each neighbor, a candidate

timestamp is calculated as the sum of the neighbor’s timestamp and the propagation time of the

link between them (line 4). If the candidate timestamp is smaller than the current timestamp of

the element, it is assigned as the new timestamp and the constraint regarding that neighbor is

checked, shifting the element if necessary (lines 5-10). If the candidate timestamp is greater or

equal than the current timestamp of the element, the neighbor is ignored.

1 BEGIN propagationKernel(elem)

2 N = getNeighbors(elem);

3 FOREACH n IN N

4 newTS = n.tStamp + pTime(elem, n);

5 IF (newTS < elem.tStamp)

6 elem.tStamp = newTS;

7 IF constraintViolated(elem, n)

8 shift(elem);

9 END IF

10 END IF

11 END FOREACH

12 END

Algorithm 1: Timestamp-based propagation kernel launched over the elements in the model.

This new propagation mechanism allows to readjust previously deformed elements since the

fastest path, attending to the propagation speed instead of the number of links, now enforces

its propagation to those elements even when they are reached in later iterations. Consider for

instance the “heterogeneous ring” example depicted in Fig. 5. A deformation is applied to the

top-left element, initiating the propagation through the model to satisfy the violated constraints,

indicated by the red links. Through the iterative process, the elements on the right are first

reached through the elastic path. When the two sides of the wavefront reach the bottom-right

element, (iteration 3) the behavior of the SP-ChainMail becomes unpredictable. Even in this

simple case, two outcomes are possible depending on the attended neighbor. If the element

attends to the constraints of its top neighbor, (bottom branch) the expected final configuration is

achieved. If the element attends however to the constraints of its left neighbor (top branch), the

propagation will continue through the left path, reaching the initially deformed element, leading

to an undesired final configuration. As the model becomes more complex, the probability of
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reaching the correct configuration is drastically decreased. Our novel approach, however, takes

into account the propagation speed through the different materials and hence always reaches the

expected configuration.

Fig. 6 shows a more complex model deformed by our approach considering a homogeneous

material and a more realistic heterogeneous distribution of materials, showing the differences of

the timestamps propagated through it and the final deformed configuration in each case. The

heterogeneous distribution of materials is correctly handled due to the timestamp system, which

tracks the faster propagation of the deformation through stiffer tissue and prevents the bone tissue

to deform unrealistically.

If one or more of the materials used in the model apply different constraints for each dimen-

sion (different values for the Dx, Dy and Dz parameters), then the links store the different times

required to travel for each dimension and the timestamp system independently tracks and handles

the propagation for each dimension.

The algorithm as presented, requires resetting the timestamp of all elements whenever a new

propagation starts. In practice, we use a different approach that avoids the need for actively

resetting the timestamps and also allows to concurrently propagate the wavefronts of multiple

applied deformations as we explain in Sec. 3.5.

3.3. Heterogeneous Relaxation

The relaxation stage of the SP-ChainMail algorithm has also been modified in order to cope

with the heterogeneous material requirements and the parallel approach.

An energy minimization process is carried out during a relaxation iteration. We introduce

the stiffness of the materials in the computation of the energy stored in the model to take the

heterogeneity into account. The stiffness of a material is measured in terms of the constraints

assigned to it. Thus for an element, each of its neighbors defines an optimal position, i.e., a

position that would reduce the energy stored in the link between them to zero. Then, we define

the energy based on the Hooke’s law as follows.

Let e be an element connected to m neighbors, let ρe be its current position, let ci be the

constraint value of the link between e and its ith neighbor, and let pi be the optimal position for e

defined by its ith neighbor. Then, the potential energy of e is proportional to
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Ue =

m∑
i=1

(‖ρe − pi‖
2 wi), (7)

with wi = 1
ci

. Solving ∂Ue
∂x = 0, ∂Ue

∂y = 0, ∂Ue
∂z = 0, we find that the new position ρ∗e that

minimizes the energy is given by a simple weighted mean of the optimal positions, computed as

ρ∗e =

∑m
i=1(piwi)∑m

i=1 wi
. (8)

In practice, we use wi = 1
ci+ε

with ε a very small positive value, since ci = 0 for completely

rigid materials. Using this weighting function, the materials experiment a hyperbolic weight

gain as they become stiffer, reaching a virtually infinite weight for a rigid material. The weighted

mean prevents the nodes belonging to the boundary between structures with different stiffness to

deform unrealistically.

Note that we have modified the definition of the potential energy of the elements, but the

minimization process, which is in turn a closed negative feedback system [9], remains the same

as in the original formulation. The system energy, defined by E =
∑n

i=1 Ui, with n the number of

elements in the model, is decreased in each iteration until a stable configuration is reached, thus

the process is free of instability or divergence issues.

As explained by Gibson [9] the definition of the optimal position of an element regarding

a neighbor permits to model different material properties, ranging from purely plastic to purely

elastic behavior depending on whether a single position or a 3D region is considered as optimal.

Moreover, different linear or non-linear functions can be used to measure internal stress for a

given link, resulting in different stress-strain response. Hysteresis during loading and unloading

can also be reproduced by using different functions for measuring internal stress during stretching

and compression.

This stage is also easily implemented as a GPU kernel launched over the elements in every

relaxation iteration.

3.4. Topology modification

As in the original ChainMail algorithm, topology changes such as cutting and carving can

be introduced by removing links or elements respectively. The propagation and relaxation stages

proposed in this work implicitly cope with interactive topology changes, since their impact is

automatically detected by both the propagation and the relaxation iterative processes.
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These topology changes, either introduced directly on the model or detected during the inter-

action with virtual tools, are easily computed through a parallel process over the model:

• When a cut is detected, one thread for each link in the model is launched. Each thread

computes an intersection test between the corresponding link and the path defined by the

cut. If the test is positive, the link is removed from the model.

• When an operation of carving is detected, one thread per element is launched. Each thread

computes an inclusion test of the corresponding element with the carving volume. If the

test is positive, the element is removed from the model.

Once the topology change has been introduced, new deformations applied to the model are

correctly propagated even in the presence of heterogeneous materials. The timestamp system

automatically takes into account the removed elements and links when the deformation is being

processed. Take for instance the case shown in Fig. 7: On the left, the model is deformed by

pulling from the skin tissue at the bottom, propagating the deformation to the internal structures.

On the right, the same deformation is applied after performing a cut on the bottom part of the

model. The propagation of the deformation takes into account the modified topology and the

propagation has to travel around the cut (as shown by the propagation time heatmap). Thus,

the deformation is absorbed by the top part of the model and the bottom right part remains

undeformed as it is now reached later.

3.5. Concurrent Wavefronts

Since the original Chainmail algorithm was proposed, the application of several simultane-

ous nodal forces has been hard to achieve because it was not explicitly handled. For this reason,

the interaction was commonly limited to a single nodal deformation. Our timestamp-based prop-

agation algorithm as exposed in Sec. 3.2.1 requires to clear the residual timestamp marks from a

previous propagation, considering they may interfere with a new wavefront generated by a new

applied deformation. Instead of performing an explicit reset of the timestamps, we apply a differ-

ent strategy that also allows to concurrently propagate several wavefront, i.e., allow for several

deformations to propagate through the model at the same time.

We add a wavefront counter, a new property stored in each element. During the initialization

process, a global counter and all wavefront counters are set to 0. When a new deformation is

12



applied to the model, the global counter is increased by 1, the wavefront counter of the element

receiving the deformation is set to the current value of the global counter, and its timestamp

value is set to 0. Using this wavefront counter, the propagation kernel is modified as shown in

Algorithm 2 since three new possible cases arise:

1. If the wavefront counter of the neighbor is greater than the element’s counter, the times-

tamp of the element is residual and is consequently ignored. The wavefront counter of

the element is updated to the same value of the wavefront counter of the neighbor and the

timestamp of the element is set as the sum of the timestamp of the neighbor and the time

value of the link between them (lines 5-6). The constraint imposed by that neighbor is

checked and the element is shifted if necessary (lines 7-9).

2. If the wavefront counter of the neighbor equals the element’s counter, both elements have

been reached by the wavefront and the normal algorithm (from Algorithm 1) is executed

(lines 10-18).

3. If the wavefront counter of the neighbor is smaller than the element’s counter, it is ignored

since it has not yet been reached by the current wavefront.
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1 BEGIN propagationKernel(elem)

2 N = getNeighbors(elem);

3 FOREACH n IN N

4 IF (n.wCounter > elem.wCounter)

5 elem.iCounter = n.wCounter;

6 elem.tStamp = n.tStamp + pTime(elem, n);

7 IF constraintViolated(elem, n)

8 shift(elem);

9 END IF

10 ELSE IF (n.wCounter == elem.wCounter)

11 newTS = n.tStamp + pTime(elem, n);

12 IF (newTS < elem.tStamp)

13 elem.tStamp = newTS;

14 IF constraintViolated(elem, n)

15 shift(elem);

16 END IF

17 END IF

18 END IF

19 END FOREACH

20 END

Algorithm 2: Complete propagation kernel allowing for concurrent wavefronts propagating through the model.

This complete propagation approach is particularly interesting for some common situations,

such as several deformations applied consecutively on the same spot or different nodal deforma-

tions applied on different parts of the model that do not interfere, e.g., simultaneously separating

both sides of an incision as shown in Fig. 8. In those cases, a single parallel propagation iteration

advances all the concurrent wavefronts at once, thereby harvesting more parallel power from the

GPU, since a higher amount of the launched threads perform useful computation. This strategy

does not really handle the interaction between different wavefronts, since simply the latest will

prevail, however, it is a step further into the handling of simultaneous deformations using the

ChainMail approach.

Also, as already stablished for the SP-ChainMail algorithm, an additional flag, referred to as

activity flag, indicating whether an element was updated in the previous propagation iteration,

allows the relaxation process to identify elements ready to start the relaxation process. If an

element is not active and its wavefront counter is equal to the wavefront counters of its neighbors,
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applying the relaxation process to that element does not interfere with the propagation process.

The combination of these two mechanisms allows to apply new deformations to the model

without having to wait for the previous deformations to fully propagate, and also enables the

interleaving of propagation iterations with relaxation iterations, naturally blending both stages.

This feature is of high interest for applications demanding a high feedback frequency, since it is

possible to render partial results of the deformations on the model.

3.6. Improved sparse blocks computation

The SP-ChainMail algorithm [8] includes a blocking method applied to the computation

of the iterative stages to avoid unnecessary computation for elements not yet reached by the

propagation or already in a stable configuration. The computational domain is partitioned into

blocks, so a 3D offset is necessarily calculated to reference each block. The active blocks, i.e., the

blocks still requiring computation, are efficiently flagged in each iteration and the computation

of the next iteration is only performed over these active blocks by making one GPU kernel call

per block.

By choosing a smaller size for blocks in the partitioning, the amount of launched threads

is reduced since the active elements are more effectively enclosed. However, the experiments

show that after a given threshold, reducing the block size actually decreases the obtained gain,

and can even lead to a worse performance than the non-partitioned case. As discussed in [8],

this is produced because the GPU gets gradually misused as more kernel invocations with fewer

concurrent threads are performed.

We also apply this blocking scheme to reduce the computational load of our algorithm, but

in order to avoid the limitation mentioned above, we have introduced a small, yet significant

modification to the launching approach, similar to the proposal of Sætra [29]. After the current

iteration has finished and the boolean maps are updated, an array storing the 3D offsets corre-

sponding to each active block is updated and sent to the GPU. Using this array, a single kernel

launch computes all the blocks at once: the number of launched threads is simply calculated as

the number of active blocks multiplied by the number of elements per block, and each thread

uses its own id to deduce the corresponding block and read the corresponding 3D offset from the

array to access the correct element.

As we demonstrate in our experiments, this approach is better suited for the GPU computing

paradigm and small block sizes can be used without resulting in a performance penalty due to a
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misuse of GPU resources.

4. Interactive deformation of medical models

The proposed algorithm has been applied to deform large models achieving interactive fram-

erates. All the data structures required by the algorithm are generated from a source volume

dataset.

In order to maintain the complexity of the source volume dataset, one ChainMail element is

created per each voxel. The initial position of each element is calculated attending to the space

existing between voxels in each dimension.

Attending to the density values or any defined segmentation process, elements corresponding

to empty or undesired areas of the source dataset can be discarded.

We assign material properties to the ChainMail elements based on the density of the corre-

sponding voxels in the source dataset in order to define the heterogeneous constraints for the

links in the model. This is done by specifying a material transfer function as we show in our

examples. We define the constraints as a percentage of the initial spacing between voxels in the

dataset. Under this assumption, we can rapidly generate high resolution heterogeneous models

from the source dataset. The relation between CT data and mechanical properties is known to be

accurate for bone tissue [30, 31], however, the estimation of the properties of soft tissue from CT

data is still an open problem. Thus, a more accurate estimation of these material properties could

be obtained through a more complex segmentation process based on known material properties

of the identified tissues, or other measuring techniques such as elastography [32].

In order to visualize the deformations interactively, we have coupled the proposed algorithm

with the resampling method described in [33]. When a new deformation has been applied, the

model is resampled into a voxel grid, which is then visualized using a standard ray-casting algo-

rithm. Both the resampling and the ray-casting algorithms are also implemented in parallel using

the GPU.

For direct interaction, we have implemented a simple isosurface mapping mechanism, relat-

ing the 3D position of the selected isosurface with the nearest ChainMail element, although more

immersive interaction mechanisms such as virtual tools can be also used.
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5. Results and discussion

We have tested our approach in two interactive virtual examples: a sheep heart exploration

procedure and a wrist surgery simulation. We refer the reader to the video provided as additional

material (Online Resource 1) for further results of the proposed examples.

We have also conducted a test to evaluate the performance of our heterogeneous paral-

lel ChainMail algorithm and the improved blocking method, also comparing it with the SP-

ChainMail algorithm.

The proposed algorithm was implemented with OpenCL 1.2. The performed experiments

were run on an Intel Core i7-3770 machine, with 16 GB RAM and an Nvidia GeForce GTX 670

with 1344 cores, using a 800x700 viewport for the interaction and visualization.

5.1. Sheep heart exploration

For this setup, the inside of a sheep heart is explored. The source dataset is an MRI scan with

12.4 million voxels. The heart is accessed through the aorta, interactively exploring and probing

its chambers. The model consists of 12.4 million ChainMail elements, one per voxel, although

the air voxels are discarded.

The materials are defined through a material transfer function as shown in Fig. 9 (bottom),

assigning different elastic materials based on the density values of the source dataset. We perform

10 propagation iterations and 10 relaxation iterations before a new frame is rendered.

The high resolution of our ChainMail model allows for the deformations to adapt to the

complex topology in the inside of the heart as can be seen in Fig. 9 (top), when applying a

deformation to an internal feature.

With this configuration, the example runs at 12-26 fps. Each frame, the deformation takes

between 11 and 53 ms depending on the number of affected elements, the resampling of the

deformed volume takes an average of 10 ms and the rendering using raycasting takes an average

of 17 ms.

We have tested the same setup using a dynamic simulation based on the mass-spring model,

using a tetrahedral mesh and explicit integration, parallelized on the GPU as proposed by Georgii

et al. [34]. For a fair comparison, we set a mass-spring mesh leading to a running time similar

to the one achieved by our method. Thus we set a mesh with 42,875 mass nodes, connected by

196,520 tetrahedra.
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Table 1 shows the average simulation time and the average number of shifted nodes per

simulation step for both methods when applying a small and a large deformation, affecting the

5% and 30% of the model respectively.

The computation time of our algorithm varies depending on the amount of shifted nodes.

This is due to the local nature of the method, which performs computation only on the affected

region, while the mass-spring approach displays a stable performance independently of the af-

fected region. More importantly, in contrast to our method, the mass-spring mesh is unable to

capture the fine topological features present in the dataset because of the disparity of resolution,

which leads to an average of 290 data voxels modeled by each mass node. To illustrate this issue,

Fig. 10 shows the same applied deformation using both methods. Using our method, shown on

the top row, the right side of the tissue “ring” can be deformed while the left part remains un-

deformed. Using the mass-spring model, shown on the bottom row, the hole in the tissue is not

correctly modeled and the deformation applied on the right part is transmitted to the tissue wall

on the left.

5.2. Wrist surgery

In this setup, we explore a human wrist by performing a cut on the skin and applying defor-

mations to reveal the internal structures. The source dataset is a CT scan of a human hand with

7.1 million voxels. Again, we generate one ChainMail element per voxel.

The materials are also defined through a material transfer function as shown in Fig. 11 (bot-

tom). The ChainMail elements corresponding to bone tissue are configured as rigid. The rest of

the tissues are modeled as elastoplastic materials with an elastic recovery corresponding to the

80% of the undergone strain. We perform 20 propagation iterations and 40 relaxation iterations

between frames.

As can be seen in Fig. 11, our model correctly handles the interactive topology changes, and

the different internal tissues deform along when the skin around the cut is deformed. The het-

erogeneous materials of the different tissues prevent bones from deforming during the relaxation

stage.

The example runs at 6-21 fps. The deformation takes between 25 and 84 ms depending on

the number of affected elements, the resampling takes an average of 7 ms and the rendering takes

between 14 and 61 ms depending on the chosen transfer function and the camera position.
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5.3. Performance analysis

To evaluate the performance of our approach, we have conducted a test comparing it with the

SP-ChainMail algorithm. for a fair comparison, we have used a model with 2 million elements

(126x126x126) and a homogeneous material so that both algorithms perform the same number

of propagation and relaxation iterations.

A deformation affecting all the elements has been applied, and we have measured the time

required for the deformation to fully propagate and relax to an stable configuration, without

intermediate visualizations, requiring 376 propagation iterations and 619 relaxation iterations.

We have performed this measurement for both algorithms. We have used both algorithms

with no blocking scheme and with several block size configurations. The results of the test are

summarized in Fig. 12.

As the results show, the use of the timestamp-based heterogeneous propagation barely affects

the performance since the SP-ChainMail completes the deformation after 3321 ms when the

blocking scheme is not used, and our approach takes 3498 ms also with no blocking scheme,

roughly increasing the computation time by 5.32%.

Attending to the blocking scheme, the SP-ChainMail achieves the best performance for a

block size of 16x16x16, completing the deformation after 1312 ms, achieving a speedup of 2.53x.

When smaller block sizes are used, the achieved speedup is reduced, even leading to a worse

performance than the non-partitioned case. As already mentioned, this behavior is expected

because the GPU becomes misused for small block sizes since it leads to multiple small kernel

invocations.

In our approach, these invocations are combined into a single invocation, leading to higher

speedups and achieving the best performance for the smaller block size of 16x4x4, completing

the deformation after 458 ms, inducing a speedup of 7.63x.

Therefore, our approach not only allows for heterogeneous models, but also improves the

performance with respect to the SP-ChainMail thanks to the enhanced blocking scheme.

5.4. Memory requirements

Our approach heavily relies on GPU dedicated memory, since all the main structures are

stored and computed directly on the GPU. The memory requirements grow linearly with the

number of ChainMail elements in the model. Each element requires 58 bytes of dedicated mem-

ory, including position, constraint values, timestamp mark, wavefront counter, activity flag and
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neighbor flags, and some structures are moreover duplicated to accommodate the Jacobi sweep

scheme [35]. All in all, 55.31 MB are required per each million elements.

The blocking scheme consumes a negligible amount of memory w.r.t. the main structures

since only 12 bytes of GPU dedicated memory and 64 bytes of host memory are required per

block. In our most demanding scenario, the sheep heart model using 16x4x4 blocks, 50,460

blocks were created, leading to a memory consumption of 592 KB of GPU memory and 3.08

MB of host memory.

6. Conclusions and Future Work

In this paper, we have presented an enhanced parallel ChainMail algorithm supporting het-

erogeneous materials and interactive topology changes. We solve the issue of heterogeneity in the

model by a novel timestamp-based propagation mechanism and a modified relaxation scheme.

We have also improved the blocking scheme in order to increase the performance of our algo-

rithm by a notable factor, efficiently handling the sparse nature of the GPU computation of our

approach.

Our results demonstrate that the proposed algorithm, in conjunction with a direct assignment

of material properties and a parallel resampling approach, allows to interactively visualize and

deform models consisting of up to several million elements.

In addition to these contributions, our algorithm is able to deal with different deformations

simultaneously for the same model. This is an important step further for ChainMail-based al-

gorithms, which have been limited to single nodal interactions since the original algorithm was

proposed.

Finally, although our algorithm improves the SP-ChainMail approach both in performance

and material flexibility, providing a more general and applicable solution, there are certain limi-

tations that we would like to address as future work.

An important limitation is found in the material characterization process. Although the

ChainMail approach allows to model complex tissue behaviors, the mapping of material prop-

erties measured from real world specimens is not trivial, and our direct assignment of materials

and model topology is oversimplified in order to achieve a minimum preprocessing effort as

already mentioned. Moreover, we have compared our approach with the mass-spring method,

however, we have focused on performance and resolution issues. As future work, we would
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like to perform a comparison with other methods regarding behavior and model accuracy. Thus,

assisted methods for ChainMail material characterization should be explored, which combined

with the acquisition of real specimen measurements for validation would allow to perform such

a comparative study.

Although we allow multiple deformations to simultaneously propagate through the model,

when they overlap their interference is resolved simply prioritizing one of them. Therefore, a

better management of their interference should be explored to address those cases. Lastly, the

visualization of the interactive cuts with the used resampling algorithm leads to material loss,

thus a better visualization of topology changes would improve the realism and feedback during

the simulations.
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Table 1: Measured average time and shifted nodes per simulation step during a small and a large deformation of the

model using our approach and the mass-spring model. Total simulation nodes for each method are also shown.

5% deformation 30% deformation

Nodes Shifted nodes Time (ms) Shifted nodes Time (ms)

Our approach 12,487,168 123,428 11 1,423,685 53

Mass-Spring 42,875 1,923 45 12,652 45

Figure 1: The valid region (box) that an element (black) imposes to a right neighbor (gray) with the original ChainMail

algorithm is defined by the constraint parameters (maxDx, minDx, maxHorizDx1 and maxHorizDx2).

Figure 2: The valid region (box) that an element (black) imposes to a neighbor (gray), is defined by the constraint

parameters (Dx, Dy and Dz) and by the initial separation of both elements ∆e.
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Figure 3: 2D example of heterogeneous constraints in a simple, heterogeneous model: the constraint values of each two

linked elements, depicted on top of the elements, are averaged and stored in the link between them (a), and the constraints

applied by each element to its neighbors are computed attending to these averaged values, leading to the 2D valid regions

represented by the squares (b, c and d).
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Figure 4: 2D example of the timestamp propagation system with heterogeneous materials (a). When a new deformation

is applied to an element, the timestamp of the element is set to 0 (b), and the propagation starts. Again, the squares

represent the valid regions. When a new element is reached through a link (violated constraints in red, satisfied constraints

in green), its timestamp mark is updated as the sum of the timestamp of the linked neighbor and the propagation time

stored in the link between them (c and d).

Figure 5: An “heterogeneous ring” model, composed by an elastic material at the top and a rigid material on the lateral

and bottom parts, is deformed using both the SP-ChainMail algorithm and our algorithm. Even in this simple case, the

SP-ChainMail algorithm has an unpredicted behavior, leading to two possible outcomes, which in turn may result in

an undesired configuration. Our approach (below) correctly handles the heterogeneous materials due to the timestamp

system.
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Figure 6: A 2D section of a leg (left) is compressed and deformed using a homogeneous material (middle) and a more

realistic distribution of heterogeneous materials (right). The propagation time is shown below each case using a heatmap,

ranging from dark blue at the source of the deformation, to a dark red at the last reached elements.

Figure 7: The same deformation is applied to a 2D section of a leg before and after applying a cut. The propagation

time is shown below each case using a heatmap, ranging from dark blue at the source of the deformation, to a dark red at

the last reached elements, showing that the topology modification is automatically taken into account by the timestamp

system.

Figure 8: Two simultaneous deformations are applied to both sides of an incision in a tissue sample. Our propagation

approach is able to handle and compute both deformations simultaneously.
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Figure 9: The inside of a sheep heart model with 12.4 million elements (top-left) is explored and several deformations

are applied to an internal feature (top-right), which is correctly captured by the high resolution of our ChainMail model.

The constraints of the materials assigned to the sheep heart model, ranging from a 15% to a 35% variation from the initial

spacing, are specified using a material transfer function (bottom).

Figure 10: The same deformation is applied to a fine feature using our ChainMail approach (top row) and a mass-spring

model (bottom row). The topology of the feature is incorrectly captured by the mass-spring model, leading to an incorrect

transmission of the deformation from the right side of the tissue ring where the force is applied (blue dot) to the left wall

(highlighted by the black circle). In contrast, the high resolution of our method correctly captures the topology and avoids

that transmission.
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Figure 11: A hand model with 7.1 million elements (left) is deformed by pulling from the skin on both sides of an applied

incision (right). The skin pulling propagates the deformation to the internal structures. The constraints of the materials

assigned to the hand model, ranging from a 0% to a 50% variation from the initial spacing, are defined through a material

transfer function (bottom).
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Figure 12: Performance comparison of our method and the SP-ChainMail algorithm using different block sizes for the

blocking method. The SP-ChainMail algorithm fails to optimize the usage of small block sizes, leading to a misuse of the

GPU resources. Our improved blocking scheme is able to efficiently manage the smaller block sizes, further improving

the overall performance.
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