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Summary

� It is widely assumed that floral diversification occurs by adaptive shifts between pollination

niches. In contrast to specialized flowers, identifying pollination niches of generalist flowers is

a challenge. Consequently, how generalist pollination niches evolve is largely unknown.
� We apply tools from network theory and comparative methods to investigate the evolution

of pollination niches among generalist species belonging to the genus Erysimum. These spe-

cies have similar flowers.
� We found that the studied species may be grouped in several multidimensional niches sepa-

rated not by a shift of pollinators, but instead by quantitative variation in the relative abun-

dance of pollinator functional groups. These pollination niches did not vary in generalization

degree; we did not find any evolutionary trend toward specialization within the studied clade.

Furthermore, the evolution of pollination niche fitted to a Brownian motion model without

phylogenetic signal, and was characterized by frequent events of niche convergences and

divergences.
� We presume that the evolution of Erysimum pollination niches has occurred mostly by

recurrent shifts between slightly different generalized pollinator assemblages varying spatially

as a mosaic and without any change in specialization degree. Most changes in pollination

niches do not prompt floral divergence, a reason why adaptation to pollinators is uncommon

in generalist plants.

Introduction

Divergent evolution is characterized by adaptive shifts between
ecological niches that represent new ecological opportunities
(Schluter, 2000; Nosil, 2012). Pollinators, like other resources,
are important dimensions of the ecological niches of plants (Heit-
haus, 1974; Moldenke, 1975; Parrish & Bazzaz, 1978, 1979;
Pleasants, 1980; Kephart, 1983; Armbruster & Herzig, 1984;
Armbruster et al., 1994; Ollerton et al., 2007a; Johnson, 2010;
Pauw, 2013). Consequently, it is widely assumed that adaptive
floral diversification occurs in plants when there is a transition
between pollination niches, that is, when a plant species polli-
nated by one group of pollinators shifts to a different group of
pollinators (Wilson & Thomson, 1996; Whittall & Hodges,
2007; Smith et al., 2008; Tripp & Manos, 2008; Harder & John-
son, 2009). Divergence in pollination niches between phyloge-
netically-related plant species is thereby a pre-condition for the
occurrence of such pollinator-mediated floral divergence.

Variation in pollination niches among specialized plants is
high, because the pollination niches are defined by a principal
pollinator type and any change in this flower visitor is associated

with a change in the pollination system (Fenster et al., 2004;
Johnson, 2010). Specialized plant species are considered to be
bat-pollinated, bird-pollinated, fly-pollinated, bee-pollinated, etc.
(Grant & Grant, 1965; Anderson & Johnson, 2009; Ley &
Claben-Bockhoff, 2009; Mart�en-Rodr�ıguez et al., 2009;
Alc�antara & Lohmann, 2010; Wester & Claßen-Bockhoff, 2011;
Forest et al., 2014). Changes in specialized pollination niches,
produced by a full replacement of the main pollinators, usually
causes adaptive pollinator-mediated divergence in floral traits
(Goldblatt & Manning, 2006; Whittall & Hodges, 2007; Smith
et al., 2008; Tripp & Manos, 2008; Fleming et al., 2009; Knapp,
2010). Unrelated plants belonging to the same specialized polli-
nation niche may even evolve a similar suite of traits adapted to
their common pollinator type, the pollination syndromes (Faegri
& van der Pijl, 1979; Willmer, 2011).

In contrast to specialized plants, differences between generalist
plants in pollinator fauna is mainly quantitative rather than qual-
itative (Waser, 2001; Castellanos et al., 2003; Wilson et al.,
2004; Aigner, 2005; Armbruster & Muchhala, 2009; Kay & Sar-
gent, 2009). Generalized pollinator assemblages differ mostly in
their relative abundances (Grant & Grant, 1965; Kephart, 1983;
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Wilson et al., 2004) rather than in the identity of floral visitors.
There is not a single type of pollinator making most pollination
events or acting as the main selective agent of generalist plants.
Contrasting with the copious information on specialist systems,
how generalist pollination niches evolve and drive floral diver-
gence is largely unknown.

As a consequence of the boom in ecological network studies,
there has been in the last decade a renewed interest in exploring
the quantitative variation in pollinator fauna among sympatric
plant species (Bascompte & Jordano, 2014). These studies have
found that between-species quantitative variation in ecological
interactions often causes the appearance of compartmentalized
communities or modular networks (Olesen et al., 2007; Bosch
et al., 2009; Mart�ın Gonz�alez et al., 2012). A modular network
can be subdivided into modules, groups of species sharing most
of their interactions with other species in the group and a few
interactions with species from other groups (Guimer�a et al.,
2007). In this scenario, two species can be considered to belong
to the same interactive niche when they are in the same module
(G�omez et al., 2010a). Modularity has proven to be a good
quantitative estimate of the interactive niches in many and dis-
parate generalist systems (G�omez et al., 2010a). In particular,
this approach has been successfully applied to the study of the
variation in the pollination niches in a generalist plant species,
Erysimum mediohispanicum (Brassicaceae) (G�omez et al.,
2014a).

Here, by applying the same analytical procedure, we investi-
gate the variation and evolution of pollination niches along a gen-
eralist clade belonging to the genus Erysimum. Our major
question is to explore whether cladogenesis in this plant genus
reflects different pollination niches. The specific objectives of this
study are: to identify the pollination niches in this clade of
Erysimum species; to explore how these niches have evolved along
the evolutionary history of Erysimum; and to check whether there
has been correlated evolution between the identity of the pollina-
tion niche and the generalization/specialization degree of the
pollinator assemblages.

Materials and Methods

Study species

We have studied 40 Erysimum species from Western and Central
Europe and Northwest Africa (Supporting Information Table
S1). They represent > 85% of the Erysimum species inhabiting
this region (Tutin et al., 1964; Polatschek, 1982, 2008; Nieto-Fe-
liner, 1993; Giardina et al., 2007; Abdelaziz et al., 2011). These
species inhabit diverse environments, from pure alpine habitats
above the treeline in the Alps, Sierra Nevada, Pyrenees and Atlas
mountains, to oak and pine forests in Mediterranean mountains,
and lowland and coastal habitats in Central Europe and North
Africa. The phylogenetic relationships of the studied species have
been well established (Fig. S1; Abdelaziz et al., 2011; G�omez
et al., 2014b).

Erysimum are annual, biennial, short-lived perennial herbs or
sub-shrubs. They usually grow for 2–3 yr as vegetative rosettes,

and afterwards produce 1–15 reproductive stalks which can dis-
play between a few and several hundred hermaphroditic, hypogy-
nous, ebracteate, slightly protandrous flowers (Nieto-Feliner,
1993). Flowers are very similar among different species, with a
pedicel between 4 and 7 mm, four free saccate sepals, and a yel-
low, orange or purple corolla forming a nonfused tube. The
breeding system of Erysimum has been studied in a few species,
indicating that they are self-incompatible or, when self-compati-
ble, require pollen vectors to produce full seed-set (Bateman,
1956; G�omez, 2005; West, 2008; Lay et al., 2013; Abdelaziz,
2013).

Erysimum species studied so far are generalists in their interac-
tion with pollinators (E. cheiri Knuth, 1908; E. badghysi Pesenko
et al., 1980; E. scoparium Hohmann et al., 1993, Dupont et al.,
2003; E. teretifolium McGraw, 2004; E. mediohispanicum G�omez
et al., 2007, 2014a; E. capitatum Alarc�on et al., 2008, Lay et al.,
2013; E. nevadense Ortigosa & G�omez, 2010, Abdelaziz, 2013;
E. baeticum baeticum Ortigosa & G�omez, 2010; E. popovii
Fern�andez et al., 2012). We have recently shown that the pool of
species included in this study are also very generalized (G�omez
et al., 2014b).

Pollinator survey

We conducted flower visitor counts in 1–3 georeferenced popula-
tions per species in each of 35 species (Table S1; we could not
obtain data for pollinators of E. incanum, E. linifolium, E. seipkae,
E. sylvestre and E. virgatum). We visited each population during
the peak of the bloom, always at the same phenological stage and
between 11:00 h and 17:00 h. Each survey was done by at least
three researchers simultaneously, sampling each species for at
least 18 person hours. Previous studies in some Iberian Erysimum
indicate that a sample of 130–150 insects provides an accurate
estimate of the diversity of the pollinator assemblages of a popu-
lation of a site (G�omez et al., 2009; Fern�andez et al., 2012).
Unfortunately, it was impossible to reach this amount of floral
visitors in a few species where insects were scarce. However, we
kept these species in our study because we observed that their
removal did not change our main outcomes. Insects were identi-
fied in the field, and some specimens were captured for further
identification in the laboratory. Insects included in this study
were potential pollinators of Erysimum because:
(1) We only recorded those insects contacting anthers or stigma

and doing legitimate visits at least during part of their forag-
ing at flowers (Rosas-Guerrero et al., 2014). We did not
record those insects only eating petals or thieving nectar
without completing legitimate visits. This means that those
insect species not observed contacting the sexual organs of a
given Erysimum species during the surveys were not included
as pollinators of that specific Erysimum species. In fact, many
of the insects included here have been observed transporting
pollen grains on their body (G�omez, 2003; G�omez et al.,
2009; Lay et al., 2013).

(2) They benefit the fitness of several Erysimum species by
enhancing seed production (Pesenko et al., 1980; G�omez,
2005; G�omez et al., 2007; Ollerton et al., 2007b; Fern�andez
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& G�omez, 2012), decreasing pollen limitation intensity
(G�omez et al., 2010b; Fern�andez et al., 2012; Abdelaziz,
2013), and modifying the plant mating network (G�omez
et al., 2011).

(3) They can even act as selective agents of several Erysimum spe-
cies (Abdelaziz, 2013; G�omez et al., 2006, 2008a,b, 2009,
2014b; Ollerton et al., 2007b; Lay et al., 2011).

We grouped the insects visiting Erysimum flowers into func-
tional groups, which are herein defined as comprising insects that
interact with the flowers in a similar manner (Fenster et al.,
2004). We used criteria of similarity in body length, proboscis
length, morphological match with the flower, foraging behaviour
and feeding habits (G�omez et al., 2014a). Table 1 describes the
19 functional groups used in this study. These functional groups
differ in efficiency. Some functional groups, such as bees, beeflies,
hoverflies and butterflies, are highly efficient pollinators of
Erysimum (Ollerton et al., 2007b; G�omez et al., 2009, 2010b,
2011; Lay et al., 2011; Fern�andez et al., 2012). By contrast, bee-
tles, flies, moths, bugs, small wasps and ants are low-efficiency
pollinators (Knuth, 1908; Korotyaev & G€ultekin, 2003; G�omez
et al., 2009, 2010b; Lay et al., 2011, 2013; Metspalu et al., 2011;
Fern�andez et al., 2012), although they can be very efficient in
some particular Erysimum species (Abdelaziz, 2013).

Discrimination of pollination niches

We determined the occurrence of different pollination niches in
our studied populations using bipartite modularity, a complex-
network metric. We constructed a weighted bipartite network
including the Erysimum species with pollinator data. In this net-
work, we pooled the data from the different populations in a spe-
cies and did not consider the time difference involved in
sampling across different species. We subsequently determined
the modularity level in this weighted bipartite network by using
the QuanBiMo algorithm (formerly QuaBiMo, Dormann &
Strauss, 2014). This method uses a Simulated Annealing Monte-
Carlo approach to find the best division of populations into mod-
ules. A maximum of 1010 MCMC steps with a tolerance
level = 10�10 were used in 100 iterations, retaining the iterations
with the highest likelihood value as the optimal modular configu-
ration. We tested whether our network was significantly more
modular than random networks by running the same algorithm
in 100 random networks, with the same linkage density as the
empirical one (Guimer�a & Amaral, 2005). Modularity signifi-
cance was tested for each individual iteration by comparing the
empirical vs the random modularity indices using a z-score test
(Dormann & Strauss, 2014). After testing the modularity of our
network, we determined the number of modules using the
approach proposed by Newman (2004). We subsequently identi-
fied the pollinator functional groups defining each module and
the plant species that were ascribed to each module. Modularity
analysis was performed using R package bipartite 2.0 (Dormann
& Gruber, 2012).

We explored whether the module adscription of a given
plant was a consequence of its geographic distribution by test-
ing whether those plant species inhabiting the same geographic

region belonged to the same module. For this, we compared
the geographic distances between and within modules by
means of a permutational multivariate analysis of variance
using distance matrices (permanova), performed with the ‘ado-
nis’ function in R package vegan 2.0-10 (Oksanen et al.,
2013).

Once we had identified the pollination niches, we explored
whether they occupied different positions in the pollination niche
space. For this, we first tested their differences in the quantitative
composition of the pollinator assemblages in terms of pollinator
functional groups by means of a permanova, using Morisita–
Horn index as distance matrix. Afterward, we calculated their
overlap using the Pianka index (Pianka, 1973), which varies
between 0 (no overlap) and 1 (complete overlap) (Krebs, 2014).
Niche overlap significance was obtained by resampling the data-
set 10 000 times and using the RA4 randomization algorithm.
The RA4 algorithm is the most adequate when the species
involved are super-generalist (Lawlor, 1980; Winemiller & Pian-
ka, 1990). Niche overlap was calculated using the R packages
EcoSimR 1.00 (Gotelli & Ellison, 2013) and spaa 0.2.0 (Zhang
et al., 2012).

Relationship between pollination niche and pollinator
diversity

We explored whether the pollination niches represent special-
ization toward subsets of pollinator functional groups or if they
are different explorations of the pollination niche space without
becoming specialists. For this, we tested the correlated evolu-
tion of pollination niche and pollinator diversity. We described
the diversity of pollinators using the probability of interspecific
encounter (PIE) (Hurlbert, 1971), the probability that two ran-
domly sampled individuals from the pollinator assemblage per-
tain to different pollinator functional groups. This index has
proven very useful to describe the diversity of Erysimum polli-
nator assemblages (G�omez et al., 2014b). It was generated
using the ‘addpart’ function in R package stratigraph (Green,
2012).

We first determined the relationship between the pollination
niche of each Erysimum species and its generalization degree by
means of phylogenetic generalized least square (PGLS) models
(Nunn, 2011). In this analysis, lambda was optimized by maxi-
mum likelihood while fitting the model. PIE was included as a
dependent variable and the module identity as an explanatory
variable. To control for spatial dependence, we did a preliminary
model including longitude and latitude of each species as addi-
tional explanatory variables. Because these two variables were
nonsignificant, we re-ran a simpler model removing these vari-
ables. The PGLS was performed using the R package caper 0.2
(Orme et al., 2013).

In addition, we performed a phylogenetic ANOVA (Garland
et al., 1993) to find the identity of the pollination niches varying
in pollination diversity. This analysis was performed using the
‘phylANOVA’ function in R package phytools 0.3–72 (Revell,
2012). This function does a simulation-based phylogenetic
ANOVA and allows for post-hoc tests about the group means.
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Table 1 Functional groups of the insects visiting the flowers of the studied Erysimum species

FG
Functional
Group

Body
length Resource Behavioural notes Type of visits Order Main families and genera

1 Long-tongued
large bees

≥ 10mm Nectar Partially introducing
the head in the flower

Legitimate Hymenoptera Anthophoridae (Anthophora),
Apidae (Apis mellifera, Bombus)

2 Short-tongued
large bees

> 10mm Pollen + nectar Introducing the whole
head in the flower

Legitimate Hymenoptera Halictidae (Lasioglossum, Halictus),
Megachilidae (Osmia), Colletidae
(Colletes), Andrenidae (Andrena)

3 Short-tongued
medium-sized
bees

5–10mm Pollen + nectar Introducing the whole
head in the flower

Legitimate Hymenoptera Halictidae (Lasioglossum), Colletidae
(Hyleaus), Andrenidae (Andrena),
Apidae Xylocopinae (Ceratina),
Apidae Nomidinae (Nomada)

4 Short-tongued
small bees

2–5mm Pollen + nectar Mostly accessing the
nectar from between
the sepals but also
introducing the whole
body into the flower to
reach the lower anthers
and the nectar

Illegitimate
+ Legitimate

Hymenoptera Halictidae (Lasioglossum), Colletidae
(Hyleaus), Andrenidae (Andrena),
Apidae Xylocopinae (Ceratina),
Apidae Nomidinae (Nomada)

5 Short-tongued
extra-small
bees

< 2mm Nectar + pollen Introducing the whole
body into the flower to
reach the lower anthers
and also accessing the
nectar from between
the sepals

Legitimate
+ Illegitimate

Hymenoptera Halictidae (Lasioglossum),
Colletidae (Hyleaus)

6 Large ants > 2mm Nectar Introducing the whole
body into the flower to
reach the nectar

Legitimate
+ Illegitimate

Hymenoptera Formicidae (Formica, Camponotus,

Proformica, Cataphyphis)

6 Small ants < 2mm Nectar Mostly nectaring
from between sepals

Illegitimate
+ Legitimate

Hymenoptera Formicidae (Plagiolepis, Leptothorax)

7 Large pollen
wasps

Variable Pollen Partially introducing the
head into the flower

Legitimate Hymenoptera Massarinae (Ceramius)

7 Large nectar-
collecting
wasps

> 7mm Nectar Partially introducing the
head into the flower

Legitimate Hymenoptera Mainly Polystes

8 Small nectar-
collecting
wasps

Usually
< 3mm

Nectar Mostly nectaring
from between sepals

Illegitimate
+ Legitimate

Hymenoptera Chalcidoidea and Ichneumonoidea

9 Long-tongued
beeflies

Variable Nectar + pollen Hovering while nectaring
and collecting some
pollen

Legitimate Diptera Bombyliidae (Bombylius),
Nemestrinidae

10 Short-tongued
beeflies

Variable Nectar Nectaring without
hovering

Legitimate Diptera Bombyliidae (Anthrax)

10 Large hoverflies > 5mm Pollen Collecting pollen without
entering the flower

Legitimate Diptera Syrphidae (Eristalini)

10 Small hoverflies < 5mm Pollen + nectar Collecting pollen without
entering the flower and
sometimes nectaring
from between the sepals

Legitimate
+Illegitimate

Diptera Syrphidae

11 Large flies > 5mm Nectar + pollen Collecting pollen without
entering the flower and
nectar from between
the sepals

Legitimate
+ Illegitimate

Diptera Muscidae, Calliphoridae, Tabanidae,
Scatophagidae, Anthomyiidae

12 Small flies < 5mm Nectar + pollen Mostly nectaring
from between sepals

Illegitimate
+ Legitimate

Diptera Muscidae, Anthomyiidae,
Micetophyliidae, Empididae,
Bibionidae, Drosophilidae,
Stratiomyidae

13 Florivorous
beetles

> 7mm Pollen + floral
parts

Consuming not only
pollen, but also anthers,
petals and other floral
parts

Legitimate Coleoptera Mostly Cetonidae

� 2014 The Authors

New Phytologist� 2014 New Phytologist Trust
New Phytologist (2014) 205: 440–453

www.newphytologist.com

New
Phytologist Research 443



To avoid type I error, we used the sequential Bonferroni post-hoc
test.

Exploring the evolution of pollination niche

In order to incorporate phylogenetic uncertainty, all comparative
analyses were performed using not just the consensus phyloge-
netic tree (Fig. S1), but also a set of 6400 phylogenetic trees sam-
pled from the stationary phase of the MCMC Bayesian analysis
(see G�omez et al., 2014b for details).

We explored the evolutionary models better describing the
evolution of pollination niches using Pagel’s lambda (Pagel,
1999; M€unkem€uller et al., 2012). Pollination niche was consid-
ered a multi-state unordered discrete character with as many
states as the number of modules that were obtained in the modu-
larity analysis. We compared a model generating a ML estimate
of Pagel’s lambda for pollination niche with a model constraining
lambda to 1 and another model constraining lambda to 0. A sig-
nificant departure from the model with lambda 1 indicates that
pollination niches are not evolving according to a BM model,
whereas a significant departure from the model with lambda 0
indicates the occurrence of phylogenetic signal in the evolution
of pollination niche (Nunn, 2011). These analyses were

performed using the ‘fitDiscrete’ command in the R package gei-
ger 1.99-1 (Harmon et al., 2008).

We also estimated the ancestral states of the pollination niches
along the phylogenetic tree (Fig. S2). We used an updated ver-
sion of the ‘ancThresh’ command implemented in the R package
phytools 0.2–14 (Revell, 2012). This function uses Bayesian
MCMC to estimate ancestral states and the threshold model to
establish the thresholds for a discrete character to change between
states (Felsenstein, 2012; Revell, 2014). Under the threshold
model, the evolving discrete trait is considered to have a continu-
ous underlying liability (Felsenstein, 2012; Revell, 2014). When
the liability exceeds a threshold value, the discretely valued state
of the observable character trait changes. We ran four chains of
106 generations each. The posterior probabilities for each charac-
ter state at each internal node were obtained with the ‘ace’ com-
mand in R packages ape 3.0–6 (Paradis et al., 2004) and
‘anc.Bayes’ in phytools 0.2–14 (Revell, 2012).

We explored the instantaneous transition rates between pollina-
tion niches along the phylogenetic tree by using the ‘MuSSE’
(multistate speciation and extinction) model in R package diversi-
tree 0.9–3 (FitzJohn, 2012). In this model, as stated above, polli-
nation niche was considered a multistate unordered discrete
character. To explore the probability of the Erysimum species

Table 1 (Continued)

FG
Functional
Group

Body
length Resource Behavioural notes Type of visits Order Main families and genera

13 Large beetles > 7mm Mostly pollen Sometimes nectaring
from the bottom part of
the flower

Legitimate
+ Illegitimate

Coleoptera Lagridae, Mylabridae, Allecuninae

13 Small beetles < 7mm Pollen + nectar Consuming pollen during
legitimate visits and also
robbing nectar from the
bottom part of the
flowers

Legitimate
+ Illegitimate

Coleoptera Melyridae (Malachidae, Dasytidae),
Cleridae, Oedemeridae, Elateridae,
Bruchidae, Buprestidae,
Chrysomelidae

13 Small diving
beetles

< 3mm Nectar + Pollen Completely entering the
flower, crawling down
the corolla for nectar

Legitimate Coleoptera Nitidulidae, Dermestidae, Phalacridae

14 Butterflies Variable Nectar Feeding on nectar both
from inside the flower
and between the sepals

Legitimate Lepidoptera Nymphalidae, Lycaenidae, Papilionidae,
Pieridae

14 Hawkmoths > 7mm Nectar Hovering to sip nectar Legitimate Lepidoptera Sphingidae
15 Large moths > 3mm Nectar Sipping nectar while

landed onto the corolla
Legitimate Lepidoptera Crambidae, Noctuidae

15 Small moths < 3mm Nectar Nectaring without
entering the flower

Illegitimate
+ Legitimate

Lepidoptera Adelidae, Plutellidae

16 Bugs Variable Nectar Nectaring without
entering the flower. Also
acting as sapsuckers in
vegetative tissues

Legitimate
+ Illegitimate

Hemiptera Lygaeidae, Pentatomidae (Eurydema)

17 Thrips < 3mm Pollen Feeding from inside the
flowers

Legitimate Thysanoptera

18 Grasshoppers Variable Pollen + Floral
parts

Mostly nymphs Legitimate Orthoptera

19 Others Variable Pollen + Floral
parts

Legitimate
+ Illegitimate

Raphidioptera
Dermaptera

We differentiated 28 functional groups based on behaviour at flowers and morphological fit. However, due to extremely low abundance of some groups,
we subsequently pooled them in 19 functional groups identified in the first column (‘FG’). All analyses have been performed considering these 19 groups.
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evolving into different pollination niches, we tested the following
hypotheses: (1) the transition to any of the modules from the other
modules was equal for all modules and not different from zero
(q.i = q.j = 0); (2) the transition from any of the modules to the rest
of the modules was equal for all modules and not different from
zero (qi. = qj. = 0). These hypotheses were tested by comparing the
log-likelihood of the full MuSSE model with that of a set of sub-
models in which we constrained to zero the transition rates to
(hypothesis 1) or from (hypothesis 2) each module (FitzJohn,
2012). We rejected the tested hypothesis when the log-likelihoods
of the submodels differed from each other and were significantly
larger than the log-likelihood of the full model (Nunn, 2011).

Results

Determining pollination niches

We recorded a total 13 724 flower visits in the studied populations
from 746 insect species belonging to 99 families and 8 orders
(Table S2). We observed visits by the 19 functional groups consid-
ered in this study, and most plant species were visited by more
than 9 functional groups (Table S2). The most frequent func-
tional groups were beetles (36.3% of the visits), long-tongued
large bees (10.9%), ants (9.9%) and beeflies (9.1%) (Table S2).

The network between Erysimum species and the pollinator
functional groups was significantly modular (Modular-
ity = 0.288� 0.001, N = 100 iterations), because the empirical
modularity values differed from random values in all replicates (z-
scores = 142.39� 0.001, all P-values < 0.0001, N = 100 itera-
tions; Table S3). Modularity analysis detected six modules in 96
iterations (Table S3), indicating that this was the most stable configu-
ration. In fact, the modular configuration obtaining the highest likeli-
hood (M = 0.293) distributed the Erysimum species in six modules
(Fig. 1), whereas the three iterations obtaining five modules were also
those obtaining the lowest likelihood values (Table S3).

Modules were not associated with a single or a few pollinator
functional groups. Rather, plants from every module were visited
by most pollinator functional groups (Fig. 1; Table S4). Never-
theless, the frequency of interaction of each pollinator functional
group varied among plant modules (Fig. 1; Table S4). Conse-
quently, there was between-module quantitative difference in the
composition of the floral visitor assemblages (F = 6.76, R2 = 0.54,
P < 0.001; permanova). Similarly, the observed value of the
between-module niche overlap (mean� 1 SE = 0.594� 0.058)
was significantly lower than the expected value (0.755� 0.001;
P < 0.0001), despite some modules widely overlapping among
them (Table 2). These findings suggest that the modules are asso-
ciated with different regions of the niche space determined by the
pollinator functional groups. The module identity of the
Erysimum species was consistent across iterations. Only 8 species
were assigned to different modules in more than 25% of the
iterations: E. merxmuelleri, E. bonannianum, E. crassistylum,
E. wilczekianum, E. mediohispanicum, E. baeticum bastetanum,
E. popovii and E. etnense (Table S5).

There was no spatial aggregation in the geographic distribution
of the modules, because we found that the geographic distances

between and within modules were similar (F = 2.08, R2 = 0.26,
P = 0.155; permanova; Fig. 2).

Relationship between pollination niche and pollinator
diversity

Despite the occurrence of high levels of generalization in the polli-
nation systems of all studied plants, we found that some pollina-
tion niches differed in pollination diversity, estimated as the PIE
index of the functional groups, both when estimated with PGLS
(F6,27 = 5.32, R2 = 0.40, P = 0.001; k = 0.0001, lambda P
value > 0.5) and phylogenetic ANOVA (F6,27 = 4.22, P = 0.009).
In particular, according to the post-hoc sequential phylogenetically
controlled Bonferroni test, pollinator diversity were significantly
lower in plant species from module E (Fig. 3). Because the analy-
ses were phylogenetically controlled, this difference was not due to
an effect of the relatedness among plant species. All of these find-
ings suggest that, without being extremely specialized, the pollina-
tion system of the plants from module E is more specialized than
those of the rest of the plants.

Evolution of pollination niche

Pollination niche evolution was consistent with Brownian
motion (BM) evolution, because the likelihood of models where
lambda was estimated (logeL: �54.11� 0.05; AIC:
116.35� 0.01) did not differ from those where lambda was
forced to equal one (logeL: �57.11� 0.05; AIC: 116.35� 0.01;
all P > 0.99, N = 6400 trees).

We did not detect phylogenetic signal in the evolution of polli-
nation niches, as the ML estimate of lambda for module identity
(logeL: �54.11� 0.01; AIC: 116.35� 0.01) did not differ from
trees where lambda was forced to be zero (logeL: �57.21� 0.01;
AIC: 116.57� 0.01; all P > 0.98, N = 6400 trees). As observed
in Fig. 4, the pollination modules are scattered all over the
Erysimum phylogenetic tree.

The reconstruction method suggests that the ancestral species
could have belonged to any pollination niche (Fig. 4). Neverthe-
less, the highest posterior probability was obtained for modules E
(posterior probability = 0.29) and A (posterior probability = 0.22;
Fig. 4, Table S6), whereas the lowest probability was obtained for
module B (posterior probability = 0.05). Moreover, it seems that
the number of species belonging to module A has increased gradu-
ally along the evolutionary history of Erysimum (Fig. 4).

Although the instantaneous transition rates were very heteroge-
neous (Table S7), no transition rate to or from any module was
different from zero (Table 3; the null hypothesis cannot be
rejected because the AICs of the submodels were larger and the
log-likelihoods were smaller than those of the full model).

Discussion

Generalist pollination niches in Erysimum

We envision the pollination niche space of Erysimum as a hyper-
volume described by n orthogonal axes, each one representing the
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abundance at flowers of a different pollinator functional group
(Hutchinson, 1957; Pauw, 2013). Under this perspective, differ-
ent pollination niches are associated with specific regions within
that n-dimensional niche space. We have used a modularity algo-
rithm derived from complex network theory to detect those polli-
nation niches. Despite the high level of generalization of the
Erysimum pollination systems (G�omez et al., 2014b), the modu-
larity algorithm has shown that the 35 Erysimum species can be
grouped into six different pollination niches. That is, different
Erysimum species may belong to similar pollination niches. The
six pollination niches detected in this study occupied different
regions of the overall niche space, as indicated by their low niche
overlap and significant difference in pollinator composition.
These findings suggest that different groups of plant species are
exploring contrasting regions of the overall pollination niche
space. However, niche segregation was not complete between

some pollination niches. This outcome is expected, taking into
account the rampant generalization in the pollination system of
the studied species. In fact, overlap in pollination niches has been
found not only between generalist plants (Kephart, 1983; Wiens
& Graham, 2005) but also between specialized ones (Muchhala,
2003).

It is widely assumed that specialization in the use of resources
has recurrently evolved from generalist strategies and may repre-
sent evolutionary dead-ends (Futuyma & Moreno, 1988). In
agreement with this idea, the evolution of pollination specializa-
tion from generalization has been demonstrated in several plant
clades (Manning & Goldblatt, 2005; P�erez et al., 2009). Phyloge-
netic studies have recently challenged this idea and shown the
evolution toward generalization from specialized ancestors not
only in plant–pollinator interactions (Armbruster & Baldwin,
1998; Tripp & Manos, 2008; Mart�en-Rodriguez et al., 2010),

cheiri

lagascae

rondae

cazorlense

bicolor
popovii

cheiranthoides

geisleri

etnense

nevadense

penyalarense

Fig. 1 Plot showing the classification of the
studied species into different pollinator
modules, according to the analysis of
bipartite modularity QuanBiMo. The
intensity of the colours indicates the relative
abundance of each flower visitor’s functional
group per species. For more details, see
Supporting Information Table S4.
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but also in plant–herbivore (Nosil & Mooers, 2005) and parasitic
interactions (Stireman, 2005). That is, generalization–specializa-
tion transitions may occur in both directions. One feature com-
mon to all of these study systems is the co-existence of specialist
and generalist species in the same clade. However, all Erysimum
species studied here are generalist in their interactions with poll-
inators, with no trend towards increased specialization or general-
ization (G�omez et al., 2014b). We did not find strong association
between pollination niche and generalization. Erysimum pollina-
tion niches were similarly generalized, with only module E com-
posed of plant species interacting with pollinator assemblages

that had lower diversity. That is, the variation in the position
within the niche space occupied by the six pollination niches was
due to the variation in the relative abundance of pollinator func-
tional types rather than the specialization to subsets of pollina-
tors.

It is tempting to consider species from different pollination
niches as belonging to different pollination syndromes (Danieli-
Silva et al., 2012; Mart�ın Gonz�alez et al., 2012). However,
Erysimum pollination niches cannot be considered equivalent to
syndromes. Thus, they were not caused by the replacement of
major functional groups of pollinators. In addition, plants from
different pollination syndromes differ in floral phenotype (Rosas-
Guerrero et al., 2014), but Erysimum species belonging to differ-
ent pollination niches have similar floral traits (Polatschek, 1974,
1979, 2008; Blanca et al., 1992). Nevertheless, further analyses
are necessary to determine any relationship between floral traits
and pollination niches in this generalist plant clade (J. M. G�omez
et al., unpublished).

It is necessary to remark that when describing pollination
niches of Erysimum, we are assuming that the sampled flower visi-
tor assemblages are the actual pollinator assemblages of the stud-
ied plants; that is, the sampling has been exhaustive and the
pollinator assemblages does not fluctuate too much between years
or populations. Spatio-temporal variation in pollinator assem-
blages has been recorded frequently (Herrera, 1988; Eckhart,
1992; Traveset & S�aez, 1997; G�omez & Zamora, 1999; Aigner,
2005; Price et al., 2005; Ollerton et al., 2006), and we have even
observed between-population intraspecific changes in pollination
niches for one Erysimum species (G�omez et al., 2014a). We have
tried to overcome this possibility by sampling pollinators in more
than one population and several years per species. We are aware

Table 2 Pianka niche overlap between Erysimum pollination niches

Between-
module
pairwise
comparisons

Observed
niche
overlap

Expected niche overlap

Significant
overlapMean

Lower
confidence
interval

Upper
confidence
interval

A–B 0.391 0.206 0.014 0.704 No
A–C 0.776 0.310 0.064 0.698 Yes
A–D 0.834 0.291 0.046 0.696 Yes
A–E 0.630 0.272 0.043 0.687 No
A–F 0.775 0.356 0.078 0.719 Yes
B–C 0.331 0.225 0.021 0.673 No
B–D 0.257 0.222 0.017 0.686 No
B–E 0.239 0.191 0.013 0.652 No
B–F 0.285 0.267 0.034 0.659 No
C–D 0.793 0.318 0.074 0.690 Yes
C–E 0.646 0.301 0.058 0.704 No
C–F 0.786 0.416 0.164 0.743 Yes
D–E 0.689 0.280 0.050 0.703 No
D–F 0.760 0.382 0.118 0.717 Yes
E–F 0.720 0.352 0.092 0.689 Yes

Significance in overlap is obtained by resampling.
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Fig. 2 Spatial location of the different pollination niches, estimated as the
centroid of the populations sampled in a species.

Fig. 3 Between-pollination niche differences in pollinator diversity. Values
of the probability of interspecific encounter (PIE) index with different
lowercase letters were significantly different at a = 0.05 according to
phylogenetic sequential Bonferroni tests. Error bars are� 1 SE.
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that intense sampling is necessary to accurately identify the polli-
nation niches of generalist plants.

How do pollination niches evolve in Erysimum?

The methodological approach used in this study has been previ-
ously used to explore pollination niche variation among popula-
tions of E. mediohispanicum (G�omez et al., 2014a). The current
study indicates that the pattern observed within species extended
across species. Johnson (2006, 2010) combined two kinds of

observations – that pollinators differ in effectiveness (Stebbins,
1970) and distribution range (Grant & Grant, 1965) – to suggest
that geographic availability of pollinators may lead to mechanical
and/or ethological isolation and pollinator-driven divergence. A
corollary of this so-called Grant–Stebbins model is a congruence
between the distribution of plant ecotypes or species and the dis-
tribution of pollinators (Anderson et al., 2009; Van der Niet
et al., 2014). However, in Erysimum, as probably in many other
generalist plants, the distribution of most pollinator functional
groups exceeds the spatial location of the pollination niches. The
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absence of a geographic structure in pollination niches, the non-
occurrence of phylogenetic signal, the lack of a clear pattern in
the transitions between pollination niches, and the widespread
overlap in the distribution of all Erysimum species together indi-
cate that the evolution of pollination niches in Erysimum is not
consistent with the Grant–Stebbins model.

Several features of the evolution of Erysimum pollination
niches suggest that they have evolved in a way similar to that
predicted by the adaptive wandering model (Wilson & Thom-
son, 1996; Dilley et al., 2000; Wilson et al., 2006; Thomson
& Wilson, 2008). Although this model was intoned to explain
floral divergence (Wilson & Thomson, 1996), it can also
explain the change in pollination niches as a previous step to
floral divergence. According to this model, different plant taxa
will interact with pollinator assemblages differing quantita-
tively, in terms of relative abundance of pollinators. Under this
scenario, any species spreading over a large region will face dif-
ferent pollination niches (G�omez et al., 2014a). In fact, intra-
specific variation in pollination niches is a common feature in
many generalist plant species (Herrera, 1988; Inoue et al.,
1996; Dilley et al., 2000; F€ussel et al., 2007). Some of these
new pollination niches will be associated with speciation
events, resulting in new species located in new niche positions.
Our studies indicate that the variation in generalist pollination
niches could occur both at intra- and interspecific levels, prob-
ably explaining why some Erysimum species were ascribed to
more than one niche in our study. In addition, because the
ecological requirements of each pollinator functional group are
idiosyncratic, the spatial variation in pollinator assemblages will
not have a clear geographic pattern. Rather, as observed in
Erysimum, pollination niches will vary as a mosaic (Grant &
Grant, 1965; G�omez et al., 2014a), arising recurrently in dif-
ferent parts of the distribution range and evolutionary history
of the genus, and with frequent divergence (sister species
belonging to different pollination niches) and convergence
(species from different lineages evolving similar niches).
Although niche convergence is usually associated with adaptive
evolution (Harmon et al., 2005), we believe that in our current
study neutral changes in pollinator assemblage compositions
predominate. This neutral evolution is probably the reason

why the evolution of pollination niches in Erysimum fitted a
BM model without phylogenetic signal and lacking any evolu-
tionary trend towards a given trait state (Nunn, 2011). This
evolution mode suggests that most generalist pollination niches
are evolutionary labile and ephemeral (sensu Losos et al., 2003;
Losos, 2008).

We presume that the mosaic-like geographic variation in polli-
nation niches will trigger pollinator-mediated fluctuating selec-
tion on floral traits (Herrera, 2006). Under these circumstances,
only some niche shifts will result in pollinator-mediated pheno-
typic divergence (G�omez et al., 2014a). Generalist pollination
niches will evolve mostly by wandering, being adaptive only occa-
sionally (recall that wandering is always adaptive when there is
phenotypic divergence mediated by niche evolution, as suggested
by Thomson & Wilson, 2008). We envision a geographic sce-
nario composed of many plant species or populations belonging
to pollinator niches that do not prompt floral evolution (‘cold
niches’), intermingled with a few species or populations belong-
ing to specific pollination niches that cause divergence in plant
phenotype (‘hot niches’). This scenario would explain the lack of
universal adaptation to pollinators in generalist systems.

In brief, our study suggests that the evolution of Erysimum pol-
lination niches occurred mostly by recurrent shifts between
slightly different generalized pollinator assemblages varying spa-
tially as a mosaic and without much change in specialization
degree. We believe that this mode of evolution is common to
many other generalist plant clades. Unfortunately, the scarcity of
studies on these type of systems precludes reaching any conclu-
sion about how important or widespread this process is for the
evolution of plant–pollinator interactions.
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