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ABSTRACT

• Polyploidisation has played an important role in plant diversification, and variation in
ploidy level may be found not only between species of the same genus, but also within
a single species. Although establishing the adaptive significance of polyploidy to
explain the geographic distribution of cytotypes is challenging, the occurrence of dif-
ferent cytotypes in different ecological niches may suggest an adaptive role of genome
duplication.

• We studied the adaptive significance of the geographic distribution of cytotypes across
the entire distribution range of the endemic Erysimum mediohispanicum (Brassi-
caceae). For that, we have used climate variables, population elevation and soil prop-
erties to model ecological niches for the different cytotypes. In addition, we analysed
the effect that ploidy level has on the floral phenotype.

• We found a clear geographic pattern in the distribution of cytotypes, with diploid
individuals occurring in the southernmost part of the distribution range, while tetra-
ploids were found in the northern area. A contact (mosaic) zone between both cyto-
types was identified, but diploids and tetraploids occur in sympatry in only one
population (although in a highly unbalanced proportion). Gene flow between differ-
ent cytotypes seems to be negligible, as evident from an almost complete absence of
triploids and other minority cytotypes. Niches occupied by both cytotypes showed
subtle, but significant differences, even in the contact zone. Precipitation was higher in
regions occupied by tetraploid individuals, which present wider corolla tubes and
thinner but taller stalks than diploids.

• Our findings highlight the potential role of polyploidy in the ecological adaptation of
E. mediohispanicum to both abiotic factors and biotic interactions.

INTRODUCTION

Polyploidisation has long been recognised as a key process in
plant evolution and diversification (Otto & Whitton 2000; De
Bodt et al. 2005; Soltis et al. 2009; Castro et al. 2012), and gen-
ome duplications have occurred multiple times during the evo-
lutionary history of angiosperms (Grant 1971; Masterson 1994;
Soltis 2005). In addition, genome duplication is one of the few
speciation processes that may operate in sympatry, due to the
possible immediate emergence of reproductive isolation
between individuals with different ploidies (Husband & Sabara
2003 and references therein). Consequently, the role of poly-
ploidisation on species formation has been widely studied since
the beginning of the last century (Mayr 1942, 1982).

Polyploidisation may drive changes in plant size (Stebbins
1971), flower size and shape (Segraves & Thompson 1999), and
flowering time (Nuismer & Cunningham 2005). Variation in

these phenotypic traits influences plant reproductive success by
affecting pollinator attraction (Segraves et al. 1999; Thompson
et al. 2004; Kennedy et al. 2006; M€unzbergov�a 2006; Arvanitis
et al. 2007) and autogamy rates (Petit et al. 1999 and references
therein). Thus, studying phenotypic differences associated with
variation in ploidy level may be fundamental to understand the
reproductive ecology and evolution of species composed of dif-
ferent cytotypes.
Still, quantitative phenotypic variation found in natural pop-

ulations is the result of multiple factors acting in both the
genetic and environmental variance components of those traits.
Additionally, the distribution range of most species is wide
enough to show environmental heterogeneity, particularly in
mountainous areas due to changes associated with elevation,
such as precipitation, temperature and soil properties (Frei
et al. 2014). Therefore, it is important to account for this
heterogeneity and to correlate cytotypes, phenotypes and
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environmental variables in order to evaluate the adaptive sig-
nificance of polyploidy.
Intraspecific variation in ploidy level is frequent in angios-

perms (Thompson & Merg 2008; Castro et al. 2012; Kol�a�r et al.
2015). When this occurs, studying the geographic distribution
of cytotypes can provide valuable information about the origin
and maintenance of the different ploidy levels (Segraves et al.
1999; Baack 2004; Rieseberg & Willis 2007; Kol�ar et al. 2009).
For example, the existence of intermediate ploidies is compati-
ble with gene flow between cytotypes (Zozomov�a-Lihov�a et al.
2015), whereas a random distribution of cytotypes may suggest
that they share similar habitat requirements. In contrast, the
existence of different cytotypes showing strong spatial segrega-
tion may be due to, at least, three non-exclusive hypotheses
(Petit et al. 1999; Baack 2004): niche differentiation (Ehrendor-
fer 1980; Lewis 1980), reproductive exclusion (Levin 1975; Van
Dijk & Bakx-Schotman 1997) and historical factors (An�cev
2006). According to these hypotheses, the disjunct distribution
of cytotypes would be due to their different environmental
requirements, differential success in reproduction and the
occurrence of particular evolutionary constraints or demo-
graphic stochasticity, respectively.
Mixed ploidy populations have been found in multiple plant

species but in most cases they are restricted to geographic areas
of close spatial proximity between pure ploidy populations
(Kol�ar et al. 2009; H€ulber et al. 2015). Such geographic areas
are called ‘contact zones’ and can be classified as hybrid zones,
showing a particular habitat suited for multiple cytotypes;
(Barton & Hewitt 1985), and mosaic zones, showing multiple
habitats each suited for a particular cytotype; (Harrison &
Rand 1989). Niche differences in hybrid zones are expected to
be smaller compared to those in pure populations, but similar
niche differences are expected in case of mosaic zones (H€ulber
et al. 2015).
Ecological niche modelling allows a quantitative evaluation

of the ecological divergence of species based on their empirical
geographic distributions and is becoming a valuable tool for
habitat assessments applied to multiple disciplines, such as
ecology, evolution, conservation and agronomy (Laport et al.
2016 and references therein). Niche modelling approaches also
allow statistical comparison of the overlap of niches occupied
by different taxa using the niche similarity and the niche equiv-
alency tests (Warren et al. 2008; Broennimann et al. 2012). The
former evaluates if one cytotype niche predicts the other niche
better than a randomly generated niche, while the latter directly
compares both niches (Glennon et al. 2014). The sensitivity of
the equivalency test to identify niche differences is extremely
high compared with the similarity test (Visger et al. 2016).
In this study, we use niche modelling to evaluate the adap-

tive basis of ploidy through its effect on reproductive traits and
on its ability to occupy different habitats. For that, we used the
herb Erysimum mediohispanicum as a model. Erysimum L. is
remarkable in Brassicaceae: it is one of the largest genera (com-
posed of more than 200 species; Al-Shehbaz 2012), has one of
the largest polyploid series (diploid to dodecaploids; Marhold
& Lihov�a 2006; Warwick & Al-Shehbaz 2006) and is one of the
few polybasic genera (base chromosome numbers x = 7 and
x = 8; Lysak & Koch 2011). In addition, the existence of
intraspecific variation in ploidy level has been repeatedly
reported for the genus in Europe and North America (Mulligan
1966; Michalkov�a 2000; An�cev 2006). E. mediohispanicum is

the most widely distributed species of Erysimum in the Iberian
Peninsula (Nieto-Feliner 1993). Chromosome counts revealed
the existence of diploid (2n = 2x = 14 chromosomes) and
hypotetraploid (2n = 4x = 26 chromosomes; hereafter called
tetraploid) individuals (Polatschek 1979; Blanca et al. 1992).
Despite the fact that both cytotypes were originally defined as
different species (Polatschek 1979), the lack of phenotypic
characters consistently supporting this division led several
authors to reject this taxonomic separation of cytotypes (Ball
1990; Blanca et al. 1992; Nieto-Feliner 1993). As observed in
many other Erysimum species, the existence of tetravalent
structures during meiosis points to autopolyploid origin of tet-
raploid E. mediohispanicum (Blanca et al. 1992; Clot 1992).

In this study, we aimed to: (i) assess the geographic distribu-
tion of the diploid and tetraploid E. mediohispanicum cyto-
types; (ii) explore the potential existence of contact zones
between cytotypes; (iii) determine the effect of ploidy level on
floral phenotype potentially affecting the interaction with polli-
nators; and (iv) determine the relationship between distribu-
tion of the cytotypes and environmental factors.

MATERIAL AND METHODS

Study populations

We gathered information on ploidy level, floral phenotype and
climate from 118 E. mediohispanicum populations, represent-
ing the entire distribution range of the species. To minimise
the impact that environmental conditions of a particular year
on floral phenotypes, we measured phenotypic traits for at least
2 years in most populations (see Table S1 for further details on
location, ploidy, sample size and sampling strategy). Using leaf
tissue from individuals of a single year per population, we esti-
mated ploidy level of 52 populations by analysing microsatellite
electropherograms obtained following Mu~noz-Pajares et al.
(2011). To confirm the accuracy of microsatellite markers to
discriminate between diploid and polyploid individuals, we
used flow cytometry (FCM) to re-estimate genome size of 16
populations previously studied using microsatellite markers.
Because ploidy level was homogeneous in the five populations
where FCM was applied to more than 20 individuals (repre-
senting 15–30% of the entire populations), ploidy levels of 51
additional populations were estimated using a low number of
individuals (average of three individuals per population),
except in areas of special interest (where we analysed an aver-
age of 17 individuals per population; Table S1). Finally, in 15
populations, ploidy level was obtained from the literature,
being estimations based on chromosome counts (Polatschek
1979; Clot 1992). Details on methods to estimate ploidy level
using both, FCM and microsatellite analyses, are provided in
Appendix S1 and Fig. S1.

Determination of floral phenotype

We studied the floral phenotype of 54 populations, charac-
terising at least 30 individuals per population. However,
some populations were smaller; in those cases, all flowering
individuals occurring in the population were studied
(Table S1). In each plant we measured: (i) stalk height,
height of the tallest flowering stalk, obtained using a mea-
suring tape (error � 0.5 cm); (ii) stalk diameter, diameter

Plant Biology 20 (Suppl. 1) (2018) 139–147 © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands140

Cytotype distribution in Erysimum mediohispanicum Mu~noz-Pajares, Perfectti, Loureiro, Abdelaziz, Biella, Castro, Castro & G�omez



at the base of the tallest flowering stalk; (iii) flower number,
counting all flowers and flower buds produced per plant;
(iv) corolla diameter, distance between the apical edges of
two opposite petals; (v) corolla tube length, distance
between the corolla tube aperture and base of the sepals;
(vi) corolla tube width, internal space between petals at the
top of the corolla tube aperture, and estimated as the differ-
ence between corolla diameter minus length of two opposite
petals. Traits (ii) and (iv) to (vi) were measured using digi-
tal callipers with 0.1 mm resolution. Traits (iv) to (vi) were
estimated in one flower per plant.

Climate variables

Interpolated climate variables at 0.5 arc min resolution were
obtained for the studied populations from the Worldclim 1.4
database (Hijmans et al. 2005) using the raster package in R
(Hijmans 2016). Specifically, we selected three climatic vari-
ables based on their expected biological importance to E.
mediohispanicum reproductive cycle: Precipitation (PR,
mm�day�1) during the period of flowering (and pollination)
and fruiting; Mean temperature (TM, °C) during seedling
establishment; and Temperature range (TR, °C) during the
final vegetative growth before plant reproduction. To better
represent climatic environment, we also retained the biocli-
matic variables showing Pearson’s correlation coefficients lower
than 0.7 (Table S2), raising the total number of climatic vari-
ables used to seven: PR, TM, TR, Bio3 (isothermality, that is,
the quotient between day-to-night and summer-to-winter tem-
perature oscillation), Bio8 (mean temperature of wettest quar-
ter), Bio9 (mean temperature of driest quarter), and Bio19
(precipitation of coldest quarter). See Appendix S1 for a com-
plete description on the variables used in this work.

Correlations between phenotype, ploidy and climate

Prior to any analyses, we log-transformed phenotypic traits
departing from normality (namely, stalk diameter, stalk height
and number of flowers). The relationships between phenotypic
traits, ploidy level and climate variables were evaluated using
canonical correlation analyses (CCA). We normalised all cli-
matic and phenotypic variables and computed the CCA using
the CCA package in R (Gonz�alez & D�ejean 2012).

Environmental niche modelling and niche overlap

To obtain a more accurate estimate of the environmental niche
of the two cytotypes, we also downloaded six variables describ-
ing soil properties from the European Soil Database version 2
Raster Library (Panagos 2006). Specifically, we used parmado
(dominant parent material), wrbadj1 (first soil adjective code),
DR (depth to rock), oc_top (topsoil organic carbon content),
text (dominant surface textural class) and usedo (dominant
land use). Finally, we used the same database to download the
altitude layer to account for effects of population elevation.
Because altitude had a strong negative correlation with TM
(Pearson’s coefficient = �0.87; Table S2), the latter was
excluded for analyses including altitude.
Niche modelling was performed with maximum entropy

modelling using the MaxEnt software (Phillips & Dud�ık 2008)
with default parameters, except for number of replicates (15),
percentage of random tests (25) and maximum number of iter-
ations (5000). We used the area under the curve statistic
(AUC) to evaluate model accuracy and the relative contribu-
tion of each variable to the final model. Overlap between niches
of both E. mediohispanicum cytotypes was quantified using the
Schoener’s D (See Appendix S1 for further details).

RESULTS

Distribution pattern of cytotypes in E. mediohispanicum

Using FCM analysis, we estimated ploidy level in 416 individu-
als from 67 populations (Table S1) and found that 211 of them
were diploid (2x; average genome size: 0.47 pg�2C�1) and 200
were tetraploid (4x; average genome size: 0.99 pg�2C�1). How-
ever, 2x and 4x individuals inhabit different populations of
homogeneous ploidy (Fig. S2). In fact, only four out of the 63
studied populations contained more than one cytotype
(Table 1). From these, only in one population (Em93) were 2x
and 4x found growing in sympatry and, even in that case, their
frequencies within the population were extremely unbalanced
(2x + 4x + aneuploids; 27:1:1; Table S1). The remaining three
populations with ploidy heterogeneity were Em54 (4x + 5x;
2:1; genome size of the 5x individual was 1.26 pg�2C�1), Em71
(4x + aneuploids, 13:2; genome size of aneuploids was 1.17 and
1.18 pg�2C�1) and Em98 (3x + 4x; 1:4, genome size of the 3x
individual was 0.75 pg�2C�1; Table S1, Fig. S2).
The geographic distribution of ploidies was mostly disjunct,

with diploid individuals being restricted to the southernmost
part of the Iberian Peninsula and tetraploids occurring in the
central and northern parts of the Iberian Peninsula (Table 1;
Fig. S2). Interestingly, a contact zone between diploids and tet-
raploids was found between these two main areas. Specifically,
the contact zone is located in the Prebaetic Ranges of the Baetic

Fig. 1. Depiction of population mean phenotypic values for the studied

traits in diploid (white; N = 33 populations) and tetraploid (grey; N = 21

populations) individuals. Confidence intervals represent 1.96 times the SE.

Wilcoxon significance values are also represented (***<0.001; **<0.01;

*< 0.05; <0.1; ns>0.1).
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Mountains, less than 50 km from the northernmost diploid
populations and 100 km from the southernmost tetraploid
populations (Fig. S2). Within the contact zone we did not find
any populations showing both cytotypes in a similar propor-
tion, but a single tetraploid individual was found in a diploid
population; the two populations having aneuploid individuals
were also detected in this region (Fig. S2, Table 1). The shortest
distance between populations with different ploidies in the
contact zone was 6.8 km.

Correlations between phenotype, ploidy and climate

Even though cytotypes could not be distinguished by pheno-
type in natural populations, after analysing 4733 individuals we
found significant differences in several traits (Fig. 1). Specifi-
cally, flowering stalks were significantly wider in diploids than
in tetraploids, while for stalk height the opposite trend was
observed, with tetraploids being taller than diploids. The cor-
olla tube width was also larger in tetraploids than in diploids,
being the trait showing the largest differences. The remaining
phenotypic traits were not statistically different between ploidy
levels (Fig. 1). Similar results were obtained using only the sub-
set of individuals for which both ploidy levels and phenotypic
traits were measured (data not shown).

The correlations between ploidy and both stalk diameter and
corolla tube width (negative and positive, respectively) were
confirmed with CCA results (Fig. 2). The CCA clearly separated
diploid and tetraploid populations in dimension 1 (Fig. 2A),
which, in addition to ploidy level, corolla tube width and stalk
diameter, importantly depends on precipitation and tempera-
ture (Fig. 2B, Table S3). Specifically, polyploid populations
seem to occur in areas with higher precipitation during flower-
ing and fruiting (PR) and mean temperature during the wettest
quarter (Bio8), but lower precipitation of the coldest quarter
(Bio19) and mean temperature of driest quarter (Bio9).

Environmental niche modelling and niche overlap

Niche models estimated using climate variables, altitude and
soil variables had very high AUC scores for 2x (mean
0.985 � 0.026; �SD) and 4x (mean 0.928 � 0.046) popula-
tions, suggesting negligible rates of false negative and false posi-
tive suitability predictions. In fact, most of the studied
populations were in areas having high predicted probability
(Fig. 3). Interestingly, the models point to the observed contact
area as one of the few regions in the Iberian Peninsula where
environment appears highly suitable for both cytotypes
(Fig. 3). Niche overlap was 37.9%, with diploid and tetraploid
niches overlapping significantly less than expected by chance
according to the equivalency test (P = 0.01). However, accord-
ing to the similarity test, niche overlap was not significantly
lower than random (2N versus 4N, P = 0.57; 4N versus 2N,
P = 0.56). These findings are compatible with the existence of
subtle differences between the niches occupied by the two

Fig. 2. CCA: A: Depiction of the 54 mean phenotypes per population

within the space generated by the first two canonical dimensions. B: Depic-

tion of relationships between the first two canonical dimensions and the

two environmental variables (in italics: PR, precipitation; TM, mean tempera-

ture; TR, temperature range) and phenotypic traits (in bold: logDiamStalk,

stalk diameter; logHeight, stalk height; logFlowers, number of flowers; cor-

o_width, corolla tube width; cor_length, corolla tube length; cor_diam, cor-

olla diameter). Diploid and tetraploid populations are represented in white

and grey, respectively.

Table 1. Summary of E. mediohispanicum cytotype distribution. The num-

ber of populations showing a given ploidy level is represented for different

areas (southern, northern and contact zone). Ploidy levels include diploids

(2x), tetraploids (4x), triploids (3x), pentaploids (5x) and aneuploids (an.). For

populations with more than one ploidy level, the most abundant cytotype is

given in bold.

ploidy southern contact zone northern total

2x 35 6 0 41

4x 0 17 56 73

2x, 4x, an. 0 1 0 1

4x, 5x 0 0 1 1

4x, an. 0 1 0 1

4x, 3x 0 0 1 1

Total 35 25 58 118
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cytotypes. We obtained congruent results after using only cli-
mate (continuous) variables for niche models estimation (see
Appendix S2).

Mean temperature during seedling establishment (TM), alti-
tude and temperature range during bud development (TR)
were the variables having the highest contribution to the final
models for 4x populations, whereas precipitation during flow-
ering and fruiting (PR), altitude and TR were the most impor-
tant variables for 2x populations (Table S4). Specifically, 2x
populations tend to occur at lower PR but higher TR and TM.
Regarding soil variables, the dominant parent material (par-
mado) had the most consistent influence in both models.
According to that variable, E. mediohispanicum mainly grows
on limestone, as 60% of the studied populations were found in
that type of soil. However, this value importantly varies with
ploidy, being as high as 81% for 2x, but only 48% for 4x.
Indeed, 4x individuals are found growing on calcareous sand-
stone in 24% of the populations, on marl soils in 12% of the
cases and on other non-marl soils in 16% of the populations
(Table S5).

DISCUSSION

The three methods used to obtain information on E. mediohis-
panicum ploidy variability (FCM, microsatellite analyses and
chromosome counts) supported the same patterns of geo-
graphic distribution of cytotypes and the occurrence of within-
population ploidy homogeneity. Although the ability of
microsatellite markers to discriminate ploidy levels higher than
the diploid level can be limited, the diploid and polyploid indi-
viduals were easily distinguished based on distinct electro-
pherogram patterns. In fact, in all cases, flow cytometry
confirmed the ploidy level assignments obtained using
microsatellite markers, suggesting that this approach may be
valid when the goal is to discriminate between diploid and
polyploid individuals.

After combining the different ploidy estimates, we found
no population composed of 2x and 4x individuals at a similar
frequency. This result agrees with the expectation that mixed
ploidy populations are rare due to minority cytotype exclu-
sion (Levin 1975). Despite parental lineages (usually of a
lower ploidy level) and their descendants being able to coexist
in sympatry in some plant species (Weiss et al. 2002; Sudov�a
et al. 2010), different cytotypes more frequently inhabit differ-
ent localities (Borrill & Lindner 1971; Levin 1975; Husband &
Schemske 1998; Lihov�a et al. 2003; Stuessy et al. 2004; Buggs
& Pannell 2006; Balao et al. 2010). Indeed, this pattern has
been found even in species with large polyploid series, such as
Dianthus broteri, which is composed of diploid, triploid, tetra-
ploid, hexaploid and dodecaploid individuals, all inhabiting
different localities (Balao et al. 2009, 2010). Our results show
a clear geographic segregation of E. mediohispanicum cyto-
types, with diploid individuals in the south and tetraploids in
the north of Spain. However, future research increasing sam-
pling sizes per population is required at a finer scale, espe-
cially in the contact zone, to confirm the lack of mixed ploidy
populations.

Adaptive basis of ploidy

In E. mediohispanicum populations, the ploidy level is lower
in the south than in the north of the Iberian Peninsula. Such
a pattern has already been observed in other plant species in
this geographic area, such as Arenaria tetraquetra (Vargas
2003). However, opposite (Brachypodium distachyon, Man-
zaneda et al. 2012; Mercurialis annua, Buggs & Pannell 2006)
and more complex patterns (Cardamine pratensis, Lihov�a et al.
2003; Dianthus broteri, Balao et al. 2009) have also been
found. This lack of a general pattern sustains the doubt as to
whether the geographic distribution of cytotypes in the Ibe-
rian Peninsula is adaptive or, conversely, if it responds to
other ecological processes (Lumaret et al. 1987; Buggs &

Fig. 3. Probability of occurrence of diploid (A) and tetraploid (B) populations of E. mediohipanicum in the Iberian Peninsula, according with the niche models

obtained using climate variables, population elevation and soil properties. Black points represent the 118 studied populations.
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Pannell 2006; Soltis et al. 2010). In the case of E. mediohispan-
icum, niches of the two ploidies were significantly different
according to the equivalency test but not according to the
similarity test. These results allowed us to reject the null
hypothesis that both cytotypes have a highly conserved envi-
ronmental niche, but rather suggest the existence of subtle dif-
ferences between niches (Visger et al. 2016). However, despite
niche differences not being strong enough to be detected by
the low-sensitivity similarity test, subtle departures from niche
equivalency may lead autopolyploids to escape from mini-
mum cytotype exclusion (Visger et al. 2016). Climatic factors
and soil properties seem to provide an adaptive basis to
explain the distribution of E. mediohispanicum cytotypes.
Indeed, our models identified several environmental variables
consistently contributing to explain the disjunct distribution
of cytotypes, namely altitude, soil dominant parent material
and various climate variables.
Erysimum mediohispanicum diploid populations occur at

higher elevations than tetraploids (mean elevations: 1536 and
1088 m a.s.l., respectively), with populations in the contact
zone occurring at intermediate elevations (Fig. 4). This eleva-
tional segregation of diploid and tetraploid populations seems
to be frequent in other diploid–polyploid complexes, such as
Chamerion angustifolium (Husband & Schemske 1998), Lotus
corniculatus (Gauthier et al. 1998), Anthoxanthum alpinum and

A. odoratum (Flegrov�a & Krahulec 1999 and references
therein), Taraxacum section Ruderalia (Meirmans et al. 2003)
and Larrea tridentata (Laport et al. 2016). Differences in cyto-
type distribution associated with population elevation are con-
sidered difficult to separate from the effects, among other
factors, of latitude, climate and soil (Flegrov�a & Krahulec
1999). Using niche modelling, we were able to discriminate the
importance of elevation from other factors. However, evaluat-
ing fitness of cytotypes using reciprocal transplants is required
to definitively confirm the adaptive basis of the association of
cytotype to elevation (Husband & Schemske 1998; Flegrov�a &
Krahulec 1999; Martin & Husband 2013).

Importantly, phenotypic traits and niche models depend on
several climate variables. Interestingly, the three climate vari-
ables built on the basis of their putative influence on the E. me-
diohispanicum life cycle (i.e. precipitation during flowering and
fruiting, mean temperature during seedling establishment and
temperature range during bud development) were consistently
selected as the most influential to explain cytotype distribution.
This result demonstrates the importance of considering the
biology of the study species when determining the appropriate
variables, rather than merely using standard variables.

Our analyses suggest that tetraploid individuals inhabit areas
with wetter summers (Fig. 4). This finding contrasts with the
expectation that polyploids possess larger but fewer stomata,

Fig. 4. Density distribution of the variables showing the stronger effects on geographic distribution of E. mediohispanicum cytotypes. Densities are repre-

sented separately for the different main ploidy levels found in all the studied populations (top panels. 2x: diploid populations; 4x: tetraploid populations), geo-

graphic areas (central panels. CZ, contact zone; S, southern region; N, northern region) and main ploidy levels in the contact zone (bottom panels).
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allowing them to reduce water loss through the leaves, and thus
to inhabit dry regions (Levin 2002; te Beest et al. 2012; Man-
zaneda et al. 2012). Visger et al. (2016) recently found the same
pattern in Tolmiea diplomenziesii (2x) and T. menziesii (4x),
with a common garden experiment confirming that diploids
made better use of water under drought conditions, potentially
due to differences in xylem diameter of the two cytotypes. The
same may occur in E. mediohispanicum, but specific physiolog-
ical measurements are necessary to confirm this hypothesis.

After including the valuable information on soil properties
in our environmental niche model reconstruction, we found
that tetraploids occur on calcareous sandstones much more
frequently than diploids, which mostly grow on limestone. Soil
differences in water desorption (faster for limestone; V�azquez
et al. 2013) may reinforce the lower availability of water in 2x
populations during the driest months, thus contributing to a
more drastic effect of summer drought. Another interesting
result of soil comparison is that 4x populations grow in more
diverse soil types, suggesting that they may have increased eco-
logical amplitude. This result is congruent with previous stud-
ies on other plant species that attributed larger ecological
amplitudes to polyploids due to their increased genomic flexi-
bility and adaptive potential (Levin 2002; Parisod et al. 2010;
Wallace et al. 2017).

Contact zone and gene flow between cytotypes

Niche differences between cytotypes seem to be maintained in
the contact zone, with diploid and tetraploid populations
growing at different altitudes, TM and PR (Fig. 4). This sug-
gests that in the contact zone, cytotypes are distributed in a
mosaic zone (Harrison & Rand 1989). In fact, differences in
these climate variables are more dramatic at the fine spatial
scale of the contact zone than after pooling the whole distribu-
tion range (Fig. 4). This result supports the association between
ploidy level and environmental variables, suggesting that the
observed distribution of E. mediohispanicum cytotypes is, at
least partially, explained by the niche differentiation hypothe-
sis.

The Prebaetic Range is the only area where populations of
each cytotype are close enough to allow gene flow to occur
between them. It was also in this region where the only mixed
ploidy population was found. Nevertheless, only one tetraploid
individual was found out of 29 plants analysed from this popu-
lation. This tetraploid plant either originated within the popu-
lation (through the fusion of unreduced gametes) or was able
to reach it from nearby tetraploid populations (the distance to
the closest tetraploid population is 15 km). Either way, if this
plant has no competitive advantage in fitness in comparison
with the more abundant diploids, it will be subjected to strong
frequency-dependent selection (Levin 1975). In that scenario,
the mating system of the species may play an important role in
maintenance of such minor cytotype individuals through self-
fertilisation (Rausch & Morgan 2005). However, for this to
occur, a similar ability of both cytotypes to inhabit the same
population would also be required, which seems unlikely con-
sidering the E. mediohispanicum mosaic zone. Thus, despite
our results not providing incontrovertible evidence for reject-
ing the influence of reproductive exclusion and historical fac-
tors, the observed distribution of cytotypes seems better
explained through niche differentiation.

There was an extremely low frequency of individuals show-
ing intermediate ploidies in the contact zone (only three aneu-
ploid individuals were found in two populations, with a
complete absence of triploids). This suggests that hybridisation
between cytotypes is rare in nature and points to the occur-
rence of meiotic abnormalities as the mechanism underlying
the low frequency of minority cytotypes observed in natural
populations. Meiotic abnormalities (i.e. production of gametes
with unexpected ploidy) are common in some species (Brown-
field & K€ohler 2011; De Storme & Geelen 2013) and have been
described in both cytotypes of E. mediohispanicum (Blanca
et al. 1992; Clot 1992). These abnormalities may also explain
the occurrence of 3x and 5x individuals in the tetraploid popu-
lations Em98 and Em54, respectively, as none of the surround-
ings populations showed the expected ploidy level (2x and 6x,
respectively) that could produce, through hybridisation, the
individuals with the observed ploidy level.

Phenotypic differences

Most of the evolutionary advantages attributed to polyploids
are related to phenotypic changes, especially for traits related
to ecological interactions (Segraves et al. 1999; Thompson
et al. 2004; Kennedy et al. 2006; M€unzbergov�a 2006; Arvanitis
et al. 2007). In this work, we evaluated the existence of sig-
nificant differences between traits related to survival (plant
size) and reproduction (corolla size). In general, we found
that tetraploid individuals tend to present thinner stalks than
diploids but are taller and their flowers are bigger, with the
corolla tube width having the largest difference among cyto-
types. These findings are in accordance with patterns
reported in other species, with polyploids usually being taller,
more robust and producing larger flowers than their diploid
counterparts (te Beest et al. 2012 and references therein).
Phenotypic changes associated with ploidy have consequences
on floral visitors, with polyploids attracting different pollina-
tor assemblages than diploids (Taylor & Smith 1979; Segraves
& Thompson 1999). Although an exhaustive comparison
must be done with the two cytotypes in sympatry, prelimi-
nary analyses have shown marginal, non-significant,
differences between pollinator assemblages in diploid and tet-
raploid disjunct populations of E. mediohspanicum (MANOVA

r2 = 0.04, P = 0.07; Mu~noz-Pajares 2013).

CONCLUSIONS

This work provides a thorough view of the geographic distribu-
tion, floral phenotype and environmental preferences of E. me-
diohispanicum cytotypes. The species is composed of diploid
and tetraploid populations, occupying the southern and north-
ern distribution range of the species, respectively. A contact
(mosaic) zone between cytotypes was detected, but gene flow
between cytotypes was negligible. The differences between
niches occupied by diploid and tetraploid individuals are sub-
tle; nevertheless, the distribution of cytotypes seems to be
explained through niche differentiation, mainly depending on
elevation, soil properties and climate variables. Because we also
found a significant positive correlation between ploidy level
and corolla tube width, polyploidy may have played an impor-
tant role in the ecological adaptation of E. mediohispanicum to
local biotic and abiotic factors.
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