
Original Article

Hybridization and introgression are prevalent in Southern European Erysimum
(Brassicaceae) species 

Carolina Osuna-Mascaró1,2,3*, Rafael Rubio de Casas2,4, José M. Gómez2,5,, João
Loureiro6, Silvia Castro6, Jacob B. Landis7,8, Robin Hopkins9,10, and Francisco

Perfectti1,2*

1 Departamento de Genética, Universidad de Granada, Granada, Spain

2 Research Unit Modeling Nature, Universidad de Granada, Granada, Spain

3  Present address: Department of Biology, University of Nevada, 1664 N Virginia St, Reno, NV 89557,
USA

4 Departamento de Ecología, Universidad de Granada, Granada, Spain

5  Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA‐
CSIC), Almería, Spain

6  Centre  for  Functional  Ecology,  Department  of  Life  Sciences,  University  of  Coimbra,  Coimbra,
Portugal

7 BTI Computational Biology Center, Boyce Thompson Institute, Ithaca NY 14853, USA

8 School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell
University, Ithaca NY, USA

9 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA

10 The Arnold Arboretum, 1300 Centre Street, Boston, MA, USA

Short title: Hybridization and introgression in Erysimum species

*Corresponding authors: COM: cosuna@unr.edu; FP: fperfect@ugr.es

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21
22
23
24
25
26
27
28
29
30
31
32

33

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.11.03.467125doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467125
http://creativecommons.org/licenses/by-nc-nd/4.0/


ABSTRACT

Background and Aims: Hybridization is a common and important force in plant evolution. One of its

outcomes  is  introgression  -  the  transfer  of  small  genomic  regions  from one  taxon  to  another  by

hybridization and repeated backcrossing. This process is believed to be common in glacial refugia,

where  range  expansions  and  contractions  can  lead  to  cycles  of  sympatry  and  isolation,  creating

conditions  for  extensive  hybridization  and  introgression.  Polyploidization  is  another  genome-wide

process with a major influence on plant evolution. Both hybridization and polyploidization can have

complex effects on plant evolution. However, these effects are often difficult to understand in recently

evolved species complexes. 

Methods: We combined flow cytometry, transcriptomic and genomic analyses, and pollen-tube growth

assays  to  investigate  the  consequences  of  polyploidization,  hybridization,  and introgression  on the

recent evolution of several Erysimum (Brassicaceae) species from the South of the Iberian Peninsula, a

well-known glacial refugium. This species complex differentiated in the last 2Myr, and its evolution

has been hypothesized to be determined mainly by polyploidization, interspecific hybridization, and

introgression.

Key Results: Our results support a scenario of widespread hybridization involving both extant and

“ghost” taxa. Several taxa studied here, most notably those with purple corollas, are polyploids, likely

of allopolyploid origin. Moreover, hybridization in this group might be an ongoing phenomenon, as

prezygotic barriers appeared weak in many cases. 

Conclusions: The evolution of Erysimum spp. has been determined by hybridization to a large extent.

The adaptive value of such genomic exchanges remains unclear, but our results indicate the importance

of hybridization for plant diversification across evolutionary scales.

Keywords: Hybridization, Introgression, Polyploidy, Allopolyploidy, Glacial refugium, Brassicaceae,

Erysimum spp.
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INTRODUCTION

Hybridization  is  widespread  across  the  tree  of  life,  determining  the  branching  and  diversification

patterns of many taxonomic groups (Rieseberg and Carney, 1998; Coyne and Orr, 2004; Abbott et al.,

2013; Arnold, 2016). Because of its pervasiveness, hybridization has been a subject of research for a

long time (Stebbins, 1959; Anderson, 1953; Arnold et al., 1999). However, it is only recently, with the

advent  of  next-generation  sequencing,  that  scientists  have  started  to  analyze  the  dynamics  of

hybridization at the scale of whole genomes, thus rekindling interest in the evolutionary relevance of

this  phenomenon.  Although the  patterns  of  hybridization  remain  unexplored  for  many groups,  the

renewed research efforts have undoubtedly increased our understanding of the role of hybridization in

nature (Payseur and Rieseberg, 2016; Goulet et al., 2017; Taylor and Larson, 2019).

Hybridization  is  particularly  relevant  for  plant  evolution,  with  many plant  species  showing

hybrid origins (Mallet, 2005; Soltis and Soltis, 2009). The evolutionary outcomes of hybridization may

vary  widely.  Interspecific  hybridization  can  hinder  speciation  and  therefore  diversification  (Mayr,

1992; Schemske, 2000; Mallet, 2005; Saari and Faeth, 2012; Gómez et al. 2015a), but in other cases,

hybridization can actually foster the formation of new species (Rieseberg et al., 2003; Stelkens and

Seehausen,  2009)  or  the  introgression  of  novel  genetic  variation  (by  hybridization  and  repeated

backcrossing;  Anderson  and  Hubricht,  1938;  Anderson,  1953;  Rieseberg  and  Wendel,  1993).  In

addition, the fusion of genomes between two hybridizing species can lead to changes in ploidy levels

(i.e.,  allopolyploidization; Soltis et al., 2014). There is evidence that introgression might even span

ploidy levels (e.g., gene flow between diploid and tetraploid species of Senecio; Chapman and Abbott,

2010),  which  opens  intriguing  questions  about  the  interplay  of  introgression  and  polyploidization.

However, the specifics of how hybridization, introgression, and polyploidization interact to affect the

evolution of particular plant groups remain poorly understood. Advancements in genomic sequencing

technology and analyses are now making the challenges of characterizing these processes far more

feasible, even in recently diverged lineages and taxa.
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Erysimum L. is one of the largest genera of the Brassicaceae, comprising more than 200 species

(Polatschek,  1986),  and  has  been  described  as  a  taxonomically  complex  genus  with  a  reticulated

evolutionary  history  in  which  polyploidization  may  have  affected  the  evolution  of  some  clades

(Marhold  &  Lihová,  2006;  Turner,  2006;  Abdelaziz,  2013;  Muñoz-Pajares,  2013).  This  genus  is

distributed mainly in Eurasia, with some species in North America and North Africa (Warwick et al.,

2006). Notably, more than a hundred species have been described in the Mediterranean region (Greuter

et al., 1986) with particular abundance in the Iberian Peninsula, where twenty-one (Polatschek, 1979;

Polatschek,  2014)  or  twenty-three  (Nieto-Feliner,  1993;  Mateo  et  al.,  1998)  species  have  been

described. Most Iberian  Erysimum species have yellow flowers, but six have purple corollas (Nieto-

Feliner, 1993; Gómez et al., 2015b). Interestingly, previous studies suggested that some purple species

may  have  a  recent,  hybrid,  and  allopolyploid  origin  (Nieto-Feliner,  1992,  Nieto-Feliner,  1993;

Abdelaziz  et  al.,  2014;  Gómez  et  al.  2014).  A history  of  hybridization  could  further  suggest  the

possibility  that  the  purple  flower  color  has  been  transferred  across  the  Iberian  clade  through

hybridization and then maintained by natural selection. This scenario would indicate that introgression

and polyploidization are intertwined in this group and might have contributed to the adaptive evolution

of Erysimum spp.

Here we studied signals of hybridization across six species of Erysimum (E. mediohispanicum,

E. nevadense,  E. fitzii,  E. popovii,  E. baeticum,  E. bastetanum) that inhabit the Baetic Mountains, an

important and dynamic glacial refugium (Médail and Diadema, 2009). The evolution of several plant

species has been hypothesized to have been affected by speciation and secondary contacts in this region

(Médail and Diadema, 2009; Nieto-Feliner, 2011). The repeated expansion and contraction of ranges

and  the  subsequent  cycles  of  sympatry  and  isolation  might  have  created  conditions  for  extensive

hybridization,  introgression,  and  allopolyploid  formation.  This  species  group  appears  to  have

differentiated relatively rapidly within the last 2Myr (Osuna-Mascaró et al., 2021). Previous authors

have  hypothesized  that  this  rapid  evolution  has  been  strongly  affected  by  polyploidization  and
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hybridization, as this group spans several ploidy levels, and some species pairs have been reported to

produce fertile hybrids (Abdelaziz et al.,  2014; Abdelaziz et al.,  2021). Species of this group show

characteristics that may facilitate ongoing introgression, such as growing in sympatry in some locations

and having a generalist pollination system that renders gene flow among different species possible.

The main goal of this study is to disentangle the history of hybridization for the  Erysimum

species complex in the Baetic Mountains. Specifically, we considered both whole-genome effects of

hybridization  (i.e.,  the  interplay  between  hybridization  and  polyploidization)  and local,  potentially

important, introgression of specific genomic regions. Moreover, we also quantified prezygotic barriers

among extant taxa to estimate the likelihood of gene flow among them. We test the hypotheses that a)

Genomes of this species complex must exhibit signals of multiple hybridization events; b) Some taxa

might be allopolyploid, and c) If purple corollas are the product of introgression, hybridization and

gene-flow should be detectable, and prezygotic barriers may be weak between (at least some) yellow

and purple taxa.

MATERIAL AND METHODS

Plant samples

We studied six species in the genus Erysimum collected in the Baetic Mountains, South of Spain (Table

1;  Figure 1).  Specifically,  we sampled three different  populations  for  E. mediohispanicum (yellow

corollas; Em21, Em39, Em71), E. nevadense (yellow corollas; En05, En10, En12), E. popovii (purple

corollas; Ep16, Ep20, Ep27),  E. bastetanum (purple corollas; Ebt01, Ebt12, Ebt13), and E. baeticum

(purple corollas; Ebb07, Ebb10, Ebb12), and one population for E. fitzii (yellow corollas; Ef01). Some

of these species appear in sympatry in some of the sampled localities (e.g.,  E. popovii, Ep20, and E.

mediohispanicum, Em39; Table 1). Additionally, we sampled one population of E. lagascae (Ela07), an

allopatric  diploid  species  with  purple  corollas  inhabiting  Central  Spain,  posited  as  one  potential

parental species of the Baetic Mountain species studied here (Nieto-Feliner, 1993). We collected fully
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developed flower buds for transcriptomic analyses (five buds from an individual per population) and

leaves for flow cytometry (6-10 individuals per population). 

Flow cytometry analyses

We used flow cytometry to assess genome size and estimate DNA ploidy levels. Nuclei were isolated

from fresh leaf tissues by simultaneously chopping with a razor blade 0.5 cm2 of leaf and 0.5 cm2 of

an internal reference standard (Galbraith et al., 1983). We used Solanum lycopersicum L. 'Stupické'

with 2C = 1.96 pg or Raphanus sativus L. with 2C = 1.11 pg as internal reference standards (Doležel et

al., 1992). The nuclei extraction was made on a Petri dish containing 1 ml of WPB buffer (Loureiro et

al., 2007). Then, the nuclear suspension was filtered using a 50 µm nylon mesh, and DNA was stained

with 50 µg ml-1 of propidium iodide (PI, Fluka, Buchs, Switzerland). Additionally, 50 µg ml-1 of

RNAse (Fluka,  Buchs,  Switzerland)  was added to  degrade  dsRNA.  After  a  5  min  incubation,  the

samples were analyzed in a Sysmex CyFlow Space flow cytometer (532 nm green solid-state laser,

operating at 30 mW). Results were acquired using FloMax software v2.4d (Partec GmbH, Münster,

Germany) in the form of four graphics: histogram of fluorescence pulse integral in linear scale (FL);

forward light scatter (FS) vs. side light scatter (SS), both in logarithmic (log) scale; FL vs. time; and FL

vs. SS in log scale. The FL histogram was gated using a polygonal region defined in the FL vs. SS

histogram to avoid debris signals. At least 5,000 particles were analyzed per sample. Only CV values of

2C peak of each sample below 5% were accepted; otherwise, a new sample was prepared and analyzed

until  quality  standards  were achieved (Greilhuber  et  al.,  2007).  In  a  few cases,  samples  produced

histograms of poorer quality even after repetition due to the presence of cytosolic compounds. Thus, it

was impossible to estimate ploidy level and/or genome size for some samples (Table 2). 

We obtained the genome size in mass units (2C in pg; sensu Greilhuber et al., 2005) using the

formula: sample 2C nuclear DNA content (pg) = (sample G1 peak mean/reference standard G1 peak

mean)*  genome size  of  the  reference.  The  ploidy  levels  were  inferred  for  each  sample  based  on

chromosome counts and genome size estimates available for the genus and species.
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RNA extraction and sequencing

Details of the sampling, RNA extraction, and sequencing appear in Osuna-Mascaró et al. (2021). In

summary, we stored collected flower buds of each individual in liquid nitrogen until RNA extraction.

Floral buds were ground with a mortar and a pestle in liquid nitrogen. We used the Qiagen RNeasy

Plant  Mini  Kit  following  the  manufacturer's  protocol  to  isolate  total  RNA from 17  samples  (one

individual per population; three populations of  E. baeticum,  E. bastetanum,  E. mediohispanicum,  E.

nevadense, and  E. popovii, and one population of  E. fitzii  and  E. lagascae).  Then, we checked the

quality and quantity of the RNA using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific,

Wilmington, Delaware, United States) and agarose gel electrophoresis. Library preparation and RNA

sequencing were conducted at Macrogen Inc. (Seoul, Korea). Before sequencing, the quality of the

RNA was analyzed again with the Agilent 2100 Bioanalyzer system (Agilent Technologies Inc., Santa

Clara,  California,  United States),  and an rRNA-depletion procedure with Ribo-Zero (Illumina,  San

Diego, California, United States) was used to enrich mRNA content and to avoid the sequencing of

rRNA.  Library  preparation  was  performed  using  the  TruSeq  Stranded  Total  RNA  LT  Sample

Preparation Kit (Plant). Sequencing of the 17 libraries (one per individual) was carried out using the

Hiseq 3000-4000 sequencing protocol and TruSeq 3000-4000 SBS Kit v 3 reagent, following a paired-

end 150 bp strategy on the Illumina HiSeq 4000 platform. A summary of sequencing statistics is shown

in Table S1 (Supporting Information).

Transcriptome assembly and annotation

Details of the read quality control, trimming, and de novo transcriptome assembly and annotation can

be found in Osuna-Mascaró et al. (2021). Briefly, we used FastQC v0.11.5 (Andrews, 2010) to analyze

the quality of each library's raw reads. Then, we trimmed the adapters in the raw reads using cutadapt

v1.15 (Martin, 2011), and we quality-filtered the reads using Sickle v1.33 (Joshi and Fass, 2011). After

trimming,  we  used  FastQC v0.11.5  (Andrews,  2010)  again  to  verify  the  trimming  efficiency.  To

assemble the resulting high-quality, cleaned reads into contigs, we followed a de novo approach using
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Trinity v 2.8.4 (Grabherr et al. 2011). Before assembly, each library was normalized in silico to validate

and reduce the number of reads using the "insilico_read_normalization.pl" function in Trinity (Haas et

al., 2013). Then we used the parameter 'min_kmer_cov 2' to eliminate single occurrence k-mers heavily

enriched in sequencing errors, following Haas et al.  (2013). Candidate open reading frames (ORF)

within transcript sequences were predicted and translated using TransDecoder v 5.2.0 (Haas et  al.,

2013). We performed functional annotation of Trinity transcripts with ORFs using Trinotate v 3.0.1

(Haas, 2015). Sequences were searched against UniProt (UniProt Consortium, 2014), using SwissProt

databases (Bairoch and Apweiler, 2000) (with BLASTX and BLASTP searching and an e-value cutoff

of 10-5). We also used the Pfam database (Bateman et al., 2004) to annotate protein domains for each

predicted protein sequence.  Transcripts  were filtered through the eggnog (Jensen et  al.,  2007),  GO

(Gene Ontology Consortium, 2004), and Kegg (Kanehisa and Goto, 2000) annotation databases. 

Orthology inference

To reduce redundancy, we clustered the translated sequences using cd-hit v 4.6 (Li and Godzik, 2006),

following the steps of the pipeline described in Yang and Smith (2014). For the inference of orthologs,

we excluded UTRs and non-coding transcripts, using only coding DNA sequences (CDS) in order to

avoid the inclusion of sequencing errors (Yang and Smith, 2014). We identified ortholog genes using

the OrthoFinder v 2.3.3 pipeline (Emms and Kelly, 2015). In brief, this pipeline first made a BLASTP

analysis  with  the  protein  sequences  as  input  for  searching  the  orthogroups  (a  set  of  potentially

orthologs  protein-coding genes  derived from a single gene in  the last  common ancestor  of all  the

species sampled), then clustered and aligned the orthologous sequences using MAFFT v 7.450 (Katoh

and  Standley,  2013)  with  default  parameters.  Finally,  we  obtained  the  maximum-likelihood

phylogenetic gene trees for all orthogroups using IQ-Tree v 1.6.1 (Nguyen et al., 2014). Then, each

orthogroup that contained sequenced from all sampled species was used to infer a species tree using

STAG v 1.0.0 (Emms and Kelly, 2019). Then, we used DLCpar v 1.1 (Wu et al., 2014) to reconcile the

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.11.03.467125doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467125
http://creativecommons.org/licenses/by-nc-nd/4.0/


species tree with the gene trees, considering gene duplication, losses, and incomplete lineage sorting

(ILS) as potential causes of discordance among trees.

Phylogenetic reconstruction

We obtained a  coalescent  species  tree  using  ASTRAL v 5.6.3  (Mirarab  et  al.,  2014)  with default

parameters. This method reconstructs a species tree from unrooted gene tree topologies. We used the

gene trees previously obtained by maximum likelihood by using IQ-Tree v 1.6.1 as input. We used

FigTree  v 1.4.0 (Rambaut  and Drummond,  2012) to  visualize and edit  the species  tree.  Then,  we

compared the alternative tree topologies with the phylogeny obtained from whole chloroplast genome

analyses  for  the  same  species  (presented  in  Osuna-Mascaró  et  al.,  2021)  using  the  Shimodaira-

Hasegawa Test  (SH-Test;  Shimodaira  and Hasegawa,  1999) from the R package phangorn v 2.5.5

(Schliep, 2011). Both phylogenies were also compared visually, plotting them as mirror images with

the function cophyloplot, using the R package ape v 5.4 (Paradis et al. 2004).

Variant calling

We first ran a variant calling analysis, using the E. lagascae transcriptome as a reference. We indexed

the E. lagascae transcriptome using BWA v 0.7.17 (Li and Durbin, 2009) to create a reference and then

mapped all the trimmed raw reads to it using the BWA v 0.7.17 "mem" option. We used SAMtools v

1.7 (Li et al., 2009) to convert and sort the alignment files. We then called SNPs using the SAMtools v

1.7 "mpileup" command. Lastly, we used bcftools v 1.9 to filter the SNPs (Narasimhan et al., 2016),

running the SAMtools v 1.7 Perl script "vcfutils.pl VarFilter" with default parameters to filter down the

candidate variants and to eliminate false positives.

Discriminant Analysis of Principal Components (DAPC)

We conducted a Discriminant Analysis of Principal Components (DAPC; Jombart et al., 2010) of the

SNP data to group the different genotypes avoiding any prior subjective bias using the R package

adegenet  v  2.1.3  (Jombart  and Ahmed,  2011).  DAPC is  a  multivariate  method  that  identifies  and

describes clusters of genetically related individuals from large datasets, providing a measure of the
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optimal number of genetic clusters (K) across a range of K values by using the Bayesian Information

Criterion (BIC). We set a range of K values from two to seven since K=7 is the number of different

species in our dataset. The existence of significant hybridization and introgression would result in K <

7. To identify the optimal number of K, we selected the model with the lowest BIC.

Phylogenetic inference of introgression

As a first step to detect introgression events between species pairs, we computed phylogenetic species

networks. This approach provides a graphical extension of the phylogenetic tree model, representing

the gene flow by edges connecting the OTUS that are likely to be linked by introgression. We used the

software PhyloNet v 3.6.9 (Than et al.,  2008; Wen et al.,  2018), which implements a phylogenetic

network method based on the frequencies of rooted trees accounting for incomplete lineage sorting

(ILS). To generate the input for PhyloNet, we first ultrametricized the trees obtained previously with

IQ-Tree v 1.6.1,  using the "nnls"  method in the "force.ultrametric"  function within the R package

phytools v 0.6-99 (Revell, 2012). Due to computational limitations, we inferred the species networks

using a maximum pseudo-likelihood method (MPL) (Yu and Nakhleh, 2015). We performed the search

five times to avoid getting stuck at local optima. We estimated optimal networks among an optimal

computational range of 0 to 15 introgression events, determining the most likely network based on

Akaike's Information Criterion (AIC; Bozdogan, 1987) with the generic function for AIC in R package

stats  v  3.6.1.  As  AIC may not  provide  precise  values  when using  pseudo-likelihood phylogenetic

networks (Cao et al., 2019), we also estimated the more optimal network by slope heuristic of log-

likelihood values. The optimal network was then visualized with Dendroscope v 3.5.10 (Huson and

Scornavacca, 2019).

ABBA-BABA statistic

To assess gene flow between species,  we calculated D-statistics,  also known as the ABBA-BABA

statistic (Durand et al., 2011). To evaluate introgression among the seven species, we used the software

Dsuite v 0.1 (Malinsky, 2019), which allows the assessment of gene flow across large datasets and
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directly from a variant call format (VCF) file. This algorithm computes the D statistic by considering

multiple groups of four populations: P1, P2, P3, and O, grouped in asymmetric trees of the form (((P1,

P2), P3), O). The site patterns are ordered such that the pattern BBAA refers to P1 and P2 sharing the

derived allele (B-derived allele, A-ancestral allele), ABBA to P2 and P3 sharing the derived allele, and

BABA to P1 and P3 sharing the derived allele. The ABBA and BABA patterns are expected to occur

with equal frequencies, assuming no gene flow (null hypothesis), while a significant deviation from

that suggests possible introgression. To assess whether D is significantly different from zero, D-suite

uses  a  standard  block-jackknife  procedure  (Green  et  al.,  2010;  Durand  et  al.,  2011),  obtaining

approximately normally distributed standard errors. As recommended by Malinsky (2019), we used a

conservative approach estimating the statistic Dmin, which gives the lowest D-statistic value in a given

trio. We used the ruby script "plot_d.rb" to plot into a heatmap the introgression among all the pairs of

samples. To complement these analyses, we computed the Fbranch statistic implemented in Dsuite v

0.1 (Mallinsky et al., 2018, Mallinsky et al., 2019). The statistic allows the identification of gene flow

events within specific internal branches of a phylogeny. Thus, evaluating the excess sharing of alleles

between one species and the descendant or ancestral species, helping to understand when the gene flow

happened. We used the whole chloroplast genomes phylogeny from Osuna-Mascaró et al. (2021) in

Newick format to establish a reference phylogeny and specify which species could be more accurately

treated as sister species (i.e., as P1 and P2) while always using E. lagascae as an outgroup.

Pollen tube growth

The  existence  of  prezygotic  barriers  can  fully  impede  interspecific  hybridization.  Therefore,  the

existence of such barriers may indicate that gene flow across a given set of species is highly unlikely,

while the lack of such barriers may indicate plausible hybridization and introgression. To explore the

existence of prezygotic barriers, we carried out a preliminary experiment on the growth of pollen tubes

on a  reduced set  of  co-occurring  species  (Table  1).  We collected  20 individual  plants  of  each  E.

mediohispanicum,  E. bastetanum, and  E. popovii  from natural populations. We grew the plants in a
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common garden (University of Granada facilities) and moved them into a greenhouse before flowering

to  exclude  pollinators.  When  the  flowers  opened,  we  performed  hand-pollination  experiments  by

tipping the anther with a small stick to remove the pollen and placing it on the stigma of a flower from

different species previously emasculated (hybrid crosses) or of a flower from the same species but

different populations previously emasculated (intra-specific crosses). Moreover, we emasculated some

flowers and hand-pollinated them with their own pollen (forced selfing crosses), and some flowers

were not manipulated and left for spontaneous self-pollination (spontaneous selfing crosses). 

We collected the pistils after 72 hours and preserved them in ethanol at 4ºC until staining of

pollen tubes, following the Mori et al. (2006) protocol with minor modifications. In brief, each pistil

was cleaned in 70% EtOH for ten minutes and then moved to 50% EtOH, 30% EtOH, and finally

distilled water. We softened the samples by placing them into a small petri dish of 8 M NaOH for one

hour at room temperature (as recommended by Kearns and Inouye, 1993). Then, we transferred the

pistils to distilled water for ten minutes, and afterward, the stigmas were incubated with 0.1 % aniline

blue in phosphate buffer (pH 8.3) for two hours. The final slide preparations were examined under a

fluorescence microscope with blue light (410 nm) to observe and measure pollen tube development.

RESULTS

Ploidy levels

Flow cytometry revealed a wide variation in genome size and, therefore, in DNA ploidy levels across

but also within species (Table 2). We found that all samples of E. fitzii and E. nevadense were diploid.

The  other  species  with  yellow  corollas,  E.  mediohispanicum,  also  appeared  to  be  predominantly

diploid, although the Em71 population deviated from this pattern being tetraploid. The genome size of

E. lasgacae also corresponded to that of a diploid, while the other purple corolla species showed ploidy

levels higher than diploidy (Table 2). Moreover, ploidy levels differed across populations in two of

these species. Populations of E. bastetanum varied between 4x and 8x, while in E. popovii, the range
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was even greater, from 4x to 10x. In three cases (Ebb12, En05, and En10; Table 2), it was not possible

to establish the ploidy level of the samples, and we used those reported in Blanca et al. (1992).

Transcriptome assembly and orthology inference

The sequencing results and the corresponding summary statistics of the assembled transcriptomes can

be found in Osuna-Mascaró et al. (2021). In summary, we obtained between 104K and 382K different

Trinity  transcripts,  producing between 66K and 235K Trinity  isogenes.  The total  assembled bases

ranged from 92 Mbp (in the Em21 population of E. mediohispanicum) to 319 Mbp (in En10 population

of E. nevadense). The number of annotated unigenes ranged between 71,606 (E. nevadense, En12) and

197,069 (E. baeticum, Ebb10); mean value 146,314.35. The highest proportion of annotated unigenes

was  obtained  using  BLASTX  to  search  against  the  SwissProt  reference  database.  Details  of  the

annotated unigenes using different protein databases can be found in Osuna-Mascaró et  al.  (2021).

OrthoFinder  assigned  1,519,064  protein  gene  sequences  (96.4% of  total)  to  92,984  gene  families

(orthogroups)  (Table  S2).  Among them,  16,941 orthogroups  were  shared  by all  species,  and their

corresponding gene trees were used for further analyses. 

Phylogenetic trees and population clustering

We inferred a coalescence tree using the 16,941 maximum likelihood gene trees obtained with IQ-Tree

as input for ASTRAL (Figures 2 and S1). This species tree was nearly fully resolved with high support,

having only four nodes with low quartet scores results (posterior probabilities for these nodes: 0.78,

0.77, 0.70, and 0.53; see Figure S1). In this tree, rooted with  E. lagascae, the 4× population of  E.

mediohispanicum (yellow corollas; Em71) appeared as the first branching OTU. Three clades, although

with low supports, were evident. A clade formed by E. bastetanum and E. baeticum, both species were

having purple corollas; another clade including E. fitzii (yellow corollas) and the three populations of

E. popovii (purple corollas); and the last clade including the populations of  E. nevadense and the 2x

populations of E. mediohispanicum, both species with yellow corolla. Although there is some species

clustering, not all species appear to be monophyletic, supporting a history of hybridization. Moreover,
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when comparing the species tree with the whole chloroplast genomes phylogeny (Figure 2), we find

clear cytonuclear discordances resulting in a significant SH test result (Diff -ln L= 345426.4, p-value <

0.01). This lack of congruence among both phylogenies also supports the hybridization hypothesis.

 The discriminant analysis revealed K=4 and K=5 as the most likely number of genetic clusters

(Figure 3), both with very similar BIC values (K=4, BIC= 189.99; K=5, BIC= 188.99). The clusters

corresponding to K=4 produced the same clusters that appeared in the coalescence tree (Figure 2).

However,  the  clusters  corresponding to  K=5 included  three  monospecific  groups  (for  E.  lagascae

-purple  corollas-,  E.  fitzii  -yellow corollas-,  and  E.  popovii -purple  corollas-),  one  for  the  diploid

species with yellow corollas (the three populations of E. nevadense and the diploid populations of E.

mediohispanicum),  and  the  last  including  all  the  populations  of  E.  baeticum (purple  corollas),  E.

bastetanum (purple  corollas),  E.  popovii  (purple  corollas)  and  Em71,  the  4x  population  of  E.

mediohispanicum (yellow corollas). 

Analysis of introgression

The network with 13 reticulation instances appeared as the most reliable based on the AIC values for

the log-likelihood of the networks (Table S3). The estimates of slope heuristic of log-likelihood values

also supported the network with 13 reticulation instances as the most reliable network estimated. This

network shows frequent hybridization events in the genealogy of these populations involving yellow

and purple species (Figure 4), as indicated by the edges connecting tree branches between different

populations and species. Notably, this network includes edges connecting non-terminal branches (see

Figure 4),  which indicates  reticulations  with past  extinct  taxa (i.e.,  “ghost  species”)  or incomplete

sampled taxa. 

The  ABBA-BABA analyses  support  this  scenario  of  frequent  hybridization,  even  using  a

conservative approach (D-min). We summarized the tested topologies and the inferred D-statistics with

corrected  p-values  for  all  triplet  combinations  in  Table  S4  and  Figure  S2.  The  highest  signal  of

introgression occurred between E. fitzii (yellow corollas) and E. baeticum (purple corollas; populations
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Ebb12 and Ebb10) and  E. popovii  (purple corollas; Ep16); and between  E. popovii (purple corollas;

Ep16) and  E. bastetanum (purple corollas; Ebt12) and  E. baeticum (purple corollas; Ebb07, Ebb10,

Ebb12).  There was also evidence of interspecific  gene flow as  manifested by the fbranch statistic

(Figure S3) that identifies gene flow events into specific internal branches of the phylogeny while

accounting for potential false-positive results due to correlated introgression signatures among closely-

related species. Specifically, we found the highest signal of gene flow between E. bastetanum (purple

corollas;  Ebt12)  and  E.  mediohispanicum (yellow  corollas;  Em71,  Em21),  E.  nevadense (yellow

corollas;  En12,  En05),  and  E.  baeticum (purple  corollas;  Ebb07,  Ebb10);  between  E.  bastetanum

(purple  corollas;  Ebt13)  and E.  mediohispanicum  (yellow corollas;  Em71)  and  E.  popovii  (purple

corollas;  Ep20);  between  E.  bastetanum (purple  corollas;  Ebt01)  and  E.  mediohispanicum  (yellow

corollas; Em21, Em39) and E. nevadense (yellow corollas; En12). In addition, we have detected other

gene flow events with ancestral or non-sampled taxa (Figure S3). 

Pollen tube growth

A total of 103 preparations of Erysimum pistils were examined: 52 from hybrid crosses, 24 from forced

selfing crosses, 16 from spontaneous selfing crosses, and 11 from intra-specific crosses (Table S5). Our

results showed full growth of pollen tubes (i.e., reaching the ovary) in 63.33 % of intra-specific crosses,

51.92 % of hybrid crosses (2= 0.50, p-value = 0.513 compared with intra-specific crosses), and only in

29,16 % of forced selfing crosses (2= 3.73, p-value= 0.074), and in 25,16 % of spontaneous selfing

crosses (2=  4.03, p-value=0.057). Although these last values were not significant, when selfing classes

were pooled, it showed a significant reduction in the growth of pollen tubes (2= 4.93, p-value= 0.039)

(Figure S4). Cases in which pollen tubes grew but did not reach the ovary were treated as non-growing.

In these cases,  we could not estimate whether tube growth had completely stopped or if it was ongoing

but developed too slowly to reach the ovary during the duration of the experiment. 
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DISCUSSION

Our results suggest that the Erysimum species studied here have a strong signature of hybridization and

introgression in their genomes. This result is supported by the pollen tube growth experiments that

showed that pollen tubes could grow all the way to the ovary in some hybrid crosses, indicating very

weak or non-existent prezygotic barriers.  Moreover,  we found that species with purple flowers are

polyploid and have a strong signature of introgression, suggesting an allopolyploid origin. We also

found a hybridization signature in the (mostly diploid) yellow species, indicating that hybridization

occurred across both colors and ploidy levels. 

Several  phylogenetic  reconstructions  have  been  performed  for  western  Mediterranean

Erysimum species (e.g., Abdelaziz et al. 2014; Gómez et al. (2014, 2015); Züst et al. (2020)) that have

used different strategies (several populations per species or only one representative per species; several

nuclear and cytoplasmic sequences or NGS transcriptomic data). Abdelaziz et al.  (2014) found that

populations  of  E.  mediohispanicum and  E.  bastetanum,  species  analyzed  here,  did  not  appear  as

monophyletic  (with  some populations  placed within  other  branches  of  the  phylogeny),  which  was

indicative  that  introgression  probably  produced  important  reticulation  at  the  population  level.  Our

analyses support this hypothesis. The reticulate nature of these phylogenies imposes some caution in

interpreting phylogenies based on only a few nuclear or cytoplasmic sequences, as suggested by Chan

& Levin (2005). In these cases, major divisions may reflect the reality of some old phylogenetic splits.

However,  it  will  be challenging for  more recent  speciation events to  obtain a  clear  picture of  the

phylogeny without interrogating complete genomes or transcriptomes.

Overall, our results support a hybrid origin for the purple polyploid Eysimum Iberian species, as

suggested in previous studies (Nieto-Feliner, 1993; Abdelaziz et al., 2014; Gómez et al., 2015b; Osuna-

Mascaró, 2020). In particular, we found support for E. popovii (purple corollas and polyploid) and E.

fitzii (yellow corollas and diploid) as sister species. Also, the genome of E. popovii exhibited signatures

of a hybridization process in which E. fitzii may have been involved. The possible hybrid origin of E.
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popovii with  E. fitzii  as a potential parental taxon was previously proposed by Nieto-Feliner (1993)

based on morphology. Similarly, a hybrid origin of E. baeticum  (purple corollas and polyploid) had

been previously suggested, in this case with E. nevadense (yellow corollas and diploid) implicated as a

potential parent (Nieto-Feliner, 1992). Our results showed that these two species appear closely related,

and E. baeticum may have had an introgression signature of E. nevadense. Moreover, our results also

suggested a complex scenario for E. bastetanum (purple corollas and polyploid), which appears closely

related to E. baeticum (purple corollas and polyploid). In fact,  E. bastetanum has been considered a

subspecies  of E.  baeticum until  recently  (Lorite  et  al.,  2014).  Therefore,  the  general  pattern  that

emerged from our results is that these purple species are polyploids of hybrid origin, descending from

crosses between an unidentified parent and some diploid, often yellow taxon. 

However,  our  results  also suggested  a  complex evolutionary  history  for  the  mostly  diploid

yellow  species.  The  contributing  lineages  also  often  involve  unidentified  taxa.  This  might  be

attributable to insufficient sampling,  as we did not include some  Erysimum species (E. rondae,  E.

myriophyllum, -yellow corollas-, and  E. cazorlense -purple) that also inhabit the Baetic Mountains,

although with a limited distribution (Nieto-Feliner, 1993). At this point, it is impossible to establish

whether these taxa may have acted as a source of introgression. In any case, our results show that

hybridization  and  introgression  are  major  contributors  to  the  evolutionary  history  of  this  species

complex, deserving further research.

Interestingly, we did not find a consistent, predictable pattern of hybridization for most species.

Populations of the same species showed differences in their hybridization history, as shown by the

ABBA-BABA test  (which  detected  multiple  and  diverse  introgression  events)  and  the  PhyloNet

reconstructions (which yielded a tree with 13 reticulations as the most optimal network). In the same

vein, the DAPC results did not support a scenario with populations clustered by species. Our results are

similar to those of previous studies describing asymmetric hybridization patterns as a consequence of

differences in ecological pressures across populations and geographical areas (Payton et al., 2019; Sujii
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et al., 2019; Wang et al., 2019). At this stage, we cannot unambiguously identify any ecological factor

behind the asymmetries we detected. However, we did observe variation in pollinators' preferences and

flowering time across populations, which might lead to local differences in gene-flow patterns. Thus, to

fully understand this asymmetry in hybridization and why some populations have more introgression

signatures than others, future studies considering different ecological pressures for these species and

including pollinator censures of wild populations are required. 

Evidence of hybridization between at least some of these species has been reported previously

(Abdelaziz 2014). Thus, E. mediohispanicum and E. nevadense show a hybrid zone in a sector of the

Spanish Sierra Nevada (Abdelaziz et  al.,  2021). Pollinators do not appear to constitute strong pre-

pollinating barriers since all of these species are extreme generalists and share most pollinators (Gómez

et al. 2015b). Moreover, we have found that prezygotic, post-pollination barriers may not be effective

since pollen tubes are often growing in hybrid crosses. Contemporary gene flow between different

cytotypes of  E. mediohispanicum seems negligible, as evidenced by an almost complete absence of

triploids and other minority cytotypes in the contact zone between tetraploid and diploid populations of

this species (Muñoz-Pajares et al. 2018). Historical dynamics of genetic isolation and sympatry might

have also played a role (Albaladejo and Aparicio, 2007; Rifkin et al.,  2019; Zielinski et al.,  2019).

These  Erysimum species are located in a well-known glacial refugium (Médail and Diadema, 2009;

Hughes and Woodward, 2017), and thus, the isolation and then re-establishment of gene flow (i.e.,

secondary contact zones) among populations of different species may have favored locally specific

hybridization patterns (Coyne, 2004; Harrison and Larson, 2014; Arnold, 2015). A better knowledge of

the  historical  dynamics  of  species  and  populations  and  past  ranges  overlap  is  required  to  fully

understand the genomic pattern of divergence between closely related species. For instance, combining

macroecological methods with niche models and phylogenetic approaches could clarify the opportunity

for hybridization through evolutionary time (Folk et al., 2018; Aguirre-Liguori et al., 2021). 
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Furthermore, we detected signatures of ghost introgression, implying that ancestral species have

influenced the hybridization history of these  Erysimum species.  This result  was first  evidenced by

cytonuclear  discordance,  which  might  be  due  to  past  organellar  introgression  from extinct  species

(Huang et  al.,  2014;  Folk et  al.,  2017;  Lee‐Yaw et  al.,  2019).  We also found a clear  signature of

ancestral introgression in the phylogenetic species network, in which some of the reticulations appeared

from introgression involving "ghost" taxa. Similarly, the fbranch statistic identified gene flow events in

internal branches that concurred with introgression with ghost species. Specifically, we observed that

some ancestral form of E. popovii (purple corollas and polyploid) could have been related to E. fitzii

(yellow corollas and polyploid). Also, we detected evidence of gene flow between an ancestor of  E.

mediohispanicum (yellow corollas and diploid; Em21), E. bastetanum (purple corollas and polyploid),

and  E. baeticum  (purple corollas and polyploid). Moreover, the results showed that many past gene

flow events could have occurred between  E. baeticum (purple corollas and polyploid),  E. nevadense

(yellow corollas and diploid),  and  E. bastetanum (purple corollas and polyploid).  In light of these

results, it seems that some unidentified ancestral species played a role as introgression sources for both

the purple and yellow species. However, as previously noticed, we include only a subset of the Iberian

Erysimum species in this study; accordingly, we may be mistaking the signal of the unsampled species

for  that  of  ancestral  taxa.  Further  research  about  the  ghost  introgression's  influence  on  Erysimum

evolution, including all the Iberian species and high‐quality genome assemblies, would be required to

understand the hybridization history thoroughly. 

CONCLUSIONS

Our results indicate that complex evolutionary dynamics have shaped present-day Iberian Erysimum 

diversity. The genomes of extant taxa are the product of multiple polyploidizations, hybridization, and 

introgression events. Understanding these multi-faceted processes and their interplay is crucial to 

characterize the evolution of Erysimum spp. and probably, of angiosperms in general. Although the 

evolution of the Iberian Erysimum might have been particularly dynamic, this group could be 
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representative of the evolutionary response of multi-species complexes to drastic environmental 

fluctuations. Further research that incorporates a wider taxonomic sample, whole-genome sequences, 

and complex demographic and evolutionary statistical methods is needed to precisely characterize the 

patterns described here.
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Species Population Location Elevation Geographical coordinates Flower color Sympatry with

E. baeticum Ebb07 Sierra Nevada, Almería, Spain 2128 37°05′46″N, 3°01′01″W purple

Ebb10 Sierra Nevada, Almería, Spain 2140 37°05′32″N, 3°00′40″W purple En12

Ebb12 Sierra Nevada, Almería, Spain 2264 37°05′51″N, 2°58′06″W purple

E. bastetanum Ebt01 Sierra de Baza, Granada, Spain 1990 37°22′52″N, 2°51′49″W purple

Ebt12 Sierra de María, Almería, Spain 1528 37°41′03″N, 2°10′51″W purple

Ebt13 Sierra Jureña, Granada, Spain 1352 37°57′10″N, 2°29′24″W purple Em71

E. fitzii Ef01 Sierra de la Pandera, Jaén, Spain 1804 37°37′56″N, 3°46′46″W yellow

E. lagascae Ela07 Sierra de San Vicente, Toledo, Spain 516 44°05′49″N, 4°40′40″W purple

E. mediohispanicum Em21 Sierra Nevada, Granada, Spain 1723 37°08′04″N, 3°25′43″W yellow

Em39 Sierra de Huétor, Granada, Spain 1272 37°19′08″N, 3°33′11″W yellow Ep20

Em71 Sierra Jureña, Granada, Spain 1352 37°57′10″N, 2°29′24″W yellow Ebt13

E. nevadense En05 Sierra Nevada, Granada, Spain 2074 37°06′35″N, 3°01′32″W yellow

En10 Sierra Nevada, Granada, Spain 2321 37°06′37″N, 3°24′18″W yellow

En12 Sierra Nevada, Granada, Spain 2255 37°05′37″N, 2°56′19″W yellow Ebb10

E. popovii Ep16 Jabalcuz, Jaén, Spain 796 37°45′26″N, 3°51′02″W purple

Ep20 Sierra de Huétor, Granada, Spain 1272 37°19′08″N, 3°33′11″W purple Em39

Ep27 Llanos del Purche, Granada, Spain 1470 37°07′46″N, 3°28′48″W purple

Table 1. Population code, location, and details of sympatry status for all of the populations sampled.
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Species Population
DNA Ploidy level Genome size (2C, pg)

2n N Mean SD CV Min Max N

E. baeticum Ebb07 8x 5 2.08 0.08 3.85 1.93 2.17 2

Ebb10 8x 6 2.07 0.09 4.35 1.93 2.17 5

Ebb12 8x - - - - - - -

E. bastetanum Ebt01 4x 4 1.06 0.06 5.66 0.97 1.10 4

Ebt12 4x 2 1.06 0.12 11.32 0.97 1.15 2

Ebt13 8x 64 1.96 0.06 3.06 1.87 2.17 60

E. fitzii Ef01 2x 3 0.44 0.004 0.91 0.44 0.45 3

E. lagascae Ela07 2x 10 0.46 0.02 4.35 0.44 0.50 10

E. mediohispanicum Em21 2x 2 0.44 0.01 2.27 0.43 0.44 2

Em39 2x 21 0.46 0.02 4.35 0.43 0.49 19

Em71 4x 59 0.98 0.04 4.08 0.93 1.13 59

E. nevadense En05 2x - - - - - - -

En10 2x - - - - - - -

En12 2x 3 0.45 0.03 6.67 0.42 0.47 3

E. popovii Ep16 4x 3 0.98 0.02 2.041.86 0.95 1.00 3

Ep20 10x 15 2.49 0.06 2.416 2.40 2.60 10

Ep27 4x 39 0.96 0.04 4.17 0.92 1.05 9

Table 2. Genome size estimates and DNA ploidy levels obtained in populations of  Erysimum.  The

following data are given for each population and ploidy level: mean, the standard deviation of the mean

(SD), coefficient of variation (CV, %), minimum (Min) and maximum values (Max) of the holoploid

genome size (2C, pg) followed by sample size for genome size estimates (N); DNA ploidy level (2n)

and respective sample size (N) for ploidy estimates. DNA ploidy levels: 2x, diploid; 4x, tetraploid; 8x,

octoploid; 10x, decaploid. For Ebb12, En05, and En10 samples were not possible to estimate the ploidy

levels, and we have used the described in Blanca et al. (1992).
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List of figures

Figure 1. Map of the Iberian Peninsula showing the location of the sampled populations.

Figure 2. Cyto-nuclear discordance in Erysimum spp.. The phylogeny on the left was obtained using 

whole plastid genomes in Osuna-Mascaró et al. (2021). The phylogeny on the right is a representation 

of nuclear genome evolution and was generated from the 16,941 maximum likelihood gene trees 

computed using the SNP data described in the present paper (see text for details).

Figure 3. Membership probability plot showing the DAPC results representing the populations grouped

into predetermined different clusters.

Figure 4. Optimal species network. The graph represents a maximum pseudo-likelihood (MPL) tree 

with 13 reticulations computed using PhyloNet. These events are represented by edges connecting the 

tree branches between different individuals and indicate likely hybridization between different taxa. 

Note that in some instances, introgression appears to involved ancestral or extinct taxa (i.e., ghost 

species, dotted lines).
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Figure 1. Map of the Iberian Peninsula showing the location of the sampled populations. The insert 

shows a more detailed map of the Baetic mountains. Purple species are represented with purple 

symbols and yellow species are represented with yellow symbols. The populations Ebt13 – Em71, 

Ebb10 – En12, and Em39 – Ep27 represent population pairs located in sympatry.
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Figure 2. Cyto-nuclear discordance in  Erysimum spp.. The phylogeny on the left was obtained using

whole plastid genomes in Osuna-Mascaró et al. (2021). The phylogeny on the right is a representation

of  nuclear  genome evolution  and  was  generated  from the  16,941 maximum likelihood gene  trees

computed using the SNP data described in the present paper (see text for details). 
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Figure 3. Membership probability plot showing the DAPC results representing the populations grouped

into predetermined different clusters (ranging from K=2 to K=7, where each color represents a cluster).

The Bayesian analyses (BIC) revealed K = 5 as the most likely number of genetic clusters. 
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Figure 4. Optimal species network. The graph represents a maximum pseudo-likelihood (MPL) tree with 13 reticulations computed using

PhyloNet. These events are represented by edges connecting the tree branches between different individuals and indicate likely hybridization

between different taxa. Note that in some instances, introgression appears to involved ancestral or extinct taxa (i.e., ghost species, dotted

lines).

845

847

848

849

850

851

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.11.03.467125doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467125
http://creativecommons.org/licenses/by-nc-nd/4.0/

	INTRODUCTION
	MATERIAL AND METHODS
	RESULTS
	DISCUSSION
	CONCLUSIONS
	List of figures

