Nonproper Minimal Surfaces with Arbitrary Topology in H^3

Baris Coskunuzer

Koc University
Mathematics Department

20 June 2013
Basic Definitions

Let Σ be a surface in a Riemannian manifold M. We call Σ a **minimal surface** if the mean curvature is 0 everywhere.
Basic Definitions

Let Σ be a surface in a Riemannian manifold M. We call Σ a **minimal surface** if the mean curvature is 0 everywhere.

A **least area disk** is a disk which has the smallest area among the disks with the same boundary.

A **least area plane** is a plane such that any compact subdisk in the plane is a least area disk.
Basic Definitions

- Let Σ be a surface in a Riemannian manifold M. We call Σ a **minimal surface** if the mean curvature is 0 everywhere.

- A **least area disk** is a disk which has the smallest area among the disks with the same boundary.

 A **least area plane** is a plane such that any compact subdisk in the plane is a least area disk.

- A compact, orientable surface with boundary is called **absolutely area minimizing surface** if it has the smallest area among all orientable surfaces (with no topological restriction) with the same boundary.

 A noncompact, orientable surface is called **absolutely area minimizing surface** if any compact subsurface is an absolutely area minimizing surface.
Basic Definitions

Let \(\Sigma \) be a surface in a Riemannian manifold \(M \). We call \(\Sigma \) a **minimal surface** if the mean curvature is 0 everywhere.

A **least area disk** is a disk which has the smallest area among the disks with the same boundary.

A **least area plane** is a plane such that any compact subdisk in the plane is a least area disk.

A compact, orientable surface with boundary is called **absolutely area minimizing surface** if it has the smallest area among all orientable surfaces (with no topological restriction) with the same boundary.

A noncompact, orientable surface is called **absolutely area minimizing surface** if any compact subsurface is an absolutely area minimizing surface.

Any least area disk, and area minimizing surface is automatically a minimal surface. The main difference between least area disk and area minimizing surface is that there is no topological restriction on the surface.
Calabi-Yau Conjecture in \mathbb{R}^3

A complete, embedded minimal surface in \mathbb{R}^3 is proper.
Calabi-Yau Conjecture in \mathbb{R}^3

Calabi-Yau Conjecture

A complete, embedded minimal surface in \mathbb{R}^3 is proper.

- **Finite Topology case:** [Colding-Minicozzi-2004] The conjecture is true for minimal surfaces with finite genus & finite number of ends in \mathbb{R}^3.

Baris Coskunuzer
Nonproper Minimal Surfaces with Arbitrary Topology in \mathbb{H}^3
Calabi-Yau Conjecture

A complete, embedded minimal surface in \mathbb{R}^3 is proper.

- **Finite Topology case:** [Colding-Minicozzi-2004] The conjecture is true for minimal surfaces with finite genus & finite number of ends in \mathbb{R}^3.

- **Finite Genus & Countable ends:** [Meeks-Perez-Ros] The conjecture is true for minimal surfaces with finite genus & countable number of ends in \mathbb{R}^3.

Baris Coskunuzer

Nonproper Minimal Surfaces with Arbitrary Topology in H^3
Calabi-Yau Conjecture in \mathbb{R}^3

Calabi-Yau Conjecture
A complete, embedded minimal surface in \mathbb{R}^3 is proper.

- **Finite Topology case**: [Colding-Minicozzi-2004] The conjecture is true for minimal surfaces with finite genus & finite number of ends in \mathbb{R}^3.

- **Finite Genus & Countable ends**: [Meeks-Perez-Ros] The conjecture is true for minimal surfaces with finite genus & countable number of ends in \mathbb{R}^3.

- **Finite Genus case**: Finite genus & uncountable number of ends case is still open.
Calabi-Yau Conjecture in \mathbb{R}^3

A complete, embedded minimal surface in \mathbb{R}^3 is proper.

- **Finite Topology case:** [Colding-Minicozzi-2004] The conjecture is true for minimal surfaces with finite genus & finite number of ends in \mathbb{R}^3.

- **Finite Genus & Countable ends:** [Meeks-Perez-Ros] The conjecture is true for minimal surfaces with finite genus & countable number of ends in \mathbb{R}^3.

- **Finite Genus case:** Finite genus & uncountable number of ends case is still open.

- **Constant Mean Curvature case:** [Meeks-Tinaglia] The conjecture is true for H-surfaces in \mathbb{R}^3.

Baris Coskunuzer

Nonproper Minimal Surfaces with Arbitrary Topology in \mathbb{H}^3
If Σ is a complete, embedded minimal surface in H^3, then does Σ necessarily be properly embedded, like in R^3 case? The answer is No. There exists a complete, nonproper, minimal plane in H^3. [C–2011] Question Are there other complete nonproper, minimal surfaces in H^3?
Calabi-Yau Conjecture in H^3

H^3 case

If Σ is a complete, embedded minimal surface in H^3, then does Σ necessarily be properly embedded, like in R^3 case?

- The answer is No.
Calabi-Yau Conjecture in \mathbb{H}^3

\mathbb{H}^3 case

If Σ is a complete, embedded minimal surface in \mathbb{H}^3, then does Σ necessarily be properly embedded, like in \mathbb{R}^3 case?

- The answer is No.

- There exists a complete, nonproper, minimal plane in \mathbb{H}^3. [C–2011]
Calabi-Yau Conjecture in H^3

H^3 case

If Σ is a complete, embedded minimal surface in H^3, then does Σ necessarily be properly embedded, like in R^3 case?

- The answer is No.

- There exists a complete, nonproper, minimal plane in H^3. [C–2011]

Question

Are there other complete nonproper, minimal surfaces in H^3?
What type of surfaces can be minimally and completely embedded in H^3?

Finite Topology:

[Oliviera-Soret-1998] If S has finite genus and finite number of ends, then there exists a complete, proper minimal surface Σ in H^3 with $\Sigma \cong S$.

Arbitrary Topology:

[Martin-White-2012] For any S, there exists complete, proper area minimizing surface Σ in H^3 with $\Sigma \cong S$.

What type of surfaces can be nonproperly embedded in H^3 as a complete minimal surface?
Question

What type of surfaces can be minimally and completely embedded in \mathbb{H}^3?

Finite Topology: [Oliviera-Soret-1998] If S has finite genus and finite number of ends, then there exists a complete, proper minimal surface Σ in \mathbb{H}^3 with $\Sigma \simeq S$.

Baris Coskunuzer
Nonproper Minimal Surfaces with Arbitrary Topology in \mathbb{H}^3
What type of surfaces can be minimally and completely embedded in H^3?

- **Finite Topology:** [Oliviera-Soret-1998] If S has finite genus and finite number of ends, then there exists a complete, proper minimal surface Σ in H^3 with $\Sigma \sim S$.

- **Arbitrary Topology:** [Martin-White-2012] For any S, there exists complete, proper area minimizing surface Σ in H^3 with $\Sigma \sim S$.
Topography of the Complete Minimal Surfaces in H^3

Question

What type of surfaces can be minimally and completely embedded in H^3?

- **Finite Topology:** [Oliviera-Soret-1998] If S has finite genus and finite number of ends, then there exists a complete, proper minimal surface Σ in H^3 with $\Sigma \approx S$.

- **Arbitrary Topology:** [Martin-White-2012] For any S, there exists complete, proper area minimizing surface Σ in H^3 with $\Sigma \approx S$.

Question

What type of surfaces can be nonproperly embedded in H^3 as a complete minimal surface?
Main Result:

Theorem:

Any open, orientable surface S can be **nonproperly** embedded in H^3 as a complete minimal surface.
Main Result:

Theorem:

Any open, orientable surface S can be nonproperly embedded in H^3 as a complete minimal surface.

Outline: Let S be given.
Main Result:

Theorem:
Any open, orientable surface S can be nonproperly embedded in H^3 as a complete minimal surface.

Outline:
Let S be given.

- Let Σ_1 be a complete, minimal surface in H^3 with $\Sigma_1 \sim S$ [MW]
Main Result:

Theorem: Any open, orientable surface S can be nonproperly embedded in H^3 as a complete minimal surface.

Outline: Let S be given.

- Let Σ_1 be a complete, minimal surface in H^3 with $\Sigma_1 \sim S$ [MW]
- Let Σ_2 be the nonproper minimal plane in H^3. [C–]
Main Result:

Theorem:

Any open, orientable surface S can be nonproperly embedded in H^3 as a complete minimal surface.

Outline: Let S be given.

- Let Σ_1 be a complete, minimal surface in H^3 with $\Sigma_1 \sim S$ [MW]
- Let Σ_2 be the nonproper minimal plane in H^3. [C–]
- "Place" a bridge μ at infinity between Σ_1 and Σ_2, i.e. $\Sigma = \Sigma_1 \#_\mu \Sigma_2$
Main Result:

Theorem: Any open, orientable surface S can be **nonproperly** embedded in H^3 as a complete minimal surface.

Outline: Let S be given.

- Let Σ_1 be a complete, minimal surface in H^3 with $\Sigma_1 \sim S$ [MW]
- Let Σ_2 be the nonproper minimal plane in H^3. [C–]
- "Place" a bridge μ at infinity between Σ_1 and Σ_2, i.e. $\Sigma = \Sigma_1 \#_{\mu} \Sigma_2$
- Σ is both nonproper and $\Sigma \sim S$.

Baris Coskunuzer

Nonproper Minimal Surfaces with Arbitrary Topology in H^3
Step 1: Nonproper Minimal Plane in H^3

Outline:

- Take sequence of circles C_n in $S^2_{\infty}(H^3)$ limiting on equator.
- Each C_n bounds a geodesic plane P_n in H^3.
- Connect P_n and P_{n+1} with a bridge at infinity (alternating sides).
- Resulting plane Σ_1 is nonproperly embedded.

The construction is not trivial since we do not have the bridge principle at infinity in H^3 for stable minimal surfaces.
Step 1: Nonproper Minimal Plane in \mathbb{H}^3

Outline:

- Take sequence of circles C_n in $S^2_\infty(\mathbb{H}^3)$ limiting on equator.

Baris Coskunuzer
Nonproper Minimal Surfaces with Arbitrary Topology in \mathbb{H}^3
Step 1: Nonproper Minimal Plane in \mathbb{H}^3

Outline:

- Take sequence of circles C_n in $S_\infty^2(\mathbb{H}^3)$ limiting on equator.
- Each C_n bounds a geodesic plane P_n in \mathbb{H}^3
Step 1: Nonproper Minimal Plane in H^3

Outline:

- Take sequence of circles C_n in $S^2_\infty(H^3)$ limiting on equator.
- Each C_n bounds a geodesic plane P_n in H^3
- Connect P_n and P_{n+1} with a bridge at infinity (alternating sides).

The construction is not trivial since we do not have the bridge principle at infinity in H^3 for stable minimal surfaces.
Here, adding a bridge to the same boundary component of a surface would correspond to the pair of pants case. Adding two bridges successively to the same boundary component would correspond to the cylinder with a handle case. In particular, if C is the boundary component in ∂S_n and the annulus A is a small neighborhood of C in S_n, then $A \cup B_n$ would be a pair of pants, where B_n is the bridge attached to C. On the other hand, if B'_n is a smaller bridge connecting the different sides of the bridge B_n, let $B_n \cup B'_n$ be the handle H_n. Then $A \cup H_n$ would be a cylinder with a handle (See Figure 4).

Notice that by attaching a bridge B_n, we increase the number of boundary components of S_n by 1 and decrease the euler characteristic by 1, i.e.

![Figure 3](image_url)

Figure 3. In the simple exhaustion of S, S_1 is a disk, and $S_{n+1} - S_n$ contains a unique nonannular part, which is a pair of pants (e.g. $S_4 - S_3$), or a cylinder with a handle (e.g. $S_3 - S_2$).
Step 1: Nonproper Minimal Plane in \mathbb{H}^3

Outline:

- Take sequence of circles C_n in $S^2_\infty(\mathbb{H}^3)$ limiting on equator.
- Each C_n bounds a geodesic plane P_n in \mathbb{H}^3.
- Connect P_n and P_{n+1} with a bridge at infinity (alternating sides).
- Resulting plane Σ_1 is nonproperly embedded.

The construction is not trivial since we do not have the bridge principle at infinity in \mathbb{H}^3 for stable minimal surfaces.
Step 1: Nonproper Minimal Plane in \mathbb{H}^3

Outline:

- Take sequence of circles C_n in $S^2_{\infty}(\mathbb{H}^3)$ limiting on equator.
- Each C_n bounds a geodesic plane P_n in \mathbb{H}^3
- Connect P_n and P_{n+1} with a bridge at infinity (alternating sides).
- Resulting plane Σ_1 is nonproperly embedded.

The construction is not trivial since we do not have the bridge principle at infinity in \mathbb{H}^3 for stable minimal surfaces.
Notice that by lemma 2.7, $S_t \cap S_s = \emptyset$ for $t \neq s$, and hence $V_t \cap V_s = \emptyset$ for $t \neq s$.

Now, consider a short arc segment η in \mathbb{H}^3 with one endpoint is in S_{t_1} and the other end point is in S_{t_2} where $0 < t_1 < t_2 < \epsilon'$. Hence, η intersects all minimizing H-surfaces S_t with $\partial_\infty S_t = \Gamma_t$ where $t_1 \leq t \leq t_2$. Now for $t_1 < s < t_2$, define the thickness λ_s of V_s as $\lambda_s = |\eta \cap V_s|$, i.e. λ_s is the length of the piece of η in V_s. Hence, if Γ_s bounds more than one H-surface, then the thickness is not 0. In other words, if $\lambda_s = 0$, then Γ_s bounds a unique H-surface.

As $V_t \cap V_s = \emptyset$ for $t \neq s$, $\sum_{t_1}^{t_2} \lambda_s < |\eta|$. Hence, for only countably many $s \in [t_1, t_2]$, $\lambda_s > 0$. This implies for all but countably many $s \in [t_1, t_2]$, $\lambda_s = 0$, and hence Γ_s bounds a unique minimizing H-surface. Similarly, this implies for all but countably many $s \in [0, \epsilon']$, Γ_s bounds a unique H-surface. The proof follows.

Step 1 and Step 2 implies the existence of a nearby $(0 < t < \epsilon')$ smooth curve Γ_t to $\Gamma \cup \alpha$ where Γ_t bounds a unique minimizing H-surface S_t, and S_t has the desired topology, i.e. $S_t \simeq S \cup \tilde{N}_\epsilon(\alpha)$.

Figure 3. In the simple exhaustion of S, S_1 is a disk, and $S_{n+1} - S_n$ contains a unique nonannular part, which is a pair of pants (e.g. $S_4 - S_3$), or a cylinder with a handle (e.g. $S_3 - S_2$).
\(\Pi_1 \) is the least area plane in \(Y_1 = \mathbb{H}^3 - \Sigma_1 \) where \(\partial_\infty \Pi_1 = \lambda_1 \). In particular, \(\Pi_1 = P_1^{-\#_1 \alpha_1^+} P_2^+ \) and \(\lambda_1 = \gamma_1^{-\#_1 \alpha_1^+} \gamma_2^+ \).

Similarly, one can iterate this process by using appropriate isometry \(\phi_n \) such that \(\lambda_n = \phi_n(\lambda_1) = \gamma_n^{-\#_n \alpha_n^+} \gamma_{n+1}^+ \) is a simple closed curve in the region between \(\gamma_n \) and \(\gamma_{n+1} \). Here, \(\alpha_{2n-1}^+ \) is a line segment in the line \(x = -C \) with endpoints \((-C, r_{2n-1}^-, 0) \) and \((-C, r_{2n}^-, 0) \), while \(\alpha_{2n}^+ \) is a line segment in the line \(x = -C \) with endpoints \((-C, -r_{2n}^-, 0) \) and \((-C, -r_{2n+1}^+, 0) \). In particular, the bridges \(\alpha_{2n-1}^+ \) and \(\alpha_{2n}^+ \) are alternating sides (See Figure 7). Then, let \(\Pi_n = \phi_n(\Pi_1) \) and \(\mathcal{R}_n = \phi_n(\mathcal{R}_1) \). Hence, define \(X_{n+1} = X_n - \mathcal{R}_n \). Notice that \(X_n \) is a mean convex subspace of \(\mathbb{H}^3 \).

Other than being mean convex, we will require one more property on \(X_2 \). By the construction of the least area plane \(\Pi_1 \sim P_1^{-\#_1 \alpha_1^+} P_2^+ \), for smaller choice of \(\rho \), we get a thinner bridge in \(\Pi_1 \) connecting \(P_1 \) and \(P_2 \). In particular, if \(\lambda^m_1 = \gamma_1^{-\#_1 \alpha_1^+} \gamma_2^+ \) is the simple closed curve obtained by connecting \(\gamma_1 \) and \(\gamma_2^+ \) along a bridge along \(\alpha_1^+ \) with thickness \(\rho_m \searrow 0 \), then let \(\Pi^m_1 \) be the least area plane in \(Y_1 \) with \(\partial_\infty \Pi^m_1 = \lambda^m_1 \). By the construction, \(\Pi^m_1 \to P_1^- \cup P_2^+ \) as \(n \to \infty \).
Step 2: Minimal Surfaces of Desired Topology in \mathbb{H}^3

- **[Martin-White]** Outline: Let S be given.

 - Start with a simple exhaustion of S.

 $S = \bigcup_{n=1}^{\infty} S_n$

 $S_1 \subset S_2 \subset \ldots \subset S_n \subset \ldots$

 $S_n + 1 - S_n$ contains either a pair of pants or a cylinder with handle.

 - Bridge principle at infinity for uniquely minimizing surfaces in \mathbb{H}^3.

 - Let \hat{S}_1 be a geodesic plane in \mathbb{H}^3.

 Define the area minimizing surface \hat{S}_n in \mathbb{H}^3 with $\hat{S}_n \cong S_n$ inductively:

 $\hat{S}_{n+1} = \hat{S}_n \# B_n$

 where B_n is either one bridge or two successive bridges.

 - $\Sigma_2 = \lim \hat{S}_n$ is an area minimizing surface in \mathbb{H}^3 with $\Sigma_2 \cong S$.

Baris Coskunuzer

Nonproper Minimal Surfaces with Arbitrary Topology in \mathbb{H}^3
Step 2: Minimal Surfaces of Desired Topology in \mathbb{H}^3

- **[Martin-White]** Outline: Let S be given.
 - Start with a simple exhaustion of S [FMM].
 - i.e. $S = \bigcup_{n=1}^{\infty} S_n$ where $S_1 \subset S_2 \subset \ldots \subset S_n \subset \ldots$ $S_{n+1} - S_n$ contains either *pair of pants* or *cylinder with handle*.
Here, adding a bridge to the same boundary component of a surface would correspond to the pair of pants case. Adding two bridges successively to the same boundary component would correspond to the cylinder with a handle case. In particular, if \(C \) is the boundary component in \(\partial S_n \) and the annulus \(A \) is a small neighborhood of \(C \) in \(S_n \), then \(A \cup B_n \) would be a pair of pants, where \(B_n \) is the bridge attached to \(C \). On the other hand, if \(B'_n \) is a smaller bridge connecting the different sides of the bridge \(B_n \), let \(B_n \cup B'_n \) be the handle \(H_n \). Then \(A \cup H_n \) would be a cylinder with a handle (See Figure 4).

Notice that by attaching a bridge \(B_n \), we increase the number of boundary components of \(S_n \) by 1 and decrease the euler characteristic by 1, i.e. \(\#(\partial S_{n+1}) = \#(\partial S_n) + 1 \) and \(\chi(S_{n+1}) = \chi(S_n) - 1 \). Hence, \(g(S_n) = g(S_{n+1}) \) where \(g(\cdot) \) represents the genus of the surface. Similarly by attaching a handle \(H_n \) to \(S_n \), we keep the number of boundary components same, but decrease the euler characteristic by 2, i.e. \(\#(\partial S_{n+1}) = \#(\partial S_n) \) and \(\chi(S_{n+1}) = \chi(S_n) - 2 \). This implies \(g(S_{n+1}) = g(S_n) + 1 \) with the same number of boundary components.

Figure 3. In the simple exhaustion of \(S \), \(S_1 \) is a disk, and \(S_{n+1} - S_n \) contains a unique nonannular part, which is a pair of pants (e.g. \(S_4 - S_3 \)), or a cylinder with a handle (e.g. \(S_3 - S_2 \)).

- Start with a simple exhaustion of S [FMM].

i.e. $S = \bigcup_{n=1}^{\infty} S_n$ where $S_1 \subset S_2 \subset \ldots \subset S_n \subset \ldots$

$S_{n+1} - S_n$ contains either *pair of pants* or *cylinder with handle*.

- Bridge principle at infinity for *uniquely minimizing surfaces* in H^3.

◊ Start with a simple exhaustion of S [FMM].

i.e. $S = \bigcup_{n=1}^{\infty} S_n$ where $S_1 \subset S_2 \subset \ldots \subset S_n \subset \ldots\$

$S_{n+1} - S_n$ contains either pair of pants or cylinder with handle.

◊ Bridge principle at infinity for uniquely minimizing surfaces in H^3.

◊ Let \hat{S}_1 be a geodesic plane in H^3.

Define the area minimizing surface \hat{S}_n in H^3 with $\hat{S}_n \sim S_n$ inductively:
Step 2: Minimal Surfaces of Desired Topology in \mathbb{H}^3

- **[Martin-White] Outline:** Let S be given.

 - Start with a simple exhaustion of S [FMM].

 i.e. $S = \bigcup_{n=1}^{\infty} S_n$ where $S_1 \subset S_2 \subset ... \subset S_n \subset ..$

 $S_{n+1} - S_n$ contains either *pair of pants* or *cylinder with handle*.

 - Bridge principle at infinity for **uniquely minimizing surfaces** in \mathbb{H}^3.

 - Let \hat{S}_1 be a geodesic plane in \mathbb{H}^3.

Define the area minimizing surface \hat{S}_n in \mathbb{H}^3 with $\hat{S}_n \simeq S_n$ inductively:

- $\hat{S}_{n+1} = \hat{S}_n \# B_n$ where B_n is either one bridge or two successive bridges.
want. Hence, in the Poincare ball model, we can get an increasing sequence \(r_n \rightarrow \infty \) such that \(B_{r_n}(0) \cap \Sigma_{n+1} \simeq S_n \) and \(B_{r_{n+1}}(0) \cap \Sigma_{n+1} \simeq S_{n+1} \).

Now, assume that \(S_{n+1} - S_n \) contains a cylinder with a handle. Again, let \(\gamma \) be the component of \(\partial S_n \) where the cylinder with handle attached, and let \(\gamma' \subset S^2_\infty(\mathbb{H}^3) \) be the corresponding component in \(\partial_\infty \Sigma_n \). Let \(D \) be the disk in \(S^2_\infty(\mathbb{H}^3) \) with \(\partial D = \gamma' \) and \(D \cap \Gamma_n = \gamma' \). Like before, let \(\beta_n \) be a smooth arc segment in \(D \) with \(\beta_n \cap \Gamma_n = \partial \beta_n \subset \gamma' \), and \(\beta_n \perp \gamma' \). Now, by Theorem 3.1 we get a uniquely minimizing \(H \)-surface \(\Sigma'_{n+1} \). Again, by choosing the bridge sufficiently thin, we can make sure that \(B_{r_n} \cap \Sigma'_{n+1} \simeq S_n \). Now, let \(\beta'_n \) be the small smooth arc connecting the opposite sides of the bridge along \(\beta_n \). Similarly, by using Theorem 3.1 we add another tiny bridge along \(\beta'_n \) to \(\Sigma'_{n+1} \) and get a uniquely minimizing \(H \) surface \(\Sigma_{n+1} \) where \(\Sigma_{n+1} \simeq S_{n+1} \). Like before, we can find sufficiently large \(r_{n+1} > r_n \) with \(B_{r_n}(0) \cap \Sigma_{n+1} \simeq S_n \) and \(B_{r_{n+1}}(0) \cap \Sigma_{n+1} \simeq S_{n+1} \).

Figure 4. If \(S_{n+1} - S_n \) contains a pair of pants in the simple exhaustion, we add a bridge \(B_n \) so that \(S_n \cup B_n \simeq S_{n+1} \) (left). If \(S_{n+1} - S_n \) contains a cylinder with a handle, then we add a handle \(\mathcal{H}_n \) so that \(S_n \cup \mathcal{H}_n \simeq S_{n+1} \). Here the handle \(\mathcal{H}_n \) is just successive two bridges, i.e. \(\mathcal{H}_n = B_n \cup B'_n \) (right).
♯(∂S_{n+1}) = ♯(∂S_n) + 1 and \(χ(S_{n+1}) = χ(S_n) - 1\). Hence, \(g(S_n) = g(S_{n+1})\) where \(g(.)\) represents the genus of the surface. Similarly by attaching a handle \(H_n\) to \(S_n\), we keep the number of boundary components same, but decrease the euler characteristic by 2, i.e. \(♯(∂S_{n+1}) = ♯(∂S_n)\) and \(χ(S_{n+1}) = χ(S_n) - 2\). This implies \(g(S_{n+1}) = g(S_n) + 1\) with the same number of boundary components.

We start the construction with a minimizing \(H\)-plane \(Σ_1\) (a spherical cap) in \(H^3\) bounding a round circle \(Γ_1\) in \(S^2_\infty(H^3)\). Hence, \(Σ_1 \simeq S_1\). Now, we continue inductively (See Figure 5). Assume that \(S_{n+1} - S_n\) contains a pair of pants. Let the pair of pants attached to the component \(γ\) in \(∂S_n\). Let \(γ'\) be the corresponding component of \(Γ_n = ∂_∞Σ_n\). By construction, \(γ'\) bounds a disk \(D\) in \(S^2_\infty(H^3)\) with \(D \cap Γ_n = γ'\). Let \(β_n\) be a smooth arc segment in \(D\) with \(β_n \cap Γ_n = ∂β_n \subset γ'\), and \(β_n \perp γ'\). Now, as \(Σ_n\) is uniquely minimizing \(H\)-surface, and \(β_n\) satisfies the conditions by using the Theorem 3.1, we get a uniquely minimizing \(H\)-surface \(Σ'_{n+1}\). Again, by choosing the bridge along \(β_n\) as thin as we want. Hence, in the Poincare ball model, we can get an increasing sequence \(r_n \to \infty\) such that \(B_{r_n}(0) \cap Σ_{n+1} \simeq S_n\) and \(B_{r_{n+1}}(0) \cap Σ_{n+1} \simeq S_{n+1}\).

Now, assume that \(S_{n+1} - S_n\) contains a cylinder with a handle. Again, let \(γ\) be the component of \(∂S_n\) where the cylinder with handle attached, and let \(γ' \subset S^2_\infty(H^3)\) be the corresponding component in \(∂_∞Σ_n\). Let \(D\) be the disk in \(S^2_\infty(H^3)\) with \(∂D = γ'\) and \(D \cap Γ_n = γ'\). Like before, let \(β_n\) be a smooth arc segment in \(D\) with \(β_n \cap Γ_n = ∂β_n \subset γ'\), and \(β_n \perp γ'\). Now, by Theorem 3.1 we get a uniquely minimizing \(H\)-surface \(Σ'_{n+1}\). Again, by choosing the

\[\text{Figure 5. } Σ_1 \text{ is a uniquely minimizing } H\text{-surface where } ∂_∞Σ_1 \text{ is a round circle. If } S_2 - S_1 \text{ contains a pair of pants, we attach one bridge } B_1 \text{ along } β_1 \text{ to } Σ_1, \text{ and get } Σ_2 = Σ_1♯B_1 \text{ (left). If } S_2 - S_1 \text{ contains a cylinder with a handle, we attach two bridges successively to } Σ_1 \text{ and get } Σ_2 = Σ_1♯H_1 \text{ (right).} \]
Step 2: Minimal Surfaces of Desired Topology in \mathbb{H}^3

- **[Martin-White]** Outline: Let S be given.
 - Start with a simple exhaustion of S [FMM].
 - $S = \bigcup_{n=1}^{\infty} S_n$ where $S_1 \subset S_2 \subset \ldots \subset S_n \subset \ldots$
 - $S_{n+1} - S_n$ contains either *pair of pants* or *cylinder with handle*.
 - Bridge principle at infinity for **uniquely minimizing surfaces** in \mathbb{H}^3.
 - Let \hat{S}_1 be a geodesic plane in \mathbb{H}^3.
 - Define the area minimizing surface \hat{S}_n in \mathbb{H}^3 with $\hat{S}_n \simeq S_n$ inductively:
 - $\hat{S}_{n+1} = \hat{S}_n \# B_n$ where B_n is either one bridge or two successive bridges.
 - $\Sigma_2 = \lim \hat{S}_n$ is an area minimizing surface in \mathbb{H}^3 with $\Sigma_2 \simeq S$.
Step 3: The Sequence

- Define a sequence of minimal surfaces $\{T_n\}$ inductively.
Step 3: The Sequence

- Define a sequence of minimal surfaces \(\{T_n\} \) inductively.

- \(T_1 = \hat{S}_1 \) and \(T_2 = \hat{S}_1 \# \mu P_1 \). Let \(\partial_\infty T_n = \Gamma_n \).
Step 3: The Sequence

- Define a sequence of minimal surfaces \(\{ T_n \} \) inductively.

- \(T_1 = \hat{S}_1 \) and \(T_2 = \hat{S}_1 \#_\mu P_1 \). Let \(\partial_\infty T_n = \Gamma_n \).

- \(T_{2n+1} = T_{2n} \# \mathcal{B}_n \) \((T_{2n} \text{ uniquely minimizing}) \)
Step 3: The Sequence

- Define a sequence of minimal surfaces \(\{ T_n \} \) inductively.

- \(T_1 = \hat{S}_1 \) and \(T_2 = \hat{S}_1 \# \mu P_1 \). Let \(\partial_\infty T_n = \Gamma_n \).

- \(T_{2n+1} = T_{2n} \# B_n \) (\(T_{2n} \) uniquely minimizing)

- \(T_{2n} = T_{2n-1} \# \alpha'_n P_n \)
Step 3: The Sequence

- Define a sequence of minimal surfaces \(\{T_n\} \) inductively.

- \(T_1 = \hat{S}_1 \) and \(T_2 = \hat{S}_1 \# \mu P_1 \). Let \(\partial_\infty T_n = \Gamma_n \).

- \(T_{2n+1} = T_{2n} \# B_n \) \((T_{2n} \text{ uniquely minimizing}) \)

- \(T_{2n} = T_{2n-1} \#_{\alpha_{\prime n}} P_n \)

PROBLEM

\(T_{2n-1} \cup P_n \) may not be area minimizing in \(H^3 \).
Step 3: The Sequence

- Define a sequence of minimal surfaces \(\{ T_n \} \) inductively.

- \(T_1 = \widehat{S}_1 \) and \(T_2 = \widehat{S}_1 \# \mu P_1 \). Let \(\partial_\infty T_n = \Gamma_n \).

- \(T_{2n+1} = T_{2n} \# B_n \) (\(T_{2n} \) uniquely minimizing)

- \(T_{2n} = T_{2n-1} \#_{\alpha'_n} P_n \)

PROBLEM

\(T_{2n-1} \cup P_n \) may not be area minimizing in \(H^3 \).

NEED

Mean Convex Subspaces \(X_n \) in \(H^3 \) where \(T_{2n-1} \cup P_n \) is uniquely minimizing in \(X_n \).
Step 4: Mean Convex Subspaces X_n in \mathbb{H}^3

- We want $T_{2n-1} \cup P_n$ to be uniquely minimizing in $X_n \subset \mathbb{H}^3$.

Baris Coskunuzer
Nonproper Minimal Surfaces with Arbitrary Topology in \mathbb{H}^3
Step 4: Mean Convex Subspaces X_n in \mathbb{H}^3

- We want $T_{2n-1} \cup P_n$ to be uniquely minimizing in $X_n \subset \mathbb{H}^3$.

- Need to kill the possible competitors Y with $\partial_\infty Y = \Gamma_{2n-1} \cup C_n$.
Step 4: Mean Convex Subspaces X_n in H^3

- We want $T_{2n-1} \cup P_n$ to be uniquely minimizing in $X_n \subset H^3$.

- Need to kill the possible competitors Y with $\partial_\infty Y = \Gamma_{2n-1} \cup C_n$.

- **Igloo Trick**: Let $\Pi_n = P_n^+ \# P_n^-$. Let I_n be the component of $H^3 - \Pi_n$.

Baris Coskunuzer
Nonproper Minimal Surfaces with Arbitrary Topology in H^3
\(\Pi_1 \) is the least area plane in \(Y_1 = \mathbb{H}^3 - \mathcal{S}_1 \) where
\(\partial_\infty \Pi_1 = \lambda_1 \). In particular, \(\Pi_1 = P_1 - \# \gamma_1 P_2 \) and \(\lambda_1 = \gamma_1 - \# \alpha_1 \gamma_2 \).

Similarly, one can iterate this process by using appropriate isometry \(\phi_n \) such that \(\lambda_n = \phi_n(\lambda_1) = \gamma_n - \# \alpha_n \gamma_{n+1}^+ \) is a simple closed curve in the region between \(\gamma_n \) and \(\gamma_{n+1} \). Here, \(\alpha_{2n-1}' \) is a line segment in the line \(x = -C \) with endpoints \((-C, r_{2n-1}, 0)\) and \((-C, r_{2n}, 0)\), while \(\alpha_{2n}' \) is a line segment in the line \(x = -C \) with endpoints \((-C, -r_{2n}, 0)\) and \((-C, -r_{2n+1}, 0)\). In particular, the bridges \(\alpha_{2n-1}' \) and \(\alpha_{2n}' \) are alternating sides (See Figure 6).

Then, let \(\Pi_n = \phi_n(\Pi_1) \) and \(\mathcal{R}_n = \phi_n(\mathcal{R}_1) \). Hence, define \(X_{n+1} = X_n - \mathcal{R}_n \). Notice that \(X_n \) is a mean convex subspace of \(\mathbb{H}^3 \).

Other than being mean convex, we will require one more property on \(X_2 \). By the construction of the least area plane \(\Pi_1 \sim P_1 - \# \alpha_1 P_2^+ \), for smaller choice of \(\rho \), we get a thinner bridge in \(\Pi_1 \) connecting \(P_1 \) and \(P_2 \). In particular, if \(\lambda_1^m = \gamma_1 - \# \alpha_1^m \gamma_2^+ \) is the simple closed curve obtained by connecting \(\gamma_1 \) and \(\gamma_2^+ \) along a bridge along \(\alpha_1' \) with thickness \(\rho_m \rightarrow 0 \), then let \(\Pi_1^m \) be the least area plane in \(Y_1 \) with \(\partial_\infty \Pi_1^m = \lambda_1^m \). By the construction, \(\Pi_1^m \rightarrow P_1 - P_2^+ \) as \(n \rightarrow \infty \).
Step 4: Mean Convex Subspaces X_n in \mathbb{H}^3

- We want $T_{2n-1} \cup P_n$ to be uniquely minimizing in $X_n \subset \mathbb{H}^3$.

- Need to kill the possible competitors Y with $\partial_\infty Y = \Gamma_{2n-1} \cup C_n$.

- **Igloo Trick:** Let $\Pi_n = P_n^+ \# P_n^-$. Let \mathcal{I}_n be the component of $\mathbb{H}^3 - \Pi_n$.

- Let $X_1 = \mathbb{H}^3$ and $X_{n+1} = X_n - \mathcal{I}_n$.

Baris Coskunuzer
Nonproper Minimal Surfaces with Arbitrary Topology in \mathbb{H}^3
Step 4: Mean Convex Subspaces X_n in H^3

- We want $T_{2n-1} \cup P_n$ to be uniquely minimizing in $X_n \subset H^3$.
- Need to kill the possible competitors Y with $\partial_{\infty} Y = \Gamma_{2n-1} \cup C_n$.
- **Igloo Trick:** Let $\Pi_n = P_n^+ \# P_n^-$. Let I_n be the component of $H^3 - \Pi_n$.
- Let $X_1 = H^3$ and $X_{n+1} = X_n - I_n$.

Lemma

$T_{2n-1} \cup P_n$ is uniquely minimizing in X_n.

Baris Coskunuzer
Nonproper Minimal Surfaces with Arbitrary Topology in H^3
Step 4: Mean Convex Subspaces X_n in \mathbb{H}^3

- We want $T_{2n-1} \cup P_n$ to be uniquely minimizing in $X_n \subset \mathbb{H}^3$.
- Need to kill the possible competitors Y with $\partial_{\infty} Y = \Gamma_{2n-1} \cup C_n$.
- **Igloo Trick:** Let $\Pi_n = P_n^+ \# P_{n-1}^-$. Let I_n be the component of $\mathbb{H}^3 - \Pi_n$.
- Let $X_1 = \mathbb{H}^3$ and $X_{n+1} = X_n - I_n$.

Lemma

$T_{2n-1} \cup P_n$ is uniquely minimizing in X_n.

Theorem

$T_{2n} = T_{2n-1} \# P_n$ is uniquely minimizing in X_n.
Let $\Sigma = \lim T_n$.
Let $\Sigma = \lim T_n$.

Σ is area minimizing in $X_\infty = \bigcap X_n$.
Nonproper Minimal Surface of Desired Topology

Let \(\Sigma = \lim T_n \).

\(\Sigma \) is area minimizing in \(X_\infty = \bigcap X_n \).

\(\Sigma \) is just a minimal surface in \(\mathbb{H}^3 \).
Let $\Sigma = \lim T_n$.

Σ is area minimizing in $X_\infty = \bigcap X_n$.

Σ is just a minimal surface in H^3.

$\Sigma \simeq \Sigma_1 \#_\mu \Sigma_2$.
Let $\Sigma = \lim T_n$.

Σ is area minimizing in $X_\infty = \bigcap X_n$

Σ is just a minimal surface in H^3.

$\Sigma \sim \Sigma_1 \#_\mu \Sigma_2$.

$\Sigma \sim \Sigma_2 \sim S$
Nonproper Minimal Surface of Desired Topology

- Let $\Sigma = \lim T_n$.
- Σ is area minimizing in $X_\infty = \bigcap X_n$.
- Σ is just a minimal surface in H^3.
- $\Sigma \sim \Sigma_1 \#_\mu \Sigma_2$.
- $\Sigma \sim \Sigma_2 \sim S$.
- Σ is nonproper as $\overline{\Sigma} \supset \overline{\Sigma_1} \supset P_\infty$.

Baris Coskunuzer

Nonproper Minimal Surfaces with Arbitrary Topology in H^3
Final Remarks

- **The Bridge Principle at Infinity** for Complete Stable Minimal Surfaces and the Igloo Trick.

- Properly Embedded H-surfaces with arbitrary topology
 - Theorem \[C–\]
 - Any S can be properly embedded in H^3 as a minimizing H-surface.

- Nonproperly Embedded H-surfaces with arbitrary topology
 - Unfortunately these techniques do not generalize to non-proper H-surfaces because of the orientation problem!
 - \[C–, Meeks, Tinaglia\] For $0 \leq H < 1$, \exists a nonproperly embedded H-plane.
 - \[Meeks-Tinaglia\] For $H \geq 1$, Calabi-Yau Conjecture is true for H-surfaces in H^3.
Final Remarks

- **The Bridge Principle at Infinity** for Complete Stable Minimal Surfaces and the Igloo Trick.

- **Generalization to H-surfaces**: 2 cases.
Final Remarks

- **The Bridge Principle at Infinity** for Complete Stable Minimal Surfaces and the Igloo Trick.

- **Generalization to H-surfaces**: 2 cases.
 - ♦ Properly Embedded H-surfaces with arbitrary topology

- ✧ Unfortunately these techniques do not generalize to non-proper H-surfaces because of the orientation problem!
 - ✧ \[C–, Meeks, Tinaglia\] For $0 \leq H < 1$, \exists a nonproperly embedded H-plane.
 - ✧ \[Meeks-Tinaglia\] For $H \geq 1$, Calabi-Yau Conjecture is true for H-surfaces in H^3.

Baris Coskunuzer - Nonproper Minimal Surfaces with Arbitrary Topology in H^3
Final Remarks

- **The Bridge Principle at Infinity** for Complete Stable Minimal Surfaces and the Igloo Trick.

- **Generalization to** \(H \)-**surfaces**: 2 cases.
 - ♣ Properly Embedded \(H \)-surfaces with arbitrary topology

<table>
<thead>
<tr>
<th>Theorem [C–]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any (S) can be properly embedded in (H^3) as a minimizing (H)-surface.</td>
</tr>
</tbody>
</table>
Final Remarks

- **The Bridge Principle at Infinity** for Complete Stable Minimal Surfaces and the Igloo Trick.

- **Generalization to H-surfaces**: 2 cases.
 - ♠ Properly Embedded H-surfaces with arbitrary topology

 Theorem [C–]

 Any S can be properly embedded in H^3 as a minimizing H-surface.

 - ♦ Nonproperly Embedded H-surfaces with arbitrary topology

 ♦ Unfortunately these techniques do not generalize to non-proper H-surfaces because of the orientation problem!
Final Remarks

- **The Bridge Principle at Infinity** for Complete Stable Minimal Surfaces and the Igloo Trick.

- **Generalization to H-surfaces**: 2 cases.
 - ♠ Properly Embedded H-surfaces with arbitrary topology
 - **Theorem [C–]**

 Any S can be properly embedded in H^3 as a minimizing H-surface.

 - ♣ Nonproperly Embedded H-surfaces with arbitrary topology
 - ◊ Unfortunately these techniques do not generalize to non-proper H-surfaces because of the orientation problem!
 - ◊ [C–, Meeks, Tinaglia] For $0 \leq H < 1$, \exists a nonproperly embedded H-plane.
Final Remarks

- **The Bridge Principle at Infinity** for Complete Stable Minimal Surfaces and the Igloo Trick.

- **Generalization to H-surfaces**: 2 cases.
 - ♣ Properly Embedded H-surfaces with arbitrary topology
 - **Theorem [C–]**
 Any S can be properly embedded in H^3 as a minimizing H-surface.
 - ♣ Nonproperly Embedded H-surfaces with arbitrary topology
 - ◊ Unfortunately these techniques do not generalize to non-proper H-surfaces because of the orientation problem!
 - ◊ [C–, Meeks, Tinaglia] For $0 \leq H < 1$, \exists a nonproperly embedded H-plane.
 - ◊ [Meeks-Tinaglia] For $H \geq 1$, Calabi-Yau Conjecture is true for H-surfaces in H^3.

