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Introduction to Lorentz violation and the SME

• What is Lorentz symmetry? What is Lorentz violation?

• How do we test Lorentz symmetry?

• Point-particle lagrangians from field theory

• Connection to Finsler geometry



Lorentz symmetry

Michelson, Morley 1887
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Lorentz violation

𝑈 = −𝜇 ⋅ 𝐵 𝑈′ = −𝜇 ⋅ 𝐵
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Lorentz violation
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Meanwhile in the lab…



The Standard-Model Extension

Colladay, Kostelecký PRD 1997, 1998, Kostelecký PRD 2004

ℒ𝑆𝑀𝐸 ⊃
1

2
𝑖 ത𝜓γµ𝜕μ𝜓 − 𝑚 ത𝜓𝜓 − 𝑎µ

ത𝜓γµ𝜓 − 𝑏µ
ത𝜓γ5γµ𝜓

• Coefficients for Lorentz violation act like background fields

• ℒ𝑆𝑀𝐸 constructed from known fields

• Has implications for experiments at currently attainable energy levels



Effective field theory

quantum 

gravity
standard physics

SME 

corrections

…



From field theories to point particles

effective field theory

• successful explaining 
low-energy effects

plane waves

• building blocks of 
general solutions 

wave packets

• follow classical 
trajectories



Why study 

point-particle 

lagrangians?

Little is known of kinematics in 
Lorentz-violating backgrounds

Many experiments involve 
signals from macroscopic bodies

Exact momentum-velocity 
relationship unknown



Connection to Finsler

geometry



Lagrangians and Finsler norms

𝑳: 𝑻𝑴 → ℝ

• 𝐿 𝑥, 𝑢 smooth on TM\S

• 𝐿 is 1-homogeneous in u

• Effective metric

𝑔μν =
1

2

𝜕2𝐿2

𝜕𝑢μ𝜕𝑢ν

𝑭 ∶ 𝑻𝑴 → [𝟎, ∞)

• 𝐹(𝑥, 𝑦) smooth on TM\{0}

• 𝐹 is 1-homogeneous in y

• Finsler metric (positive definite!)

𝑔𝑖𝑗 =
1

2

𝜕2𝐹2

𝜕𝑦𝑖𝜕𝑦𝑗

Goldstien Classical Mechanics 1950, Bao, Chern, Shen An Introduction to Riemann-Finsler Geometry 2000



Finsler geometry

SME

General 
Relativity

Finsler
Geometry

Riemann 
Geometry

Constructed by adding 

background field couplings

Constructed by adding 

covector field couplings
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Finsler geometry

SME

General 
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Lorentz-
Finsler

Spacetime

Pseudo-
Riemann 

Spacetime

precise definition still open

Finsler
Geometry

Riemann 
Geometry

Beem Canad. J. Math. 1970, Asanov Finsler Geometry, Relativity, and Gauge Theories 1985

Miron, Anastasiei The theory of Lagrange Spaces: Theory and Applications 1994



Finsler geometry

SME

General 
Relativity

Lorentz-
Finsler

Spacetime

Pseudo-
Riemann 

Spacetime

precise definition still open

Finsler
Geometry

Riemann 
Geometry

Benjacu, Farran Geometry of Pseudo-Finsler Submanifolds 2000, Pfeifer, Wohlfarth PRD 2011, 

Kostelecký PLB 2011, Lämmerzahl, Perlick, Hasse PRD 2012, Javaloyes, Sánchez arXiv: 1805.06978
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Why study 

point-particle 

lagrangians?

Little is known of kinematics in 
Lorentz-violating backgrounds

Many experiments involve 
signals from macroscopic bodies

Exact momentum-velocity 
relationship unknown

Provide us with more physical 

examples of possible Lorentz-

Finsler spacetimes
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Finsler geometry

SME

General 
Relativity

Lorentz-
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Spacetime

Pseudo-
Riemann 

Spacetime analytic continuation

Finsler
Geometry

Riemann 
Geometry



Spontaneous 

vs. explicit 

symmetry 

breaking

• Spontaneous
• underlying theory has Lorentz symmetry

• dynamic fields acquire backgrounds

• Explicit
• nondynamic background

• in GR this has implications for geometry

Kostelecký, Samuel PRD 1989, Kostelecký PRD 2004 



Explicit 

breaking and 

gravity

• Einstein tensor and Bianchi identity

𝐷𝜇𝐺𝜇𝜈 = 0

• Einstein equation

𝐺𝜇𝜈 = 𝜅𝑇𝜇𝜈

• Together these imply

𝐷𝜇𝑇𝜇𝜈 = 0



Explicit 

breaking and 

gravity

• Equations of motion in the presence 
of background fields imply

𝐷𝜇𝑇𝜇𝜈 = 𝐽𝑥𝐷𝜈𝑘𝑥

• To be consistent, right hand side 
must vanish!

• Need extra degrees of freedom to 
reconcile these requirements
• these may come from the direction 

dependence in Finsler geometry!

Kostelecký PRD 2004



Finsler geometry

Geodesics are controlled by a metric with extra degrees of freedom

𝑔𝑗𝑘 = 𝑟𝑗𝑘 + …

Finsler (thesis) 1918 , Kostelecký PRD 2004

Riemann metric
(depends on point in manifold)

modification
(can also depend on direction!)

Conjecture: SME background fields may give rise to these modifications
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Scalar field theory



Why scalars?

The most general Lorentz-
violating scalar field theory 
has not been studied

All particles in nature exhibit 
a property called spin

• scalar, spinor, vector,…

A quantum scalar field theory 
describes spin 0 particles



Why scalars?

In certain cases, spin can 
complicate the trajectory

A large subset of Lorentz-
violating effects are spin 
independent

Free particles can be 
handled as if they have 0 
spin in this case



General scalar field theory

even number of derivatives

odd number of derivatives

n: number of spacetime dimensions

d: mass dimension of the operator

Edwards, Kostelecký PLB 2018 

k’s have constant cartesian components



Existing work in 

scalar field theory

Much work done in minimal sector

Borges, Ferrari, Farone arXiv:1809.08883 

Xiao PRD 2018

de Paula Netto PRD 2018

Silva, Carvalho IJGMMP 2018

Scarpelli, Brito, Felipe, Nascimento, Petrov EPJC 2017

Cruz, Bezerra de Mello, Petrov PRD 2017, MPLA 2018

Kamand, Altschul, Schindler PRD 2017

Casana, da Silva MPLA 2015

Carvalho PLB 2013, PLB 2014

Altschul PRD 2013

Ferrero, Altschul PRD 2011

Bazeia, Barreto, Menezes PRD 2006

Altschul, PLB 2006

Anderson, Sher, Turan PRD 2004

Berger, Kostelecký PRD 2002

Colladay, Kostelecký PRD 1997, 1998



Existing work in 

scalar field theory

• Previous work all 𝑛 = 4, 𝑑 = 3 , 4

• Recent work on 𝑛 = 4 , 𝑑 = 6

• No results for 𝑛 ≠ 4

• Nonminimal sector largely ignored

Nascimento, Petrov, Reyes EPJC 2018



General scalar field theory

• 𝑑 = 𝑛 absorbed into metric, 𝑑 = 𝑛 − 1 is a local phase
• only 𝑑 > 𝑛 can be observed for single scalar field!

• Coefficients can be taken to be traceless, symmetric

• In 4 dimensions, 𝑘𝑐 is CPT even, 𝑘𝑎 is CPT odd
• hermitian fields cannot violate CPT!

Edwards, Kostelecký PLB 2018



Equations of motion

lead to a dispersion relation

where extra terms affect propagation

Edwards, Kostelecký PLB 2018
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Scalar field theory

Constructing point-particle lagrangians



Equations of motion

lead to a dispersion relation

where extra terms affect propagation

Edwards, Kostelecký PLB 2018



Two ways to view dispersion relations

Field theory

Wave vectors constrained to a hypersurface

Point particles

Momentum constrained to a hypersurface

Can we build a point-particle lagrangian that generates this dispersion? 



Constructing point-particle lagrangians

• Start with a dispersion relation

𝑅 𝑝 = 0

• Enforce wave-packet group velocity = classical velocity

𝜕𝑝0

𝜕𝑝𝑗
= −

𝑢𝑗

𝑢0 ; 𝑗 = 1,2,…,𝑛 − 1

• Action invariant under reparameterization: 𝐿 𝜆𝑢 = 𝜆𝐿(𝑢)

⇒ 𝐿 = −𝑢𝜇𝑝𝜇

Kostelecký, Russell PLB 2010

𝑣𝑔 =
𝑑𝜔

𝑑𝑝



Constructing point-particle lagrangians

• 𝑛 equations can eliminate 𝑛 momentum components

• In principle, 𝐿 = −𝑢𝜇𝑝𝜇 becomes 𝐿 = 𝐿 𝑢

• In practice, only known exactly for:
• quadratic dispersions

• quartic dispersions  

• Calculations are difficult in general

Kostelecký, Russell PLB 2010



• Formalism applied to
• face, ab, H limits of SME

• exact lagrangians found for minimal coefficients

• Ansatz method used in fermion sector of SME
• results are for nonminimal coefficients to first order

• New method generates all orders for minimal and nonminimal terms

Kostelecký, Russell PLB 2010, Reis, Schreck PRD 2018, Edwards, Kostelecký PLB 2018

Constructing point-particle lagrangians



Extended method applied to scalars

Can find exact lagrangian for 𝑑 = 𝑛

Edwards, Kostelecký PLB 2018



Extended method applied to scalars

Can find exact lagrangian for 𝑑 = 𝑛

matches previous results

Kostelecký, Russell PLB 2010, Edwards, Kostelecký PLB 2018



Extended method applied to scalars

• For 𝑑 > 𝑛, extra p dependence makes obtaining exact solution difficult

• Following previous steps produces a power series for L after expansion

Edwards, Kostelecký PLB 2018



Extended method applied to scalars

Define zeroth order

Edwards, Kostelecký PLB 2018



Extended method applied to scalars

Canonical momentum given by

Edwards, Kostelecký PLB 2018



Extended method applied to scalars

Reinsert to get next-order L

Edwards, Kostelecký PLB 2018



Iterative process
previous-order 

lagrangian

previous-order 
momentum

next-order 
lagrangian

Matches previous results derived from fermion limit of SME

Reis, Schreck PRD 2018, Edwards, Kostelecký PLB 2018
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particle lagrangians

Associated Finsler spaces
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Lagrangians and Finsler norms

𝑳: 𝑻𝑴 → ℝ

• 𝐿 𝑥, 𝑢 smooth on TM\S

• 𝐿 is 1-homogeneous in u

• Effective metric

𝑔μν =
1

2

𝜕2𝐿2

𝜕𝑢μ𝜕𝑢ν

𝑭 ∶ 𝑻𝑴 → [𝟎, ∞)

• 𝐹(𝑥, 𝑦) smooth on TM\{0}

• 𝐹 is 1-homogeneous in y

• Finsler metric (positive definite!)

𝑔𝑖𝑗 =
1

2

𝜕2𝐹2

𝜕𝑦𝑖𝜕𝑦𝑗



Analytic continuation

Kostelecký PLB 2011 



SME-based Finsler norms

𝐿𝑎𝑏 → 𝐹𝑎𝑏 = 𝑦2 + 𝑎 ∙ 𝑦 ± 𝑏2𝑦2 − 𝑏 ∙ 𝑦 2

• Randers space

𝐹𝑎𝑏|𝑏→0 = 𝑦2 + 𝑎 ∙ 𝑦 = 𝑦2 ± 𝑎 𝑦||

• b space

𝐹𝑎𝑏|𝑎→0 = 𝑦2 ± 𝑏2𝑦2 − (𝑏 ∙ 𝑦)2= 𝑦2 ± 𝑏 𝑦⊥

Randers 1941, Kostelecký PLB 2011

𝑦

𝑦||

𝑦⊥

𝑎 (𝑜𝑟 𝑏)



SME-based 

Finsler norms

• Large class of bipartite norms studied
• includes b space and Randers space

• includes spaces generated from H coefficients

• n-dimensional spaces considered

• Spaces categorized by isomorphism 

Kostelecký, Russell, Tso PLB 2012



Map to Finsler space

• ensures nonnegative Finsler norm

• takes η → δ

• allows positive-definite metric

Edwards, Kostelecký PLB 2018



Finsler k spaces

Edwards, Kostelecký PLB 2018

Apply map to 
the lagrangian 

series 
expansion

Generate a 
Finsler norm 
with iterative 

procedure

Promote to 
spacetime-
dependent 

backgrounds

Takes ෨𝑘 → ෨𝑘(𝑥)

and allows for 
curvature



• Finsler norm is reversible if 𝐹 𝑦 = 𝐹 −𝑦
• Reversible iff 𝑘𝑎 = 0

• Reversibility of 𝐹 ⇒ CPT invariance in 
the corresponding effective field theory 
for 𝑛 = 4

Edwards, Kostelecký PLB 2018

Finsler k spaces



Finsler k spaces

• Generalizes Randers
• generalized (𝛼, 𝛽) metric

• Infinite set of Finsler spaces: 𝐹𝑙
(𝐷)

for 
some subset D and order l

• Includes every perturbation of 
Riemann geometry that corresponds 
to spin-independent Lorentz violation



• The Hilbert form 𝜔 = 𝐹𝑦𝑖𝑑𝑥𝑖 is the Riemann-Finsler analogue of the 
n-momentum per mass

• Rescaled in a direction-dependent way

• Momentum and velocity are generally not aligned

Edwards, Kostelecký PLB 2018

Finsler k spaces



• First-order Finsler metric

• Sufficient condition for positive-definite g places constraint on k

• Reduces to the Riemann metric for 𝑑 = 𝑛 and 𝑑 = 𝑛 − 2

• Randers metric for 𝑑 = 𝑛 − 1
Edwards, Kostelecký PLB 2018

Finsler k spaces



Characterizing the geometry

Cartan torsion vanishes Riemann metric

Matsumoto torsion vanishes Randers metric

Deicke 1953, Matsumoto 1974



Characterizing the geometry

for 𝑑 = 𝑛 − 1

for 𝑑 = 𝑛, 𝑑 = 𝑛 − 2, also for 𝑛 = 1

Edwards, Kostelecký PLB 2018

Cartan torsion vanishes

Matsumoto torsion vanishes



Characterizing the geometry

Christoffel’s 

symbol for 𝑟𝑗𝑘

Covariant derivatives with respect to 𝑟𝑗𝑘

Edwards, Kostelecký PLB 2018



Characterizing the geometry

• Finsler manifolds have different covariant (coordinate) bases

• Connection forms (and the related curvatures) also modified

Nonlinear connection

Bao, Chern, Shen An Introduction to Riemann-Finsler Geometry 2000, Edwards, Kostelecký PLB 2018



Characterizing the geometry

• Compatibility of Riemann geometry and explicit Lorentz violation

• Most quantities reduce to Riemann form for r-parallel backgrounds

• Geodesics are unaffected, space is Berwald

Edwards, Kostelecký PLB 2018
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Open questions



Toward the future

Quantum Classical

Flat

Curved ???



Toward the future

• Can other exact lagrangians be found? What are the 

associated Finsler spaces?



Toward the future

Quantum Classical

Flat

Curved ???



Toward the future

Classical

Curved ???

• How to define Lorentz-Finsler spacetimes?

• What is the geometry of curved spacetime in 

theories with explicit Lorentz violation?



Conjectures supported but remain 
unproved

• Berwald ⟺ r-parallel

• r-parallel ⇒ usual geodesics

r-parallel backgrounds seem to be 
undetectable via geodesic motion

Can r-parallel components be 
removed from the field theory?

Future 

interest

Kostelecký PLB 2011 



Dispersion 
relations

Future interest

provide a connection 

between field theories 

and point particles
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Dispersion 
relations

other limits of 
the SME

optics

other Lorentz-
violating 
models

condensed 
matter

Future interest

Can the methods here be applied 

to other physical systems?



• Classical applications of k-space?
• Shen’s fishpond (Randers)

• Bead on a wire, magnetized chain (b space)

Shen Canad. J. Math. 2003, Foster, Lehnert PLB 2015

Future interest: 

classical applications



Future interest

Cartan torsion vanishes Riemann metric

Matsumoto torsion vanishes Randers metric

??? 
b space metric 

k space metrics



Summary

• The general Lorentz-violating scalar field theory

• Extended method to construct point-particle lagrangians
• any order, any mass dimension

• Associated Finsler spaces obtained
• all perturbations of Riemann spaces describing spin-independent effects

• Many interesting open questions for future investigation


