Minimal surfaces in $H^2 \times R$
with finite total curvature
and related problems

Magdalena Rodríguez

Universidad de Granada

Granada, June 2013
Table of contents

1. Introduction
2. New examples
3. Classification results
4. Embedded Calabi-Yau problem
Theorem (Hauswirth-Rosenberg, 2006)

\(\Sigma \subset \mathbb{H}^2 \times \mathbb{R} \) compl. or. min. surf.

\(|\int_{\Sigma} K| < +\infty, \quad K = \text{Gauss curv. of} \ \Sigma \)

- \(\Sigma^{conf} \cong \mathbb{M} - \{p_1, \ldots, p_k\} \).
- \(Q = \text{Hopf diff. of} \ \Sigma \to \mathbb{H}^2 \) extends meromorphically to \(\mathbb{M} \);
 \(Q(z) = z^{2m_i}(dz)^2 \) at \(p_i, \ m_i \geq 0 \).
- \(N_3 \to 0 \) at \(p_i \).
- \(\int_{\Sigma} K = 2\pi(2 - 2g - 2k - \sum_{i=1}^{k} m_i) \).
Theorem (Hauswirth-Rosenberg, 2006)

\[\Sigma \subset \mathbb{H}^2 \times \mathbb{R} \text{ compl. or. min. surf.} \]

\[|\int_{\Sigma} K| < +\infty, \quad K = \text{Gauss curv. of } \Sigma \]

- \(\Sigma \underset{\text{conf}}{\cong} \mathbb{M} - \{p_1, \cdots, p_k\} \).
- \(Q = \text{Hopf diff. of } \Sigma \rightarrow \mathbb{H}^2 \text{ extends meromorphically to } \mathbb{M}; \)
 \[Q(z) = z^{2m_i}(dz)^2 \text{ at } p_i, \ m_i \geq 0. \]
- \(N_3 \rightarrow 0 \text{ at } p_i. \)
- \(\int_{\Sigma} K = 2\pi(2 - 2g - 2k - \sum_{i=1}^{k} m_i). \)
Introduction

Theorem (Hauswirth-Rosenberg, 2006)

\(\Sigma \subset \mathbb{H}^2 \times \mathbb{R}\) compl. or. min. surf.
\[|\int_{\Sigma} K| < +\infty, \quad K = \text{Gauss curv. of } \Sigma\]

- \(\Sigma^{\text{conf}} \cong \mathcal{M} - \{p_1, \ldots, p_k\}\).
- \(Q = \text{Hopf diff. of } \Sigma \to \mathbb{H}^2 \text{ extends meromorphically to } \mathcal{M}; \quad Q(z) = z^{2m_i} (dz)^2 \text{ at } p_i, \quad m_i \geq 0.\)
- \(N_3 \to 0 \text{ at } p_i.\)
- \(\int_{\Sigma} K = 2\pi(2 - 2g - 2k - \sum_{i=1}^{k} m_i).\)
Introduction

Theorem (Hauswirth-Rosenberg, 2006)

\[\Sigma \subset \mathbb{H}^2 \times \mathbb{R} \text{ compl. or. min. surf.}\]

\[|\int_{\Sigma} K| < +\infty, \quad K = \text{Gauss curv. of } \Sigma\]

- \(\Sigma^{\text{conf}} \cong \mathbb{M} - \{p_1, \cdots, p_k\}\).
- \(Q = \text{Hopf diff. of } \Sigma \to \mathbb{H}^2 \text{ extends meromorphically to } \mathbb{M}; \)
 \[Q(z) = z^{2m_i}(dz)^2 \text{ at } p_i, \quad m_i \geq 0.\]
- \(N_3 \to 0 \text{ at } p_i.\)
- \[\int_{\Sigma} K = 2\pi(2 - 2g - 2k - \sum_{i=1}^{k} m_i).\]
Theorem (Hauswirth-Rosenberg, 2006)

\[\Sigma \subset \mathbb{H}^2 \times \mathbb{R} \text{ compl. or. min. surf.} \]

\[|\int_{\Sigma} K| < +\infty, \quad K = \text{Gauss curv. of } \Sigma \]

\[\Sigma^{conf} \cong M - \{ p_1, \ldots, p_k \}. \]

\[Q = \text{Hopf diff. of } \Sigma \to \mathbb{H}^2 \text{ extends meromorphically to } M; \]
\[Q(z) = z^{2m_i}(dz)^2 \text{ at } p_i, \quad m_i \geq 0. \]

\[N_3 \to 0 \text{ at } p_i. \]

\[\int_{\Sigma} K = 2\pi(2 - 2g - 2k - \sum_{i=1}^{k} m_i). \]
Examples: Scherk graphs over ideal polygons with $2k$ edges, $k \geq 2$ (J-S condition) $\sim \int_{\Sigma} K = 2\pi(1 - k)$
Question [Hauswirth-Rosenberg]:

Are there non-symply connected examples of f.t.c.?

An annulus Σ with $\int_\Sigma K = -4\pi$?
New examples

k-noids

Theorem (Pyo, Morabito - _ __)

For any $k \geq 2$, $\exists \Sigma_k \subset \mathbb{H}^2 \times \mathbb{R}$ PEMS with genus 0, k vertical planar ends and

$$\int_{\Sigma} K = 4\pi(1 - k).$$

(\exists a $(2k - 3)$-parameter family)
New examples

k-noids

Parameter = dist. between the asymptotic vertical planes
New examples

k-noids
New examples

k-noids
New examples

k-noids

We can take limits of k-noids, $k \to +\infty$

Question [Ros]: Is there a PEMS for any genus 0 topology?

Theorem (Martín - __)

\[\forall \Sigma = \text{planar domain}, \exists f : \Sigma \to \mathbb{H}^2 \times \mathbb{R} \text{ prop. min. embedding.} \]

Finite topology \Rightarrow f.t.c.
We can take limits of k-noids, $k \to +\infty$

Question [Ros]: Is there a PEMS for any genus 0 topology?

Theorem (Martín - _)

$\forall \Sigma = \text{planar domain}, \exists f : \Sigma \to H^2 \times \mathbb{R}$ prop. min. embedding.

Finite topology \Rightarrow f.t.c.
We can take limits of k-noids, $k \to +\infty$

Question [Ros]: Is there a PEMS for any genus 0 topology?

Theorem (Martín - __):

$\forall \Sigma = \text{planar domain}, \exists f : \Sigma \to \mathbb{H}^2 \times \mathbb{R}$ prop. min. embedding.

Finite topology \Rightarrow f.t.c.
Question: Are the geodesics defining the ends "ordered"?
Question: Examples with higher genus?
Question: Examples with higher genus?
Theorem (Martín - Mazzeo - __)

For any \(g \geq 0 \) and \(k > 1 \) large, \(\exists \Sigma_{g,k} \subset \mathbb{H}^2 \times \mathbb{R} \ PEMS \) with f.t.c., genus \(g \) and \(k \) vertical planar ends.

Moreover, the c.c. of

\[
\mathcal{M}_{g,k} = \left\{ \Sigma \subset \mathbb{H}^2 \times \mathbb{R} \ PEMS \text{ with f.t.c., genus } g \text{ and } k \text{ vertical planar ends} \right\}
\]

containing \(\Sigma_{g,k} \) is a real analytic space of dimension \(2k - 3 \).
Theorem (Martín - Mazzeo - __)

For any $g \geq 0$ and $k > 1$ large, $\exists \Sigma_{g,k} \subset \mathbb{H}^2 \times \mathbb{R}$ PEMS with f.t.c., genus g and k vertical planar ends.

Moreover, the c.c. of

$$\mathcal{M}_{g,k} = \left\{ \Sigma \subset \mathbb{H}^2 \times \mathbb{R} \text{ PEMS with f.t.c., genus } g \text{ and } k \text{ vertical planar ends} \right\}$$

containing $\Sigma_{g,k}$ is a real analytic space of dimension $2k - 3$.

Magdalena Rodríguez

Minimal surfaces in $H^2 \times R$ with f.t.c.
Classification results

\[\Sigma \subset \mathbb{H}^2 \times \mathbb{R} \text{ with f.t.c. } \Rightarrow \int_{\Sigma} K = 2\pi(2 - 2g - 2k - \sum_{i=1}^{k} m_i) \]

Theorem (Hauswirth - Sa Earp - Toubiana)
\[\Sigma = \text{min. surf. in } \mathbb{H}^2 \times \mathbb{R} \text{ with } \int_{\Sigma} K = 0 \Rightarrow \Sigma = \text{vert. plane} \]

Theorem (Pyo -)
\[\Sigma = \text{min. surf. in } \mathbb{H}^2 \times \mathbb{R} \text{ with f.t.c. } \int_{\Sigma} K = -2\pi \]
\[\Rightarrow \Sigma = \text{a Scherk minimal graph over an ideal quadrilateral} \]

Theorem (Hauswirth - Nelli- Sa Earp - Toubiana)
\[\Sigma = \text{min. surf. in } \mathbb{H}^2 \times \mathbb{R} \text{ with f.t.c. and 2 vertical planar ends} \]
\[\Rightarrow \Sigma = \text{horizontal catenoid} \]
Classification results

\[\Sigma \subset \mathbb{H}^2 \times \mathbb{R} \text{ with f.t.c.} \Rightarrow \int_{\Sigma} K = 2\pi (2 - 2g - 2k - \sum_{i=1}^{k} m_i) \]

Theorem (Hauswirth - Sa Earp - Toubiana)

\[\Sigma = \text{min. surf. in } \mathbb{H}^2 \times \mathbb{R} \text{ with } \int_{\Sigma} K = 0 \Rightarrow \Sigma = \text{vert. plane} \]

Theorem (Pyo - ")

\[\Sigma = \text{min. surf. in } \mathbb{H}^2 \times \mathbb{R} \text{ with f.t.c. } \int_{\Sigma} K = -2\pi \]

\[\Rightarrow \Sigma = \text{a Scherk minimal graph over an ideal quadrilateral} \]

Theorem (Hauswirth - Nelli - Sa Earp - Toubiana)

\[\Sigma = \text{min. surf. in } \mathbb{H}^2 \times \mathbb{R} \text{ with f.t.c. and 2 vertical planar ends} \]

\[\Rightarrow \Sigma = \text{horizontal catenoid} \]
Classification results

\[\Sigma \subset \mathbb{H}^2 \times \mathbb{R} \text{ with f.t.c. } \Rightarrow \int_{\Sigma} K = 2\pi(2 - 2g - 2k - \sum_{i=1}^{k} m_i) \]

Theorem (Hauswirth - Sa Earp - Toubiana)

\[\Sigma = \text{min. surf. in } \mathbb{H}^2 \times \mathbb{R} \text{ with } \int_{\Sigma} K = 0 \Rightarrow \Sigma = \text{vert. plane} \]

Theorem (Pyo - _)

\[\Sigma = \text{min. surf. in } \mathbb{H}^2 \times \mathbb{R} \text{ with f.t.c. } \int_{\Sigma} K = -2\pi \]

\[\Rightarrow \Sigma = \text{a Scherk minimal graph over an ideal quadrilateral} \]

Theorem (Hauswirth - Nelli- Sa Earp - Toubiana)

\[\Sigma = \text{min. surf. in } \mathbb{H}^2 \times \mathbb{R} \text{ with f.t.c. and 2 vertical planar ends} \]

\[\Rightarrow \Sigma = \text{horizontal catenoid} \]
Classification results

\[\Sigma \subset \mathbb{H}^2 \times \mathbb{R} \text{ with f.t.c. } \Rightarrow \int_{\Sigma} K = 2\pi(2 - 2g - 2k - \sum_{i=1}^{k} m_i) \]

Theorem (Hauswirth - Sa Earp - Toubiana)

\[\Sigma = \text{min. surf. in } \mathbb{H}^2 \times \mathbb{R} \text{ with } \int_{\Sigma} K = 0 \Rightarrow \Sigma = \text{vert. plane} \]

Theorem (Pyo - __)

\[\Sigma = \text{min. surf. in } \mathbb{H}^2 \times \mathbb{R} \text{ with f.t.c. } \int_{\Sigma} K = -2\pi \]
\[\Rightarrow \Sigma = \text{a Scherk minimal graph over an ideal quadrilateral} \]

Theorem (Hauswirth - Nelli- Sa Earp - Toubiana)

\[\Sigma = \text{min. surf. in } \mathbb{H}^2 \times \mathbb{R} \text{ with f.t.c. and 2 vertical planar ends} \]
\[\Rightarrow \Sigma = \text{horizontal catenoid} \]
Question: When is a compl. emb. min. surf. proper?

Theorem (Colding-Minicozzi)

Any compl. emb. min. surf. with fin. top. in \mathbb{R}^3 must be proper.

Generalizations

\rightsquigarrow Meeks-Rosenberg, Meeks-Pérez-Ros

Theorem (Coskunuzer)

There exists a compl. non-proper emb. min. disk in \mathbb{H}^3.

Theorem (___ - Tinaglia)

There exists a compl. non-proper emb. min. disk in $\mathbb{H}^2 \times \mathbb{R}$.

Embedded Calabi-Yau problem
Embedded Calabi-Yau problem

Question: When is a compl. emb. min. surf. proper?

Theorem (Colding-Minicozzi)

Any compl. emb. min. surf. with fin. top. in \mathbb{R}^3 must be proper.

Generalizations \leadsto Meeks-Rosenberg, Meeks-Pérez-Ros

Theorem (Coskunuzer)

There exists a compl. non-proper emb. min. disk in \mathbb{H}^3.

Theorem (___- Tinaglia)

There exists a compl. non-proper emb. min. disk in $\mathbb{H}^2 \times \mathbb{R}$.
Question: When is a compl. emb. min. surf. proper?

Theorem (Colding-Minicozzi)

Any compl. emb. min. surf. with fin. top. in \mathbb{R}^3 must be proper.

Generalizations \rightsquigarrow Meeks-Rosenberg, Meeks-Pérez-Ros

Theorem (Coskunuzer)

There exists a compl. non-proper emb. min. disk in \mathbb{H}^3.

Theorem (___ - Tinaglia)

There exists a compl. non-proper emb. min. disk in $\mathbb{H}^2 \times \mathbb{R}$.
Question: When is a compl. emb. min. surf. proper?

Theorem (Colding-Minicozzi)
Any compl. emb. min. surf. with fin. top. in \mathbb{R}^3 must be proper.

Generalizations \rightsquigarrow Meeks-Rosenberg, Meeks-Pérez-Ros

Theorem (Coskunuzer)
There exists a compl. non-proper emb. min. disk in \mathbb{H}^3.

Theorem (___ - Tinaglia)
There exists a compl. non-proper emb. min. disk in $\mathbb{H}^2 \times \mathbb{R}$.
Calabi-Yau problem

Minimal surfaces in $H^2 \times \mathbb{R}$ with f.t.c.
Saddle Towers and minimal k-noids in $\mathbb{H}^2 \times \mathbb{R}$
(joint work with Filippo Morabito),

Minimal surfaces with limit ends in $\mathbb{H}^2 \times \mathbb{R}$,

Non-simply connected minimal planar domains in $\mathbb{H}^2 \times \mathbb{R}$
(joint work with Francisco Martín), to appear in Trans. AMS.

Minimal surfaces with positive genus and finite total curvature
in $\mathbb{H}^2 \times \mathbb{R}$ (joint work with Francisco Martín and
Rafe Mazzeo), preprint.

Simply-connected minimal surfaces with finite total curvature
in $\mathbb{H}^2 \times \mathbb{R}$ (joint work with Juncheol Pyo),

Non-proper complete minimal surfaces embedded in $\mathbb{H}^2 \times \mathbb{R}$
(joint work with Giuseppe Tinaglia), preprint.