Sobre la clasificación de los espacios lorentzianos r-ésimo simétricos

Miguel Sánchez Caja

Universidad de Granada

Seminario Geometría 5/04/2013
Aim of the talk:

- To classify the 2nd-symmetric Lorentzian manifolds, i.e.:

$$\nabla^2 R := \nabla(\nabla R) = 0$$
Aim of the talk:

- To classify the 2nd-symmetric Lorentzian manifolds, i.e.:
 \[\nabla^2 R := \nabla(\nabla R) = 0 \]

- To provide properties and open questions on the \emph{rth-symmetric} case \(\nabla^r R = 0 \) and, in general on the implications of \(\nabla^r T = 0 \) for any tensor field.
Introduction

Senovilla '08, who introduced its systematic study, pointed out a good number of applications including:
Introduction

Senovilla '08, who introduced its systematic study, pointed out a good number of applications including:

- Penrose limit type constructions
- “Super-energy” tensor
- Higher order Lagrangian theories, supergravity, vanishing of quantum fluctuations...
Introduction

But for me, the most basic mathematical reason suffices:

- **Riemannian case**: $\nabla^r R = 0 \Rightarrow \nabla R = 0$
Introduction

But for me, the most basic mathematical reason suffices:

- **Riemannian case:** $\nabla^r R = 0 \Rightarrow \nabla R = 0$
- So, instead of $\nabla^2 R = 0$, **semi-symmetric spaces** were introduced (Cartan, Szabó):

\[
\begin{align*}
\nabla^2 R(X, Y; \ldots) - \nabla^2 R(Y, X; \ldots) &= \\
&= \nabla_X (\nabla_Y R) - \nabla_Y (\nabla_X R) - \nabla_{[X,Y]} R \\
&=: R(X, Y) \cdot R = 0
\end{align*}
\]
Introduction

But for me, the most basic mathematical reason suffices:

- **Riemannian case**: $\nabla^r R = 0 \Rightarrow \nabla R = 0$

- So, instead of $\nabla^2 R = 0$, **semi-symmetric spaces** were introduced (Cartan, Szabó):

\[
\nabla^2 R(X, Y; \ldots) - \nabla^2 R(Y, X; \ldots) = \\
= \nabla_X(\nabla_Y R) - \nabla_Y(\nabla_X R) - \nabla_{[X,Y]} R \\
=: R(X, Y) \cdot R = 0
\]

- **Lorentzian and higher signatures**: $\nabla^r R = 0 \not\Rightarrow \nabla R = 0$
Introduction

- So, a ladder of conditions appear in the Lorentzian case:
 - Locally symmetric \subset 2nd-symmetric \subset semi-symmetric
Introduction

- So, a ladder of conditions appear in the Lorentzian case:
 Locally symmetric \subset 2nd-symmetric \subset semi-symmetric

How hadn’t 2nd-symmetry been studied before?
Introduction

Main result to be proven:

Theorem (Blanco, Senovilla, —)

Let \((M, g)\) be a *properly 2nd-symmetric* Lorentzian \(n\)-manifold:
- (Local classification). \((M, g)\) is *locally isometric to a product*
Main result to be proven:

Theorem (Blanco, Senovilla, —)

Let (M, g) *be a properly 2nd-symmetric* Lorentzian n-*manifold:*

- (Local classification). (M, g) is *locally isometric to a product*
 - a (non-flat) *symmetric Riemannian space* (N, g_N)
 - a *proper 2nd-order Cahen-Wallach space* (\mathbb{R}^{d+2}, g_A),

 $g_A = -2 du \left(dv + (a_{ij} u + b_{ij}) x^i x^j du \right) + \delta_{ij} dx^i dx^j$

 with some $a_{ij} \neq 0$.
Introduction

Main result to be proven:

Theorem (Blanco, Senovilla, —)

Let \((M, g)\) be a properly 2nd-symmetric Lorentzian \(n\)-manifold:

- **(Local classification).** \((M, g)\) is locally isometric to a product
 - a (non-flat) symmetric Riemannian space \((N, g_N)\)
 - a proper 2nd-order Cahen-Wallach space \((\mathbb{R}^{d+2}, g_A)\),
 \[g_A = -2 du \left(dv + (a_{ij}u + b_{ij})x^i x^j du \right) + \delta_{ij} dx^i dx^j \]
 with some \(a_{ij} \neq 0\).

- **(Global classification).** Moreover, if \((M, g)\) is 1-connected and geodesically complete, then it is globally isometric to \((\mathbb{R}^{d+2} \times N, g_A \oplus g_N)\).
Characterizations of local symmetry vs 2nd-symmetry

Proposition
For a (connected) semi-Riemannian manifold \((\mathbb{N}, h)\), they are equivalent:

(i) \((\mathbb{N}, h)\) is locally symmetric, i.e. \(\nabla R = 0\).
(ii) If \(X, Y\) and \(Z\) are parallel vector fields along a curve \(\gamma\), then so is \(R(X, Y)Z\).
(iii) The sectional curvature of non-degenerate planes is invariant under parallel transport.
(iv) The local geodesic symmetry \(s_p\) is an isometry at any \(p \in \mathbb{N}\).
(v) \((\mathbb{N}, h)\) is locally isometric to a symmetric space.

M. Sánchez

Lorentzian \(r\)-th symmetric spaces
Characterizations of local symmetry vs 2nd-symmetry

Local symmetry

Proposition

For a (connected) semi-Riemannian manifold (N, h), they are equivalent:

(i) (N, h) is locally symmetric, i.e. $\nabla R = 0$.

(ii) If X, Y and Z are parallel vector fields along a curve γ, then so is $R(X, Y)Z$.

(iii) The sectional curvature of non-degenerate planes is invariant under parallel transport

(iv) The local geodesic symmetry s_p is an isometry at any $p \in N$.

(v) (N, h) is locally isometric to a symmetric space.
Characterizations of local symmetry vs 2nd-symmetry

Remark

“\((N, h)\) is locally isometric to a symmetric space”

\(\sim\) as a difference with the locally homogeneous case, as there exists even Riemannian non-regular ones (Kowalski’97)
Characterizations of local symmetry vs 2nd-symmetry

2nd symmetry

Lemma

For a semi-Riemannian \((N, h)\), they are equivalent:

- Skew symmetry of \(\nabla^2 R\) in the derivatives slots.

- For any non-degenerate tangent plane \(\Pi_p \subset T_pN\), its parallel transport \(\Pi_\gamma\) along any geodesic \(\gamma\), the derivative of its sectional curvature \(\frac{d}{d\tau}(K(\Pi_\gamma))\) is a constant along \(\gamma\).

- For any parallely propagated vector fields \(X, Y, Z\) along any geodesic \(\gamma\), the vector field \((\nabla_\gamma' R)(X, Y)Z\) is itself parallely propagated along \(\gamma\).
Characterizations of local symmetry vs 2nd-symmetry

Proposition

For a semi-Riemannian \((N, h)\), they are equivalent:

(i) \((N, h)\) is 2nd-symmetric, \(\nabla \nabla R = 0\)

(ii) \((N, h)\) is semi-symmetric \((R(X, Y)R = 0)\) and satisfies any of the equivalent conditions to skew-symmetry in the lemma.

(iii) If \(V, X, Y, Z\) are parallelly propagated vector fields along any curve, then so is \((\nabla_v R)(X, Y)Z\).
Characterizations of local symmetry vs 2nd-symmetry

Proposition

For a semi-Riemannian \((N, h)\), they are equivalent:

(i) \((N, h)\) is 2nd-symmetric, \(\nabla \nabla R = 0\)

(ii) \((N, h)\) is semi-symmetric \((R(X, Y)R = 0)\) and satisfies any of the equivalent conditions to skew-symmetry in the lemma.

(iii) If \(V, X, Y, Z\) are parallelly propagated vector fields along any curve, then so is \((\nabla \nabla R)(X, Y)Z\).

Remark

Characterizations in terms of an analog of the geodesic symmetry or local isometries to a model space are conspicuously absent.
Classification locally symmetric vs 2nd-symmetric

Locally symmetric: it is enough to classify the symmetric ones.
Classification locally symmetric vs 2nd-symmetric

Locally symmetric: it is enough to classify the symmetric ones.

Riemannian symmetric: known from Cartan's.
Classification locally symmetric vs 2nd-symmetric

Locally symmetric: it is enough to classify the symmetric ones.

Riemannian symmetric: known from Cartan’s. In particular:

Proposition

Let (M, g) be a locally symmetric Riemannian manifold. Then (M, g) is locally isometric to the direct product of a finite number of irreducible symmetric spaces and a Euclidean d-space.
Locally symmetric: it is enough to classify the symmetric ones.

Riemannian symmetric: known from Cartan’s. In particular:

Proposition

Let (M, g) be a locally symmetric Riemannian manifold. Then (M, g) is locally isometric to the direct product of a finite number of irreducible symmetric spaces and a Euclidean d-space. Moreover:

1. When (M, g) irreducible, then $\text{Ric} = cg$
Classification locally symmetric vs 2nd-symmetric

Locally symmetric: it is enough to classify the symmetric ones.
Riemannian symmetric: known from Cartan’s. In particular:

Proposition

Let \((M, g)\) be a locally symmetric Riemannian manifold. Then \((M, g)\) is locally isometric to the direct product of a finite number of irreducible symmetric spaces and a Euclidean \(d\)-space. Moreover:

1. When \((M, g)\) irreducible, then \(\text{Ric} = cg\)
2. When \((M, g)\) Ricci-flat, then \(R \equiv 0\)
Classification locally symmetric vs 2nd-symmetric

Locally symmetric: it is enough to classify the symmetric ones.

Riemannian symmetric: known from Cartan's. In particular:

Proposition

Let \((M, g)\) be a locally symmetric Riemannian manifold. Then \((M, g)\) is locally isometric to the direct product of a finite number of irreducible symmetric spaces and a Euclidean \(d\)-space. Moreover:

1. When \((M, g)\) irreducible, then \(\text{Ric} = cg\)
2. When \((M, g)\) Ricci-flat, then \(\text{R} \equiv 0\)

Proof: Use de Rham decomposition
Proposition

Let \((M, g)\) be a locally symmetric Riemannian manifold.

1. When \((M, g)\) irreducible, then \(\text{Ric} = cg\)
2. When \((M, g)\) Ricci-flat, then \(R \equiv 0\)
Proposition

Let \((M, g)\) be a locally symmetric Riemannian manifold.

1. When \((M, g)\) irreducible, then \(\text{Ric} = cg\)
2. When \((M, g)\) Ricci-flat, then \(R \equiv 0\)

Proof. 1. Ricci is parallel, so use classical Eisenhart theorem:

- If a Riemannian \((N, g_R)\) admits a 2-cov. symmetric parallel \(L\).
 - \(L \neq cg_R\), then locally:
Classification locally symmetric vs 2nd-symmetric

Proposition

Let \((M, g)\) be a locally symmetric Riemannian manifold.

1. When \((M, g)\) irreducible, then \(\text{Ric} = cg\)
2. When \((M, g)\) Ricci-flat, then \(R \equiv 0\)

Proof. 1. Ricci is parallel, so use classical Eisenhart theorem:
 - If a Riemannian \((N, g_R)\) admits a 2-cov. symmetric parallel \(L\).
 - \(L \neq cg_R\), then locally:
 - \(g_R\) is reducible: \(g_R = g_R^{(1)} \oplus g_R^{(2)} \oplus \ldots \oplus g_R^{(s)}\).
 - \(L = \sum_{m=1}^{s} \lambda_m g_R^{(m)}\) for some \(\lambda_m \in \mathbb{R}\).
Classification locally symmetric vs 2nd-symmetric

Proposition

Let \((M, g)\) be a locally symmetric Riemannian manifold.

1. When \((M, g)\) irreducible, then \(\text{Ric} = cg\)
2. When \((M, g)\) Ricci-flat, then \(R \equiv 0\)

Proof. 1. Ricci is parallel, so use classical Eisenhart theorem:
- If a Riemannian \((N, g_R)\) admits a 2-cov. symmetric parallel \(L\).
 - \(L \neq cg_R\), then locally:
 - \(g_R\) is reducible: \(g_R = g_R^{(1)} \oplus g_R^{(2)} \oplus \ldots \oplus g_R^{(s)}\).
 - \(L = \sum_{m=1}^{s} \lambda_m g_R^{(m)}\) for some \(\lambda_m \in \mathbb{R}\).

2. Holds even for homogeneous sp. (Alekseevsky, Kimelfeld ’75)
Classification locally symmetric vs 2nd-symmetric

Proposition

Let \((M, g)\) be a locally symmetric Riemannian manifold.

1. When \((M, g)\) irreducible, then \(\text{Ric} = cg\)
2. When \((M, g)\) Ricci-flat, then \(R \equiv 0\)

Proof. 1. Ricci is parallel, so use classical Eisenhart theorem:
 - If a Riemannian \((N, g_R)\) admits a 2-cov. symmetric parallel \(L\).
 \(L \neq cg_R\), then locally:
 - \(g_R\) es reducible: \(g_R = g_R^{(1)} \oplus g_R^{(2)} \oplus \ldots \oplus g_R^{(s)}\).
 - \(L = \sum_{m=1}^{s} \lambda_m g_R^{(m)}\) for some \(\lambda_m \in \mathbb{R}\).

2. Holds even for homogeneous sp. (Alekseevsky, Kimelfeld ’75)—and locally homogeneous with \(\text{Ric} \leq 0\) are regular (Spiro ’93)
Classification locally symmetric vs 2nd-symmetric

Lorentzian symmetric spaces

Theorem (Cahen, Wallach '70)

A *complete 1-connected Lorentzian symmetric space* \((M, g)\) is isometric to the *product* of a *simply-connected Riemannian symmetric space* and one of the following Lorentzian manifolds:
Classification locally symmetric vs 2nd-symmetric

Lorentzian symmetric spaces

Theorem (Cahen, Wallach '70)

A complete 1-connected Lorentzian symmetric space \((M, g)\) is isometric to the product of a simply-connected Riemannian symmetric space and one of the following Lorentzian manifolds:

1. \((\mathbb{R}, -dt^2)\)
2. The universal cover of de Sitter or anti-de Sitter \(d\)-spaces, \(d \geq 2\),
3. A Cahen-Wallach space \(CW^d(A) = (\mathbb{R}^d, g_A), d \geq 2\), where \(A \equiv (A_{ij})\) is a \((d - 2) \times (d - 2)\) matrix and

\[
g_A = -2du \left(dv + A_{ij}x^ix^jdu \right) + \sum_{ij} \delta_{ij}dx^idx^j
\]
Local symmetry vs. 2nd-symmetry
When $\nabla' T = 0 \Rightarrow \nabla T = 0$?
Brinkmann spaces
Sketch of proof

Classification locally symmetric vs 2nd-symmetric

Remark
Choosing A with $\text{trace}(A) = 0$:
there are Ricci flat non-flat Lorentzian symmetric spaces.
Remark

Choosing A with $\text{trace}(A) = 0$:
there are Ricci flat non-flat Lorentzian symmetric spaces.

Remark

Lorentzian symmetric space with a parallel lightlike v.f. K ⇒:
Locally isometric to the product of a $CW^d(A), d > 2$ and
Riemannian symmetric space.
Classification locally symmetric vs 2nd-symmetric

2nd-symmetric:
The theorem to be proven shows:

proper 2nd-symmetric spaces only appear generalizing the family of Cahen-Wallach spaces \(CW^d(A), d > 2 \):

- \(\sim \rightarrow \) allow an affine dependence of the matrix \(A \) in \(u \)
Generalization of Cahen-Wallach family

Generalized Cahen-Wallach d-space of order r, $\text{CW}_r^d(A) = (\mathbb{R}^d, g_A)$, $d \geq 2$: metric:

$$g_A = -2du \left(dv + \sum_{ij} A_{ij}(u)x^i x^j du \right) + \sum_{ij} \delta_{ij} dx^i dx^j$$

where $A \equiv (A_{ij}(u))$ is a $(d - 2) \times (d - 2)$ matrix:

$$A_{ij}(u) = A_{ij}^{(r-1)} u^{r-1} + \cdots + A_{ij}^{(1)} u + A_{ij}^0$$

for symmetric (constant) matrixes A_{ij}^k.
Proposition

Any generalized Cahen-Wallach space $\text{CW}_r^d(A)$ satisfies:

1. If $A_{ij}^{(r-1)} \neq 0$ (\(\text{CW}_r^d(A)\) is proper) then it is proper rth-symmetric

1. Direct computation: in an appropriate basis

\[\{E_\alpha\} = \{E_0 = \partial_u - \sum A_{ij} x^i x^j \partial_v, E_1 = \partial_v, \partial_i\} \]

the only non-vanishing components of $\nabla^l R, l \in \{0, \ldots, r-1\}$ are:

\[\nabla_0^{(l)} \cdot \nabla_0 R^{1}_{i0j} = \frac{d^l A_{ij}}{d u} = \sum_{k=l}^{r-1} \frac{k!}{(k-l)!} A_{ij}^{(k)} u^{k-l} \]
Generalization of Cahen-Wallach family

Proposition

Any generalized Cahen-Wallach space $CW_{r}^{d}(A)$ satisfies:

1. If $A_{ij}^{(r-1)} \neq 0$ ($CW_{r}^{d}(A)$ is proper) then it is proper rth-symmetric
2. $K = \partial_{\nu}$ is a lightlike parallel vector field
3. It is analytic
4. It is geodesically complete

Proof. 2,3: Trivial
Local symmetry vs. 2nd-symmetry
When $\nabla^r T = 0 \Rightarrow \nabla T = 0$?
Brinkmann spaces
Sketch of proof

Generalization of Cahen-Wallach family

Proposition

Any generalized Cahen-Wallach space $CW^d_r(A)$ satisfies:

1. If $A^{(r-1)}_{ij} \neq 0$ ($CW^d_r(A)$ is proper) then it is proper rth-symmetric
2. $K = \partial_v$ is a lightlike parallel vector field
3. It is analytic
4. It is geodesically complete

Proof. 2,3: Trivial
4. Direct computation or general results (Candela, Romero, — ’13)
Corollary

A complete 1-connected Lorentzian manifold locally isometric to some $CW_r^d(A)$ is globally isometric too.

This will allow to go from the local to the global result.
Must rth-symmetry imply local symmetry?

This is a particular case of:

- When $\nabla^r T = 0 \Rightarrow \nabla T = 0$?
Riemannian case

Theorem

Let \((M, g)\) be *Riemannian* and \(T\) a tensor field such that \(\nabla'r T = 0\). Then \(\nabla T = 0\) if either

(a) (Nomizu-Ozeki '62) \(g\) is complete and irreducible, or

(b) (Nomizu [unpub], Tanno '72) \(T\) is \(R\), or \(Ric\), Weyl, projective \(t\).
Riemannian case

Theorem

Let \((M, g)\) be Riemannian and \(T\) a tensor field such that \(\nabla' T = 0\). Then \(\nabla T = 0\) if either

(a) (Nomizu-Ozeki '62) \(g\) is complete and irreducible, or
(b) (Nomizu [unpub], Tanno '72) \(T\) is \(R\), or \(Ric\), Weyl, projective \(t\).

Remark

In particular, from (b), Riemannian \(r\)-th symmetric implies locally symmetric.
Riemannian case

Theorem

Let \((M, g)\) be \textbf{Riemannian} and \(T\) a tensor field such that \(\nabla' T = 0\). Then \(\nabla T = 0\) if either
(a) (Nomizu-Ozeki ’62) \(g\) is complete and irreducible, or
(b) (Nomizu [unpub], Tanno ’72) \(T\) is \(R\), or \(Ric\), \(Weyl\), \(projective\) t.
Riemannian case

Theorem

Let \((M, g)\) be **Riemannian** and \(T\) a tensor field such that \(\nabla' T = 0\). Then \(\nabla T = 0\) if either

(a) (Nomizu-Ozeki ’62) \(g\) is complete and irreducible, or

(b) (Nomizu [unpub], Tanno ’72) \(T\) is \(R\), or Ric, Weyl, projective t.

Proof (a) 1. Case \(r = 2\) suffices (replace otherwise \(\tilde{T} := \nabla^{r-2} T\)).
Theorem

Let \((M, g)\) be \textit{Riemannian} and \(T\) a tensor field such that
\(\nabla' T = 0\). Then \(\nabla T = 0\) if either

(a) (Nomizu-Ozeki ’62) \(g\) is complete and irreducible, or
(b) (Nomizu [unpub], Tanno ’72) \(T\) is \(R\), or \(Ric\), \(Weyl\), \(projective\) \(t\).

Proof (a) 1. Case \(r = 2\) suffices (replace otherwise \(\widetilde{T} := \nabla^{r-2} T\)).
2. Put \(f := g(T, T)/2\). Using \(\nabla^2 T = 0\):

\[
\text{Hess} f(X, Y) = g(\nabla_X T, \nabla_Y T) \quad \text{and} \quad \nabla \text{Hess} f = 0
\]
Riemannian case

Theorem

Let \((M, g)\) be Riemannian and \(T\) a tensor field such that \(\nabla' T = 0\). Then \(\nabla T = 0\) if either

(a) (Nomizu-Ozeki '62) \(g\) is complete and irreducible, or
(b) (Nomizu [unpub], Tanno '72) \(T\) is R, or Ric, Weyl, projective t.

Proof (a) 1. Case \(r = 2\) suffices (replace otherwise \(\tilde{T} := \nabla^{r-2} T\)).
2. Put \(f := g(T, T)/2\). Using \(\nabla^2 T = 0\):

\[
\text{Hess} f(X, Y) = g(\nabla_X T, \nabla_Y T) \quad \text{and} \quad \nabla \text{Hess} f = 0
\]

3. By Eisenhart thm: \(\text{Hess} f = cg\), \(c \in \mathbb{R}\). Thus \(Z := \text{grad}(f)\) satisfies \(\nabla_X Z = cX\) (in particular, is homothetic)
Riemannian case

Theorem

Let \((M, g)\) be Riemannian and \(T\) a tensor field such that \(\nabla' T = 0\). Then \(\nabla T = 0\) if either

(a) (Nomizu-Ozeki '62) \(g\) is complete and irreducible, or
(b) (Nomizu [unpub], Tanno '72) \(T\) is \(R\), or \(Ric\), Weyl, projective \(t\).

Proof (a)

1. Case \(r = 2\) suffices (replace otherwise \(\tilde{T} := \nabla^{r-2} T\)).
2. Put \(f := g(T, T)/2\). Using \(\nabla^2 T = 0\):

 \[
 \text{Hess} f(X, Y) = g(\nabla_X T, \nabla_Y T) \quad \text{and} \quad \nabla \text{Hess} f = 0
 \]

3. By Eisenhart thm: \(\text{Hess} f = cg\), \(c \in \mathbb{R}\). Thus \(Z := \text{grad}(f)\) satisfies \(\nabla_X Z = cX\) (in particular, is homothetic)
4. Under irreducibility + completeness homothetic vectors are Killing: \(c = 0\) \(g(\nabla_X T, \nabla_Y T) = 0\). As \(g\) is Riemannian \(\nabla T = 0\).
Riemannian case

Theorem

Let \((M, g)\) be **Riemannian** and \(T\) a tensor field such that \(\nabla' T = 0\). Then \(\nabla T = 0\) if either

(a) (Nomizu-Ozeki ’62) \(g\) is complete and irreducible, or
(b) (Nomizu [unpub], Tanno ’72) \(T\) is \(R\), or \(Ric\), Weyl, projective \(t\).

Proof (b) 1. Irreducibility can be assumed: \(T = 0\) on the flat part of (local) de Rham decomposition (as well as on mixed elements)
Riemannian case

Theorem

Let \((M, g)\) be Riemannian and \(T\) a tensor field such that \(\nabla' T = 0\). Then \(\nabla T = 0\) if either

(a) (Nomizu-Ozeki ’62) \(g\) is complete and irreducible, or
(b) (Nomizu [unpub], Tanno ’72) \(T\) is \(R\), or \(Ric\), Weyl, projective.

Proof (b) 1. Irreducibility can be assumed: \(T = 0\) on the flat part of (local) de Rham decomposition (as well as on mixed elements)

2. As before, one has \(\nabla_X Z = cX\) and needs \(c = 0\).
Riemannian case

Theorem

Let \((M, g)\) be Riemannian and \(T\) a tensor field such that \(\nabla' T = 0\). Then \(\nabla T = 0\) if either
(a) (Nomizu-Ozeki '62) \(g\) is complete and irreducible, or
(b) (Nomizu [unpub], Tanno '72) \(T\) is \(R\), or \(Ric\), Weyl, projective \(t\).

Proof (b) 1. Irreducibility can be assumed: \(T = 0\) on the flat part of (local) de Rham decomposition (as well as on mixed elements)
2. As before, one has \(\nabla_X Z = cX\) and needs \(c = 0\).
3. As \(Z\) is homothetic, it is affine. Thus \(L_Z \nabla = 0 = L_Z T\) and:

\[
0 = L_Z \nabla T = \nabla_Z (\nabla T) + (s + 1)c \nabla T = (s + 1)c \nabla T
\]

\((s: \text{covar minus contrav slots for } T)\). That is, if \(c \neq 0\) directly \(\nabla T = 0\). □
Conclusion

Remark

\[\nabla' T = 0 \nRightarrow \nabla T = 0 \] only when:

- The manifold is reducible, with a flat part in de Rham decomposition, OR
- The manifold is incomplete with a proper (non-Killing) homothetic vector field (necessarily without zeroes)

In the latter case the metric can be written locally as a cone:

\[M = I \times S, \quad I \subset (0, \infty), \] with

\[g = dt^2 + t^2 \pi^* S \]

being Z = t \partial_t proper homothetic. In particular:

\[\nabla Z = 2 \cdot \text{Id} (\neq 0) \]

\[\nabla^2 Z = 0 \]
Remark

\[\nabla' T = 0 \nleftrightarrow \nabla T = 0 \] only when:

- The manifold is reducible, with a flat part in de Rham decomposition, OR
Conclusion

Remark

\(\nabla' T = 0 \not\Rightarrow \nabla T = 0 \) only when:

- The manifold is reducible, with a flat part in de Rham decomposition, OR
- The manifold is incomplete with a proper (non-Killing) homothetic vector field (necessarily without zeroes)
Remark

$\nabla' T = 0 \not\Rightarrow \nabla T = 0$ only when:

- The manifold is reducible, with a flat part in de Rham decomposition, OR
- The manifold is incomplete with a proper (non-Killing) homothetic vector field (necessarily without zeroes)

In the latter case the metric can be written locally as a *cone*:

$M = I \times S, I \subset (0, \infty), (S, g_S)$ Riemannian

$$g = dt^2 + t^2 \pi^*_S g_S$$

being $Z = t \partial_t$ proper homothetic. In particular:

$$\nabla Z = 2 \cdot \text{Id}(\neq 0) \quad \nabla^2 Z = 0$$
Difficulties for the semi-Riemannian extension

1. The (full, local) de Rham decomposition cannot be carried out when the subspaces invariant by local holonomy are degenerate.
2. The conclusion $c=0$ only means $g(T,T)$ constant and $g(\nabla T,\nabla T) = 0$ i.e. ∇T is a lightlike tensor.
3. Even in the non-degenerate irreducible case, to apply Eisenhart one needs: if the restricted homogeneous holonomy group is irreducible and a symm. 2-cov tensor h is invariant by the group, then $h = cg$ for some function c, which is constant if h is parallel.
 However, this holds in Lorentzian signature and others (Tanno'67, $n=2$ or non-neutral signature).

M. Sánchez
Lorentzian r-th symmetric spaces
Difficulties for the semi-Riemannian extension

1. The (full, local) de Rham decomposition cannot be carried out when the subspaces invariant by local holonomy are degenerate
Difficulties for the semi-Riemannian extension

1. The (full, local) de Rham decomposition cannot be carried out when the subspaces invariant by local holonomy are degenerate.

2. The conclusion $c = 0$ only means $g(T, T)$ constant and $g(\nabla T, \nabla T) = 0$ i.e. ∇T is a lightlike tensor.
Difficulties for the semi-Riemannian extension

1. The (full, local) de Rham decomposition cannot be carried out when the subspaces invariant by local holonomy are degenerate.

2. The conclusion $c = 0$ only means $g(T, T)$ constant and $g(\nabla T, \nabla T) = 0$ i.e. ∇T is a lightlike tensor.

3. Even in the non-degenerate irreducible case, to apply Eisenhart one needs: if the restricted homogeneous holonomy group is irreducible and a symm. 2-cov tensor h is invariant by the group, then $h = cg$ for some function c, which is constant if h is parallel. However, this holds in Lorentzian signature and others (Tanno’67, $n = 2$ or non-neutral signature).
Further properties: $\nabla^r T = 0$ in generic points

Definition

A point p is generic if the curvature endomorphism:

$$R : \Lambda^2(M) \to \Lambda^2(M), \quad \nu^b \wedge w^b \mapsto 2R(\nu, w)$$

is an isomorphism when restricted to p.

Theorem

If there exists a generic point, $\nabla^r T = 0$ implies $\nabla T = 0$, for any semi-Riemannian metric.
\[\nabla' T = 0 \text{ in generic points} \]

Theorem

If there exists a generic point, \(\nabla' T = 0 \) implies \(\nabla T = 0 \), for any semi-Riemannian metric.

Proofs of increasing generality:

1. Simply, *no conic metric* (nor flat one) *is generic.*
\n\n\n**Theorem**

If there exists a generic point, \(\nabla' T = 0 \) implies \(\nabla T = 0 \), for any semi-Riemannian metric.

Proofs of increasing generality:

1. Simply, **no conic metric** (nor flat one) is generic.

Remarks

- Valid **only for the Riemannian case**
- Extensible to generic (non-degenerate) Ric, as \(\text{Ric}(\partial_t, X) = 0 \) in the conic metric
Theorem

If there exists a generic point, \(\nabla^r T = 0 \) implies \(\nabla T = 0 \), for any semi-Riemannian metric.

Proofs of increasing generality:

1. (Tanno ’72) As we had \(Z \) with \(\nabla X Z = cX \):
 \[
 0 = L_Z \nabla = \nabla^2 Z + R(Z, \cdot) = R(Z, \cdot)
 \]
 So \(R \) is not invertible except if \(Z = 0 \).
Local symmetry vs. 2nd-symmetry

When $\nabla' T = 0 \Rightarrow \nabla T = 0$?

Brinkmann spaces

Sketch of proof

Riemannian case

Semi-Riemannian extension

Generic points

Old techniques and lightlike parallel vector fields

$\nabla' T = 0$ in generic points

Theorem

If there exists a generic point, $\nabla' T = 0$ implies $\nabla T = 0$, for any semi-Riemannian metric.

Proofs of increasing generality:

1. (Tanno ’72) As we had Z with $\nabla_X Z = cX$:

$$0 = L_Z \nabla = \nabla^2 Z + R(Z, \cdot) = R(Z, \cdot)$$

So R is not invertible except if $Z = 0$.

Remarks:

- Also valid for Riemannian and extensible to generic Ric
- For Lorentz and non-neutral sign. + irreducibility, it applies, but then implies only $g(\nabla T, \nabla T) = 0$ and $g(T, T) = \text{const.}$
\(\nabla^r T = 0 \) in generic points

Theorem

(Senovilla '08) If there exists a generic point, \(\nabla^r T = 0 \) implies \(\nabla T = 0 \) on all \(M \), for any semi-Riemannian metric.

Proofs of increasing generality:

3. *(Senovilla '08)* Apply the Ricci identities to \(T \) and \(\nabla T \): The invertibility of \(R \) allows to clear \(\nabla T = 0 \).
\[\nabla^r T = 0 \text{ in generic points} \]

Theorem

(Senovilla '08) If there exists a generic point, \(\nabla^r T = 0 \) implies \(\nabla T = 0 \) on all \(M \), for any semi-Riemannian metric.

Proofs of increasing generality:

1. (Senovilla '08) Apply the Ricci identities to \(T \) and \(\nabla T \):
 The invertibility of \(R \) allows to clear \(\nabla T = 0 \).

Remarks:

- Independent of both, signature or previous computations
- Extensible to: all semi-symmetric spaces have constant curvature around generic points
Limits of old techniques

A computation in the spirit of old papers:

Proposition

Let \((M, g)\) be semi-Riemannian and \(r\)-th symmetric. If there exists a vector field \(Z\):

\[
\nabla_X Z = cX \quad c \in \mathbb{R} \quad \forall X \in \mathfrak{X}(M)
\]

then either \(Z\) is parallel or \(R = 0\).
Limits of old techniques

A computation in the spirit of old papers:

Proposition

Let \((M, g)\) be semi-Riemannian and \(r\)-th symmetric. If there exists a vector field \(Z\):

\[
\nabla_X Z = cX \quad c \in \mathbb{R} \quad \forall X \in \mathfrak{X}(M)
\]

then either \(Z\) is parallel or \(R = 0\).

Proof. As \(Z\) is homothetic, \(L_Z \nabla = 0\), \(L_Z \nabla^k R^l_{ijk} = 0\) and:

\[
0 = L_Z (\nabla^{r-1} R) = \nabla_Z (\nabla^{r-1} R) + (1 + r)c \nabla^{r-1} R = (1 + r)c \nabla^{r-1} R
\]

So, if \(c \neq 0\), use induction. □
Limits of old techniques

Corollary

A proper rth-symmetric Lorentzian (M, g) either admits a parallel lightlike direction or satisfies that $\nabla^{r-1} R$ is (parallel and) null and $g(\nabla^{r-2} R, \nabla^{r-2} R)$ is a constant.

Proof. The first possibility occurs either when degenerately reducible or when admits a lightlike parallel v.f.
Corollary

A proper rth-symmetric Lorentzian (M, g) either admits a parallel lightlike direction or satisfies that $\nabla^{r-1}R$ is (parallel and) null and $g(\nabla^{r-2}R, \nabla^{r-2}R)$ is a constant.

Proof. The first possibility occurs either when degenerately reducible or when admits a lightlike parallel v.f. Otherwise, in each irreducible part, put again $T = \nabla^{r-2}R$, $f = g(T, T)$, $\text{Hess} f(X, Y) = g(\nabla_X T, \nabla_Y T)$ and $Z = \text{grad} f$. By previous Prop., necessarily $Z \equiv 0$. □
Limits of old techniques

Corollary

A proper rth-symmetric Lorentzian \((M, g)\) either admits a parallel lightlike direction or satisfies that \(\nabla^{r-1} R\) is (parallel and) null and \(g(\nabla^{r-2} R, \nabla^{r-2} R)\) is a constant.

Proof. The first possibility occurs either when degenerately reducible or when admits a lightlike parallel v.f. Otherwise, in each irreducible part, put again \(T = \nabla^{r-2} R\), \(f = g(T, T), \text{Hess} f(X, Y) = g(\nabla_X T, \nabla_Y T)\) and \(Z = \text{grad} f\).

By previous Prop., necessarily \(Z \equiv 0. \square\)

Remark

Limit of “old” results: this suggests that at least 2nd-symmetric Lorentzian spaces must admit a parallel lightlike v.f. \(K\).
Existence of a lightlike parallel vector field

Theorem

(Senovilla '08). Any proper 2nd-symmetric Lorentzian space admits a unique lightlike parallel vector field K.

(Alternative proof by Aleksevski & Galaev, '11.)
Existence of a lightlike parallel vector field

Theorem

(Senovilla '08). Any proper 2nd-symmetric Lorentzian space admits a unique lightlike parallel vector field K.

(Alternative proof by Aleksevski & Galaev, '11.)

Steps of direct original proof (as simplified in Blanco’s thesis):
Existence of a lightlike parallel vector field

Theorem

(Senovilla ’08). Any proper 2nd-symmetric Lorentzian space admits a unique lightlike parallel vector field K.

(Alternative proof by Alekseevski & Galaev, ’11.)

Steps of direct original proof (as simplified in Blanco’s thesis):

- Previous result for \exists parallel light. vector, not only a line:
 - \exists Parallel $L \neq cg$ plus no decomposable (non-degenerately reducible) $\Rightarrow \exists!$ independent parallel lightlike vector K.

 (proof by discussing possible Segre types)
Existence of a lightlike parallel vector field

Theorem

(Senovilla '08). Any proper 2nd-symmetric Lorentzian space admits a unique lightlike parallel vector field \(K \).

(Alternative proof by Aleksevski & Galaev, '11.)

Steps of direct original proof (as simplified in Blanco’s thesis):

- **Previous result for \(\exists \) parallel light. vector, not only a line:**
 - \(\exists \) Parallel \(L \neq cg \) plus no *decomposable* (non-degenerately reducible) \(\Rightarrow \exists! \) independent parallel lightlike vector \(K \).
 (proof by discussing possible Segre types)

Uniqueness: a linear combination of \(K_1 \pm K_2 \) would be (parallel and) timelike in contradiction with no-decompsability/properness.
Existence of a lightlike parallel vector field

Theorem

(Senovilla '08). Any proper 2nd-symmetric Lorentzian space admits a unique independent lightlike parallel vector field K.

- **Analyze the curvature concomitants** showing that, either such a K exists, or they vanish:
 (a) 1-form concomitants of order m and degree up to $m + 1$
 (b) scalar or 2-cov. concomitants of equal order and degree.
- **Using Ricci identity**, such restrictions force the existence of K
Brinkmann spaces

Definition

A **Brinkmann space** is any Lorentzian n-manifold endowed with a complete lightlike parallel vector field K.
Brinkmann spaces

Definition

A Brinkmann space is any Lorentzian n-manifold endowed with a complete lightlike parallel vector field K.

Brinkmann decomposition $\{u, v\}$:

1. K parallel: fix u (up to a constant) s.t.: $K = \text{grad} u$
2. K lightlike: $K \perp$ degenerate totally geodesic integrable foliation with leaves Σ_u
3. Choose a hypersurface Ω transverse to K so that $\tilde{M} := \Sigma_{u=0} \cap \Omega$ is spacelike and transverse
4. Let ϕ the flow of K, define v so that $\phi_{-v(p)}(p) \in \Omega$
Construction of the Brinkmann decomposition
Construction of a Brinkmann chart

- **Brinkmann chart** \(\{u, v, x^i\} \): complete \(u, v \) to a chart by choosing \(n - 2 \) coordinates \(x^i \) independent of \(u \) in \(\Omega \).
Construction of a Brinkmann chart

- **Brinkmann chart** \(\{u, v, x^i\}\): complete \(u, v\) to a chart by choosing \(n - 2\) coordinates \(x^i\) independent of \(u\) in \(\Omega\).

- **Expression of** \(g\) **in a Brinkmann chart**:

\[
g = -2du \left(dv + H(u, x^k)du + W_i(u, x^k)dx^i \right) + g_{ij}(u, x^k)dx^i dx^j
\]

(natural sum in repeated indexes, \(K \equiv -\partial_v\))
Construction of a Brinkmann chart

- **Brinkmann chart** \(\{u, v, x^i\} \): complete \(u, v \) to a chart by choosing \(n - 2 \) coordinates \(x^i \) independent of \(u \) in \(\Omega \).

- Expression of \(g \) in a Brinkmann chart:

\[
g = -2du \left(dv + H(u, x^k)du + W_i(u, x^k)dx^i \right) + g_{ij}(u, x^k)dx^i dx^j
\]

(natural sum in repeated indexes, \(K \equiv -\partial_v \))

Remark

Being more careful, one could get \(H = 0 \) and \(W_i = 0 \)!

But it is preferred as above, as we wish to remove the \(u \)-dependence of \(g_{ij}(u, x^i) \).
In general:

Study of degenerate hypersurfaces

\leadsto *Transverse vector field* ξ

Non-unique ξ: wise choice when possible.
Geometric developments

- In general:

 Study of degenerate hypersurfaces

 \(\rightsquigarrow \) *Transverse vector field \(\xi \)*

 Non-unique \(\xi \): wise choice when possible.

- This happens in Brinkmann spaces too:

 degenerate hypersurfaces \(\Sigma_u \) with transverse \(\partial_u \)

 (non-univocally determined)
Geometric developments

- In general:

 Study of degenerate hypersurfaces

  ~~~~~
  Transverse vector field $\xi$
  ~~~~~

 Non-unique ξ: wise choice when possible.

- This happens in Brinkmann spaces too:

 degenerate hypersurfaces Σ_u with transverse ∂_u

 (non-univocally determined)

- Issues on Brinkmann spaces:

 - Relations between different choices of ∂_u (and Ω)
 - To introduce associated geometric objects with nice properties
 - Study potentially extensible to other degenerate cases
Geometric developments

- **Foliations**
 1. Spacelike \((n-2)\)-foliation \(\mathcal{M}: \{u = u_0, \nu = \nu_0\}\)
 2. Timelike 2 foliation: \(\mathcal{U}: \{x^i = x_0^i\}\)
Geometric developments

- **Foliations**
 1. Spacelike \((n-2)\)-foliation \(\mathcal{M} : \{u = u_0, v = v_0\}\)
 2. Timelike 2 foliation: \(\mathcal{U} : \{x^i = x^i_0\}\)

- **Tangent bundle decompositions**:
 1. Non-orthogonal: \(TM = T\mathcal{M} \oplus TU\)
 2. Orthogonal: \(TM = TU \oplus (TU)\perp\)

- **Natural bases**:
 1. \(TU = \text{span}\{E_0 := \partial_u - H\partial_v, E_1 := \partial_v\}\)
 2. \((TU)\perp = \text{span}\{E_i := \partial_i - W_i\partial_v\}\)
 3. \(T\mathcal{M} = \text{span}\{\partial_i\}\)
The spacelike foliation \mathcal{M}

Foliation \mathcal{M}: \{\(u = u_0, \nu = \nu_0\}\}

Metric induced bundle by the foliation:

\[
\bar{g} = g_{ij} \bar{dx}^i \bar{dx}^j
\]

(Notation: if \(dx^i, \alpha\) on \(M\), then \(\bar{dx}^i, \bar{\alpha}\) on the foliation)
For any 1-form α on M:

$$\overline{d} \overline{\alpha} = \overline{d\alpha}.$$

Satisfies the properties of a derivation for $\omega, \tau \in \Lambda^q M$:

1. Linearity plus $\overline{d}(\omega \wedge \tau) = \overline{d}\omega \wedge \tau + (-1)^s \omega \wedge \overline{d}\tau$.
2. $\overline{d}(\overline{d}\omega) = 0$.
3. If $\omega = \frac{1}{s!} \omega_{i_1...i_s} \overline{d}x^{i_1} \wedge \ldots \overline{d}x^{i_s}$, then
 $$\overline{d}\omega = \frac{1}{s!} \partial_k (\omega_{i_1...i_s}) \overline{d}x^k \wedge \overline{d}x^{i_1} \wedge \ldots \overline{d}x^{i_s}$$
4. Poincaré Lemma: \overline{d}-closed implies \overline{d}-exact.
Covariant derivative $\bar{\nabla}$ for \mathcal{M}

- Vector fields on \mathcal{M} are naturally on \mathcal{M}
- \mathcal{M} is endowed with a Riemannian metric and then a natural $\bar{\nabla}$

\[\bar{\nabla}_X Y \in \mathfrak{X}(\mathcal{M}) \quad \forall X, Y \in \mathfrak{X}(\mathcal{M}) \]

Extended to tensor fields on \mathcal{M} satisfies

\[\bar{\nabla}g = 0 \]
Covariant derivative $\overline{\nabla}$ for \mathcal{M}

- Vector fields on \mathcal{M} are naturally on \mathcal{M}
- \mathcal{M} is endowed with a Riemannian metric and then a natural $\overline{\nabla}$

$$\overline{\nabla}_X Y (\in \mathfrak{X}(\mathcal{M})) \quad \forall X, Y \in \mathfrak{X}(\mathcal{M})$$

Extended to tensor fields on \mathcal{M} satisfies

$$\overline{\nabla} g = 0$$

Defines a foliation curvature $\overline{\mathcal{R}}$:

$$\overline{\mathcal{R}}(X, Y) Z = (\overline{\nabla}_X \overline{\nabla}_Y - \overline{\nabla}_Y \overline{\nabla}_X - \overline{\nabla}_{[X,Y]})Z \in \mathfrak{X}(\mathcal{M}), \ \forall X, Y, Z \in \mathfrak{X}(\mathcal{M})$$

plus Ricci tensor $\overline{\mathcal{Ric}}$ and scalar curvature \overline{S}.

M. Sánchez
Lorentzian r-th symmetric spaces
Covariant derivative ∇ for \mathcal{M}

Definition

- \mathcal{M} is **flat** (resp. **locally symmetric**) if $\overline{\mathcal{R}} = 0$ (resp. $\overline{\nabla} \overline{\mathcal{R}} = 0$)
- u-**Einstein** if $\overline{\mathcal{R}}ic = \mu \overline{g}$ for some μ s.t. $d\mu \wedge du = 0$ (Schur lemma $\mathcal{R}ic = fg \Rightarrow f \equiv c$ does not apply to foliations) and:
 1. \mathcal{M} is **Einstein** if $\mu = \text{const.}$,
 2. \mathcal{M} is **Ricci-flat** if $\mu \equiv 0$.

Understanding Brinkmann

Adapted geometric elements

Reducibility and Eisenhart thm
Covariant derivative $\bar{\nabla}$ for \mathcal{M}

From Riemannian results:

Proposition

Let (\mathcal{M}, g) be a Brinkmann space:

1. $\bar{\nabla}^r \mathcal{R} = 0$ (rth-symmetric) \implies $\bar{\nabla} \mathcal{R} = 0$ (locally symmetric).
2. $\bar{\nabla} \mathcal{R} = 0$ (locally symmetric) and $\bar{\mathcal{Ric}} = 0$ (Ricci-flat) \implies $\mathcal{R} = 0$ (flat).
3. If \mathcal{M} is flat, there exists a chart \{u, v, y^i\} s.t.:

 \[g = -2du(dv + Hdu + W_i dy^i) + \delta_{ij} dy^i dy^j. \]

 ($g_{ij} = \delta_{ij}$ independent of u)
Transverse operators for \mathcal{M}: dot derivative

For $T \in \Gamma(\mathcal{T}_s \mathcal{M})$:

$$\dot{T} = \mathcal{L}_{\partial_u} T \in \Gamma(\mathcal{T}_s \mathcal{M})$$

That is, in the base $\{\partial_i\}$:

$$\dot{T}^{i_1\ldots i_r}_{j_1\ldots j_s} = \partial_u (T^{i_1\ldots i_r}_{j_1\ldots j_s})$$
Transverse operators for \mathcal{M}: D_0 derivative

Recall $E_0 = \partial_u - H \partial_v$

\[D_0 : \Gamma(T^r_s \mathcal{M}) \rightarrow \Gamma(T^r_s \mathcal{M}) \]

\[T \rightarrow D_0 T = (\nabla_{E_0} \bar{T}) \]
Transverse operators for \mathcal{M}: D_0 derivative

Recall $E_0 = \partial_u - H \partial_v$

$$D_0 : \Gamma(T^r_s \mathcal{M}) \rightarrow \Gamma(T^r_s \mathcal{M})$$

$$T \rightarrow D_0 T = (\nabla_{E_0} \tilde{T})$$

Properties:

1. Algebraic properties of a tensor derivation
2. $D_0 \bar{g} = 0$

Lemma

*Each vector field on a leaf of \mathcal{M} can be extended to a unique $K(= -\partial_v)$-invariant D_0-parallel vector field in $\mathfrak{X}(\mathcal{M})$.***
Reducibility in \mathcal{M}

$T \in \Gamma(T^k_s\mathcal{M})$ is reducible if, there are foliations $\mathcal{M}^{(1)}, \mathcal{M}^{(2)}$ s.t., in a natural sense:

$$TM = TM^{(1)} \oplus TM^{(2)} \quad T = T^{(1)} \oplus T^{(2)}$$

i.e. there exists a Brinkmann chart $\{u, v, x^i\}$ and a partition of the indexes $I_1 = \{2, \ldots, d + 1\}$, $I_2 = \{d + 2, \ldots, n - 1\}$ s.t.

$$T_{aa'} = 0 \quad \partial_{a'} T_{ab} = 0,$$

where a, b belong to some I_m and a', b' to the other one.
Reducibility in \mathcal{M}

$T \in \Gamma(T^k_s \mathcal{M})$ is reducible if, there are foliations $\mathcal{M}^{(1)}, \mathcal{M}^{(2)}$ s.t., in a natural sense:

$$T\mathcal{M} = T\mathcal{M}^{(1)} \oplus T\mathcal{M}^{(2)} \quad T = T^{(1)} \oplus T^{(2)}$$

i.e. there exists a Brinkmann chart $\{u, v, x^i\}$ and a partition of the indexes $I_1 = \{2, \ldots, d + 1\}, I_2 = \{d + 2, \ldots, n - 1\}$ s.t.

$$T_{aa'} = 0 \quad \partial_{a'} T_{ab} = 0,$$

where a, b belong to some I_m and a', b' to the other one.

In particular, when $\bar{g} \in \Gamma(T_2 \mathcal{M})$ is reducible the sum is orthogonal and we write $\mathcal{M} = \mathcal{M}^{(1)} \times \mathcal{M}^{(2)}$,

$$g = -2 du (dv + H du + \hat{W}) + \dot{g}^{(1)} \oplus \dot{g}^{(2)}$$
Extended Eisenhart theorem

Theorem

Let (M, g) be a Brinkmann space and $\{u, v, x^i\}$ a Brinkmann chart. If there exist a symmetric $\overline{L} \in \Gamma(T^0_2 M)$, $\overline{L} \neq c\bar{g}$, which is v-invariant, $\overline{\nabla}$-parallel and D_0-parallel.
Theorem

Let \((M, g)\) be a Brinkmann space and \(\{u, v, x^i\}\) a Brinkmann chart. If there exist a symmetric \(\bar{L} \in \Gamma(T_2^0 M)\), \(\bar{L} \neq c\bar{g}\), which is \(v\)-invariant, \(\bar{\nabla}\)-parallel and \(D_0\)-parallel.

Then there exists a Brinkmann chart \(\{u, v, y^i\}\) in the Brinkmann decomposition \(\{u, v\}\) such that:

1. \(\bar{g}\) is reducible:
 \[
 \bar{g} = \bar{g}^{(1)} \oplus \ldots \oplus \bar{g}^{(s)}, \quad s \geq 2 \quad (u\text{-dependent})
 \]

2. \(\bar{L} = \sum_{m=1}^{s} \lambda_m \bar{g}^{(m)}\) for some \(\lambda_m \in \mathbb{R}\) \((u\text{-independent}, \lambda_m = 0)\).
Local version of the theorem

Aim:

Theorem

A properly 2nd-symmetric Brinkmann space is locally isometric to a product of:

- a proper 2nd-order Cahen-Wallach space \((\mathbb{R}^{d+2}, g_A)\),
 \[
g_A = -2 du \left(dv + (a_{ij} u + b_{ij}) x^i x^j du \right) + \delta_{ij} dx^i dx^j
 \]
 with some \(a_{ij} \neq 0\), and

- symmetric Riemannian space \((N, g_N)\).
Step 1: define appropriate elements on \mathcal{M}

Express the non-trivial parts of $R, \nabla R$ in terms of tensors on \mathcal{M}

- Tensors for R: $A \in T_2 \mathcal{M}, B \in T_3 \mathcal{M}, \bar{R} \in T_3^1 \mathcal{M}$
 - $A(X, Y) = \theta^1(R(E_0, \dot{Y})\dot{X}), \text{ i.e. } A_{ij} = R^1_{\ i0j}$
 - $B(X, Y, Z) = \theta^1(R(\dot{Y}, \dot{Z})\dot{X}), \text{ i.e. } B_{ijk} = R^1_{\ ijk}$
 - $\bar{R}(X, Y)Z = \bar{R}(\dot{X}, \dot{Y})\dot{Z}, \text{ i.e. } \bar{R}^i_{\ jkl} = R^i_{\ jkl}$

- Tensors for ∇R: $\tilde{A} \in T_2 \mathcal{M}, \hat{A}, \tilde{B} \in T_3 \mathcal{M}, \hat{B}, \tilde{R} \in T_3^1 \mathcal{M}$
 - $\tilde{A}(X, Y) = \theta^1\left((\nabla_{E_0}R)(E_0, \dot{Y})\dot{X}\right), \hat{A}(X, Y, Z) = \theta^1\left((\nabla_{\dot{X}}R)(E_0, \dot{Z})\dot{Y}\right)$
 - $\tilde{B}(X, Y, Z) = \theta^1\left((\nabla_{E_0}R)(\dot{Y}, \dot{Z})\dot{X}\right), \hat{B}(X, Y, Z, V) = \theta^1\left((\nabla_{\dot{X}}R)(\dot{Z}, \dot{V})\dot{Y}\right)$
 - $\tilde{R}(X, Y)Z = \nabla_{E_0}R(\dot{X}, \dot{Y})\dot{Z}$.

\[
\tilde{A}_{ij} = \nabla_{0} R^1_{\ i0j}; \quad \hat{A}_{sij} = \nabla_{s} R^1_{\ i0j} \\
\tilde{B}_{ijk} = \nabla_{0} R^1_{\ ijk}; \quad \hat{B}_{sijk} = \nabla_{s} R^1_{\ ijk}; \quad \tilde{R}^{i}_{\ jkl} = \nabla_{0} R^{i}_{\ jkl}
\]
Step 2: simplification of chart-dependent elements

Proposition

For any 2nd-symmetric Brinkmann decomposition \(\{u, v\} \):

(a) All the (chart-dependent) elements for \(\nabla R \) vanish but \(\tilde{A} \), i.e.
\[
\tilde{B} = \tilde{R} = \tilde{A} = \tilde{B} = 0.
\]

(b) \(\tilde{A} \) is independent of the chosen chart

(c) The equations of 2nd symmetry reduce to:
\[
\begin{align*}
\nabla \tilde{A} &= 0, & D_0 \tilde{A} &= 0 \\
\nabla \tilde{R} &= 0, & D_0 \tilde{R} &= 0
\end{align*}
\]

with \(\tilde{B} = 0, \tilde{\dot{B}} = 0, \tilde{\dot{A}} = 0 \).
Step 2: simplification of chart-dependent elements

Ingredients of the proof. A first simplification comes from
\[\nabla^2 R = 0 \Rightarrow \nabla R = 0. \]
Step 2: simplification of chart-dependent elements

Ingredients of the proof. A first simplification comes from $\nabla^2 R = 0 \Rightarrow \nabla R = 0$. Then:

- Use the conditions of integrability of 2nd symmetry equations

\[
(\nabla_k D_0 - D_0 \nabla_k) F^i{}_j = (H, k)(\partial_v F^i{}_j) + F^i{}_m B_{kj}^m - F^m{}_j B_{km}^i - t^m{}_k \nabla_m F^i{}_j
\]

\[
(\nabla_n \nabla_m - \nabla_m \nabla_n) T^{i_1 \ldots i_k}_{j_1 \ldots j_s} = \sum_{b=1}^s \tilde{R}^l{}_{j_b n m} T^{i_1 \ldots i_k}_{j_1 \ldots j_{b-1} j_{b+1} \ldots j_s} - \sum_{a=1}^k \tilde{R}^i{}_{l n m} T^{i_1 \ldots i_{a-1} i_{a+1} \ldots i_k}_{j_1 \ldots j_s}
\]
Step 2: simplification of chart-dependent elements

Ingredients of the proof. A first simplification comes from \(\overline{\nabla}^2 R = 0 \Rightarrow \overline{\nabla} R = 0. \) Then:

- Use the conditions of integrability of 2nd symmetry equations

\[
(\overline{\nabla}_k D_0 - D_0 \overline{\nabla}_k) F^i \ j = (H_k) (\partial_v F^i \ j) + F^i \ m B_{kj}^m - F^m \ j B_{km}^i - t^m \ k \overline{\nabla}_m F^i \ j
\]

\[
(\overline{\nabla}_n \overline{\nabla}_m - \overline{\nabla}_m \overline{\nabla}_n) T_{j_1 \ldots j_s}^{i_1 \ldots i_k} = \sum_{b=1}^{s} \overline{R}'_{jb nm} T_{j_1 \ldots j_{b-1} j_{b+1} \ldots j_s}^{i_1 \ldots i_k} - \sum_{a=1}^{k} \overline{R}'_{ia} l m T_{j_1 \ldots j_s}^{i_1 \ldots i_{a-1} i_{a+1} \ldots i_k}
\]

- Use the equations derived from 2nd Bianchi identity

\[
\nabla [\alpha R_{\beta \lambda \nu \mu}] = 0 \Rightarrow \tilde{R}_{ijkl} = -2 \tilde{B}_{ijkl}, \quad \tilde{B}_{kij} = 2 \tilde{A}_{[ij]k}.
\]

Technical point: algebraic criteria for the vanishing of tensor fields are also introduced, as:

In an Euclidean vector space, \(T_{ijk} \) vanishes if

\[
T_{i[jk]} = T_{ijk}, \quad T_{ijk} + T_{jki} + T_{kij} = 0 \quad \text{and} \quad T_{(ij)} \ T_{rnm} = 0
\]
Step 2: simplification of chart-dependent elements

Remark

- $\nabla R \neq 0$ iff $\tilde{A} \neq 0$.
- The scalar curvature S (not only of \mathcal{M} but also \tilde{M}) of M is constant.
Step 3: Reducibility of \tilde{A} and $\tilde{\text{Ric}}$

From the equations of 2nd-symmetry:

\[
\nabla \tilde{A} = 0, \quad D_0 \tilde{A} = 0
\]
\[
\nabla \tilde{R} = 0, \quad D_0 \tilde{R} = 0
\]

\tilde{A} and $\tilde{\text{Ric}}$ (and also g) are D_0-∇-invariant so that Extended Eisenhart theorem applies and:
Step 3: Reducibility of \(\tilde{A} \) and \(\bar{\text{Ric}} \)

- \(\mathcal{M} = \mathcal{M}^{(1)} \times \mathcal{M}^{(2)} \) with \(\mathcal{M}^{(1)} \) flat and \(\mathcal{M}^{(2)} \) locally symmetric non Ricci-flat.
Step 3: Reducibility of $\tilde{\mathcal{A}}$ and $\tilde{\text{Ric}}$

- $\mathcal{M} = \mathcal{M}^{(1)} \times \mathcal{M}^{(2)}$ with $\mathcal{M}^{(1)}$ flat and $\mathcal{M}^{(2)}$ locally symmetric non Ricci-flat.
- $\tilde{g} = \tilde{g}^{(1)} \oplus \tilde{g}^{(2)}$ with $\tilde{g}^{(1)} = \delta_{ab}dx^a dx^b$ ($\dot{g}^{(1)} = 0$, i.e., u-independent)
Step 3: Reducibility of \tilde{A} and $\overline{\text{Ric}}$

- $\mathcal{M} = \mathcal{M}^{(1)} \times \mathcal{M}^{(2)}$ with $\mathcal{M}^{(1)}$ flat and $\mathcal{M}^{(2)}$ locally symmetric non Ricci-flat.
- $\overline{g} = \overline{g}^{(1)} \oplus \overline{g}^{(2)}$ with $\overline{g}^{(1)} = \delta_{ab} dx^a dx^b$ ($\overline{g}^{-1} = 0$, i.e., u-independent)
- $\overline{R} = \overline{R}^{(1)} \oplus \overline{R}^{(2)}$ with $\overline{R}^{(1)} = 0$ and $\overline{R}^{(2)} \neq 0$ with $\overline{\nabla} \overline{R}^{(2)} = 0$.

Remark
For any Brinkmann decomposition $\{u, v\}$: \tilde{A}, Ric, and g are simultaneously reducible.
The non-trivial part of \tilde{A} lies in $\mathcal{M}^{(1)}$ and the non-trivial one of Ricci on $\mathcal{M}^{(2)}$.

M. Sánchez
Lorentzian r-th symmetric spaces
Step 3: Reducibility of \tilde{A} and $\bar{\text{Ric}}$

- $\mathcal{M} = \mathcal{M}^{(1)} \times \mathcal{M}^{(2)}$ with $\mathcal{M}^{(1)}$ flat and $\mathcal{M}^{(2)}$ locally symmetric non Ricci-flat.
- $\bar{g} = \bar{g}^{(1)} \oplus \bar{g}^{(2)}$ with $\bar{g}^{(1)} = \delta_{ab} dx^a dx^b$ ($\dot{\bar{g}}^{(1)} = 0$, i.e., u-independent)
- $\bar{R} = \bar{R}^{(1)} \oplus \bar{R}^{(2)}$ with $\bar{R}^{(1)} = 0$ and $\bar{R}^{(2)} \neq 0$ with $\nabla \bar{R}^{(2)} = 0$.
- $\tilde{A} = \tilde{A}^{(1)} \oplus \tilde{A}^{(2)}$ with $\tilde{A}^{(2)} = 0$.

Remark: For any Brinkmann decomposition $\{u, v\}$: \tilde{A}, Ric and g are simultaneously reducible. The non-trivial part of \tilde{A} lies in $\mathcal{M}^{(1)}$ and the non-trivial one of Ricci on $\mathcal{M}^{(2)}$.

M. Sánchez

Lorentzian r-th symmetric spaces
Step 3: Reducibility of \tilde{A} and $\overline{\text{Ric}}$

- $\mathcal{M} = \mathcal{M}^{(1)} \times \mathcal{M}^{(2)}$ with $\mathcal{M}^{(1)}$ flat and $\mathcal{M}^{(2)}$ locally symmetric non Ricci-flat.
- $\overline{g} = \overline{g}^{(1)} \oplus \overline{g}^{(2)}$ with $\overline{g}^{(1)} = \delta_{ab}dx^a dx^b$ ($\dot{g}^{(1)} = 0$, i.e., u-independent)
- $\overline{R} = \overline{R}^{(1)} \oplus \overline{R}^{(2)}$ with $\overline{R}^{(1)} = 0$ and $\overline{R}^{(2)} \neq 0$ with $\overline{\nabla} \overline{R}^{(2)} = 0$.
- $\tilde{A} = \tilde{A}^{(1)} \oplus \tilde{A}^{(2)}$ with $\tilde{A}^{(2)} = 0$.

Remark

For any Brinkmann decomposition $\{u, v\}$:
- \tilde{A}, $\overline{\text{Ric}}$ and \overline{g} are simultaneously reducible
Step 3: Reducibility of \tilde{A} and $\overline{\text{Ric}}$

- $\mathcal{M} = \mathcal{M}^{(1)} \times \mathcal{M}^{(2)}$ with $\mathcal{M}^{(1)}$ flat and $\mathcal{M}^{(2)}$ locally symmetric non Ricci-flat.
- $\overline{g} = \overline{g}^{(1)} \oplus \overline{g}^{(2)}$ with $\overline{g}^{(1)} = \delta_{ab} dx^a dx^b$ ($\overline{g}^{(1)} = 0$, i.e., u-independent)
- $\overline{R} = \overline{R}^{(1)} \oplus \overline{R}^{(2)}$ with $\overline{R}^{(1)} = 0$ and $\overline{R}^{(2)} \neq 0$ with $\overline{\nabla} \overline{R}^{(2)} = 0$.
- $\tilde{A} = \tilde{A}^{(1)} \oplus \tilde{A}^{(2)}$ with $\tilde{A}^{(2)} = 0$.

Remark

For any Brinkmann decomposition $\{u, v\}$:
- \tilde{A}, $\overline{\text{Ric}}$ and \overline{g} are simultaneously reducible
- The non-trivial part of \tilde{A} lies in $\mathcal{M}^{(1)}$ and the non-trivial one of Ricci on $\mathcal{M}^{(2)}$
Step 4: reduction to two independent Lorentzian problems

From previous result in a Brinkmann chart:

\[g = -2du(dv + H du + \hat{W}) + \hat{g}^{(1)} \oplus \hat{g}^{(2)} \]

and one can check that \(H, \ W \) are also simultaneously reducible, so that in some new chart:

\[g = -2du(dv + (H^{(1)} + H^{(2)}) du + \hat{W}^{(1)} + \hat{W}^{(2)}) + \hat{g}^{(1)} \oplus \hat{g}^{(2)} \]
Step 4: reduction to two independent Lorentzian problems

Now, define two lower dimensional Lorentzian spaces $M^m = \mathbb{R}^2 \times \overline{M}^m$, $m = 1, 2$:

$$g^m = -2du(dv + H^m du + W^m) + \bar{g}^m.$$

Remark

- These two Lorentzian spaces are 2nd symmetric as so was the original one.
- So, the problem is reduced to the 2nd symmetry of two simple spaces.
Step 4: reduction to two independent Lorentzian problems

\((M^2, g^2)\) 2nd symmetric with \(\tilde{A}^2 = 0:\)

- Locally symmetric
- Cahen-Wallach space (order 1) compatible with parallel \(K = -\partial_v\) (and \(A^{[2]} = 0\))
Step 4: reduction to two independent Lorentzian problems

- \((M^{[2]}, g^{[2]})\) 2nd symmetric with \(\tilde{A}^{[2]} = 0\):
 - Locally symmetric
 - Cahen-Wallach space (order 1) compatible with parallel \(K = -\partial_v\) (and \(A^{[2]} = 0\))

\[\rightsquigarrow\] Locally symmetric Riemannian part in Thm
Step 4: reduction to two independent Lorentzian problems

- $(M^{[2]}, g^{[2]})$ 2nd symmetric with $\tilde{A}^{[2]} = 0$:
 - Locally symmetric
 - Cahen-Wallach space (order 1) compatible with parallel $K = -\partial_v$ (and $A^{[2]} = 0$)

 \leadsto Locally symmetric Riemannian part in Thm

- $(M^{[1]}, g^{[1]})$ 2nd-symmetric with flat $M^{[1]}$ ($\tilde{A}^{[1]} \neq 0$):
 2nd-symmetric plane wave:
Step 4: reduction to two independent Lorentzian problems

- \((M[2], g[2])\) 2nd symmetric with \(\tilde{A}[2] = 0\):
 - Locally symmetric
 - Cahen-Wallach space (order 1) compatible with parallel
 \(K = -\partial_v\) (and \(A[2] = 0\))

 \[\sim\] Locally symmetric Riemannian part in Thm

- \((M[1], g[1])\) 2nd-symmetric with flat \(M[1]\) \((\tilde{A}[1] \neq 0)\):
 2nd-symmetric plane wave: directly computable obtaining a
generalized Cahen-Wallach of order 2:

\[
g_A = -2du \left(dv + (a_{ij}u + b_{ij})x^i x^j du \right) + \delta_{ij} dx^i dx^j
\]
Further open questions

Modest:

1. Characterize accurately when $\nabla^2 T = 0 \nRightarrow \nabla T = 0$ in the Lorentzian case.

2. Classify 3rd symmetric Lorentzian spaces.
Further open questions

Modest:

1. Characterize accurately when $\nabla^2 T = 0 \not\Rightarrow \nabla T = 0$ in the Lorentzian case.
2. Classify 3rd symmetric Lorentzian spaces.

Ambitious:

1. Generalize to Lorentzian rth-symmetric spaces
2. Idem to higher signatures.
Further open questions

Modest:

1. Characterize accurately when $\nabla^2 T = 0 \nRightarrow \nabla T = 0$ in the Lorentzian case.
2. Classify 3rd symmetric Lorentzian spaces.

Ambitious:

1. Generalize to Lorentzian rth-symmetric spaces
2. Idem to higher signatures.

Senovilla’s:

1. Solve all the linear conditions for curvature:
$$\nabla^r R + t_1 \otimes \nabla^{r-1} R + t_2 \otimes \nabla^{r-2} R + \cdots + t_{r-1} \otimes \nabla R + t_r \otimes R = 0$$
for some m-covariant tensors t_m.