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INTRODUCTION

Aquatic bacterioplankton is strongly dependent on
organic matter derived from phytoplankton (Cole et al.
1982). This dependence leads to the existence of a gen-
eral relationship between phytoplankton biomass (as
chlorophyll a) and bacterial biomass or between pri-
mary and bacterial production across broad-spectrum
aquatic ecosystems (Cole et al. 1988, Gasol & Duarte
2000).

In Southern Ocean waters, the absence of significant
land inputs render bacteria strongly dependent on
organic carbon released by algae (Morán et al. 2002).
However, instead of an expectedly tight relationship

between bacteria and phytoplankton (i.e. with a
steeper slope than previously reported), different field
and experimental studies have reported a weaker rela-
tionship between bacterioplankton (either abundance
or biomass) and chlorophyll a (chl a) or primary pro-
duction in this region (Bird & Karl 1999, Duarte et al.
2005). This weaker relationship may be due to several
non-exclusive explanations, such as losses due to pre-
dation by protists (Vaqué et al. 2002, Duarte et al.
2005), viral lysis infection (Guixa-Boixereu et al. 2002),
or low temperatures which preclude an optimal assim-
ilation of organic substrates (Pomeroy & Wiebe 2001).
In addition, the use of total bacteria presupposes that
they are uniformly active and, thus, large numbers of
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inactive bacteria could mask the correlation between
active bacteria and the substrate that supports them.
Indeed, previous studies (Davidson et al. 2004, Pearce
et al. 2007) have shown low fractions of active bacteria
in the Southern Ocean. Hence, the unique considera-
tion of the active fraction of the bacterial community
could lead to a tighter relationship (i.e. higher slope)
between bacterial abundance and chl a.

The estimates of the active fraction of the bacterial
community are strongly dependent on the techniques
used (Smith & del Giorgio 2003). Single-cell methods
such as microautoradiography or fluorescent in situ
hybridization are considered very sensitive for enu-
merating metabolically active bacteria (Hoppe 1976,
Karner & Fuhrman 1997). On the other hand, flow
cytometry, with nucleic acid stains such as SYTO 13,
has been extensively used due to its simplicity and
speed, which allows processing of a large number of
samples. This technique has revealed the existence of
bacterial subpopulations that differ considerably in the
degree of staining and, therefore, in the nucleic acid
content per cell, allowing classification of cells with
relatively high (HNA) and low (LNA) nucleic acid con-
tent. The discrimination between HNA and LNA cells
has been attributed to different phylogenetic composi-
tions (Zubkov et al. 2001) or used as a proxy for active
and non-active components of the bacterial community
(Gasol et al. 1999). However, this simple, dichotomous
classification has recently come into question (Sherr
et al. 2006, Bouvier et al. 2007, Morán et al. 2007).
Another easy and helpful technique is nucleic acid
double staining (NADS), which is based on simultane-
ous staining with SYBR Green (staining all cells) and
Propidium Iodide (PI, staining only membrane-dam-
aged cells) (Barbesti et al. 2000) that allows discrimina-
tion of live (PI-impermeable) vs. dead (PI-positive)

cells in natural assemblages (Grégori et al. 2001, Fal-
cioni et al. 2008). Although some authors (Pirker et al.
2005) have found that PI-positive cells can also uptake
organic substrates, the proportion of viable (PI-imper-
meable) cells could be considered an acceptable cut-
off in the continuum from inactive to active cells.

In the present study, we determined the magnitude
of the active fraction of bacterioplankton in the South-
ern Ocean using independent techniques in parallel,
and we assessed its significance in affecting the rela-
tionship between bacteria and chl a in waters around
the Antarctic Peninsula.

MATERIALS AND METHODS

Study area and sampling. Sampling was carried out
during January and February 2004 and 2005 in the 2
ICEPOS oceanographic cruises along the Antarctic
Peninsula and Bransfield Strait (Fig. 1). The first cruise
(ICEPOS 2004) took place from 14 January to 9 February
2004 aboard RV ‘Las Palmas’ and 12 stations were
selected with 4 to 5 depths each, from surface waters to
150 m. These stations covered 3 transects: from Living-
stone Island to (1) Deception Island, (2) Anvers Island,
and (3) King George Island (Fig. 1). The second cruise
(ICEPOS 2005) took place aboard RV ‘Hespérides’ from
26 January to 26 February 2005. We selected 18 stations
along the eastern Bellingshausen Sea, the Bransfield and
Gerlache Straits and the western Weddell Sea (Fig. 1). At
each station, 5 to 6 depths were sampled, from surface
waters to mid-depth waters, generally 150 to 200 m,
below the deep chlorophyll maximum (DCM) located
between 15 and 35 m. Water was collected using a
Niskin bottle with external spring (Ocean Test, 12 l) dur-
ing ICEPOS 2004 and a Sea-Bird rossette sampler
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Fig. 1. Stations sampled during ICEPOS 2004 (d) and 2005 (m) cruises
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(24 Niskin bottles, 12 l each) attached to a conduc-
tivity/temperature/depth (CTD) system during ICEPOS
2005.

Total, HNA and LNA bacterial abundance. Total
bacterial abundance (BA) samples were determined by
epifluorescence microscopy (Porter & Feig 1980) dur-
ing the ICEPOS 2004 cruise. Water subsamples of 4 to
10 ml were filtered through 0.2 µm polycarbonate
black filters and stained with DAPI (4,6-diamidino-2
phenylindole) to a final concentration of 1 µg ml–1. At
least 350 cells in 15 random fields were counted per fil-
ter. During ICEPOS 2005, BA was determined by flow
cytometry. Subsamples (4 ml) were fixed with 1%
paraformaldehyde, allowed 30 min to fix in the dark,
deep frozen in liquid nitrogen and then stored frozen
at –70°C (Troussellier et al. 1995). Analyses were con-
ducted within a maximum of 2 d from sample collec-
tion. The samples were thawed, a 400 µl sample was
stained with 4 µl of 5 µmol l–1 SYTO13 (Molecular
Probes) for 10 min in the dark, and run through a FAC-
ScaliburTM flow cytometer (BD Biosciences) fitted with
a laser emitting at 488 nm. Samples were run at a low
flow rate and data were acquired in log mode until
around 10 000 events were acquired. A stock solution
(5 µl) of yellow-green 0.92 µm Polysciences latex beads
was added as an internal standard per 400 µl of sam-
ple. The concentration of the fluorescent beads was
calibrated twice during the cruise with TruCounts
(Becton Dickinson). Bacteria were detected by their
signature in bivariate plots of Side scatter (SSC) vs.
FL1 (green fluorescence) and those with HNA or LNA
discriminated by their green fluorescence. Data were
gated and counted in the SSC vs. FL1 plot using the
Paint-a-Gate software (del Giorgio et al. 1996a, Gasol
& del Giorgio 2000). HNA and LNA abundances were
expressed in cells ml–1. HNA was also expressed as the
percentage of the total bacteria counts (% HNA).

Viable bacterial abundance. The Nucleic Acid Dou-
ble Staining (NADS) flow cytometric protocol was used
to quantify cell viability during ICEPOS 2005. This
technique is based on the simultaneous use of 2 nucleic
acid fluorescent dyes, SYBR Green I and Propidium
Iodide (PI). Cell membranes are permeable to SYBR
Green I irrespectively of cell viability. However, intact
plasmic membranes characteristic of viable cells are
impermeable to PI, thus staining with PI indicates com-
promised, damaged cells (Barbesti et al. 2000). Sub-
samples were analyzed immediately after collection.
Samples (400 µl) were simultaneously stained with 4 µl
of SYBR Green I (10-fold dilution of 10 000× commer-
cial solution [Molecular Probes] in dimethyl sulfoxide)
and 4 µl of Propidium iodide (PI, 1 mg ml–1 stock solu-
tion [Sigma]), reaching a final concentration of 10 µg
ml–1, and allowed to stain for 15 min in the dark. This
final concentration is similar to the PI concentrations

used and recommended as optimum in previous works
(Falcioni et al. 2008). Samples were analyzed by flow
cytometry. Bivariate plots of FL1 vs. FL2 (green vs.
orange fluorescence, respectively) were obtained by
flow cytometry to discriminate PI-impermeable bac-
teria (green fluorescent, hereafter referred to as viable
cells) and PI-permeable bacteria (orange fluorescent)
that appeared to have compromised cell membranes.
Data were processed with Paint-a-Gate software. We
expressed total viable cells in cells ml–1 and as a
percentage of total BA counts determined with the
protocol detailed above.

Bacterial production. Bacterial production (BP) was
estimated during ICEPOS 2005 from 3H-Leucine-pro-
tein synthesis following the microcentrifugation tech-
nique proposed by Smith & Azam (1992). Briefly, 5 µl of
L-[4,5-3H] leucine was added to 1.5 ml samples, yield-
ing a final concentration of 52.7 nM, likely to be satu-
rating in this region (Pedrós-Alió et al. 2002), and was
incubated for 2 to 5 h. We used a conversion factor
from leucine to carbon incorporation of 1.5 kg C mol
leu–1, which represents a standard, assuming no iso-
tope dilution (Simon & Azam 1989).

Chlorophyll a. Chl a concentration was determined
fluorometrically by filtering 50 ml subsamples through
25 mm Whatman GF/F filters, extracted into 10 ml of
90% acetone for ca. 24 h in the dark and at 4°C. The
fluorescence of the extracts was read in a previously
calibrated Turner Design fluorometer (Parsons et al.
1984).

RESULTS

Total BA showed an average value of 5.9 ± 0.9 × 105

cells ml–1 during ICEPOS 2004 and 7.2 ± 0.5 × 105 cells
ml–1 during ICEPOS 2005. During ICEPOS 2004, total
BA ranged from 1.7 to 8.94 × 105 cells ml–1 in surface
waters and from 1.03 to 3.79 × 105 cells ml–1 in waters
at 150 m. During ICEPOS 2005, BA ranged from 2.0 to
16.3 × 105 cells ml–1 in surface waters and from 0.7 to
15.4 × 105 cells ml–1 in waters below the DCM. In ICE-
POS 2004, total BA generally decreased with depth (9
of 12 stations) and the highest values were observed
inside Port Foster in Deception Island. In 2005, total BA
generally decreased with depth (10 stations, Fig. 2a),
except in some particular stations where the vertical
BA distribution was quite homogeneous (Fig. 2b). The
highest total BA values were observed in the stations
located in the Weddell Sea (Fig. 2c).

The abundance of HNA cells ranged one order of
magnitude. The mean value was 3.0 ± 0.2 × 105 cells
ml–1, from 0.9 to 9.4 × 105 cells ml–1 in surface waters
and from 0.52 to 5.71 × 105 cells ml–1 in waters below
the DCM, showing a similar decreasing pattern with
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depth as total BA, although this pattern was less accen-
tuated (Fig. 2a). The percentage of HNA cells with
respect to total BA generally increased over depth,
ranging from 32 ± 4% in surface waters to 52 ± 4% in
waters below the DCM. This HNA percentage was sig-
nificant and negatively related to depth (r = –0.44,
p <0.001, n = 77). Total BA was correlated to HNA cells
(r = 0.86), but the proportion of HNA cells decreased as
total BA increased (Table 1). The abundance of LNA
cells showed a mean value of 4.1 ± 0.4 × 105 cells ml–1

and a wider range than HNA, from 0.6 to 9.5 × 105 cells
ml–1 in surface waters and from 0.2 to 7.5 × 105 cells
ml–1 in waters below the DCM.

Viable cells after NADS protocol showed a mean
value of 4.6 ± 0.4 × 105 cells ml–1 and also ranged one
order of magnitude, from 2.0 to 10.0 × 105 cells ml–1 in
surface water samples and from 0.3 to 9.9 × 105 cells
ml–1 in waters below the DCM. Viable cells comprised
between 38 and 80% of total BA, generally exceeding
the percentage of HNA cells, which indicates that a
significant fraction of LNA cells were also viable
(Fig. 3). The abundance of viable cells was also corre-
lated to total BA (r = 0.94), but the proportion of viable
cells was independent of the total BA (r = –0.01)
(Table 1)

BP showed a similar vertical pattern as total BA, with
the lowest values below DCM (13 of 18 stations,
Fig. 2a). The BP values ranged 2 orders of magnitude,
from 2.0 to 183.8 ng C l–1 h–1 in surface waters and from
0.2 to 46.1 ng C l–1 h–1 in waters below DCM with a
mean value of 30.8 ± 3.5 ng C l–1 h–1. Particularly high
BP values were observed at the surface waters of the
western Weddell Sea (Fig. 2c). BP and total BA were
significant and positively correlated (Table 1). BP was
also significant and positively correlated to HNA, LNA
and viable cells, but this correlation coefficient was
higher with LNA cells (Table 1).

Significant and positive relationships between BA
and chl a concentration were observed in both ICEPOS
2004 and 2005 cruises. Although both regression
slopes were lower than 0.4, it was slightly higher for
ICEPOS 2005 than for ICEPOS 2004 (Table 2, Fig. 4a).
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Fig. 2. Vertical profiles of total bacterial abundance (BA),
viable cell abundance (Viable), high nucleic acid cell abun-
dance (HNA), low nucleic acid cell abundance (LNA) and
bacterial production (BP) in ICEPOS 2005, showing (a)
the most common decreasing pattern (Stn 3, Bellingshausen
Sea), (b) an exceptionally homogeneous distribution (Stn 8,
Antarctic Strait) and (c) particularly high BP values (Stn 9,

western Weddell Sea)

n = 63 Total BA Viable Percent HNA LNA Percent BP
(cell ml–1) (cell ml–1) viable (cell ml–1) (cell ml–1) HNA (ngC l–1 h–1)

BP (ngC l–1 h–1) 0.71* 0.66* –0.02 0.50* 0.75* –0.54* 1.00
Percent HNA –0.46* –0.26* 0.47* 0.05 –0.69* 1.00
LNA (cell ml–1) 0.96* 0.85* –0.14 0.69* 1.00
HNA (cell ml–1) 0.86* 0.92* 0.29* 1.00
Percent viable –0.01 0.34* 1.00
Viable (cell ml–1) 0.94* 1.00
Total BA (cell ml–1) 1.00

Table 1. Correlation matrix among all bacterial variables determined during ICEPOS 2005. See Fig. 2 for abbreviations.
*Significant correlations (p < 0.05)
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All metrics of bacterial abundance (HNA, LNA and
viable cells) and BP were significantly correlated with
chl a in ICEPOS 2005 (Table 2, Fig. 4). A strong rela-
tionship was observed between chl a and BP, with a
log-log regression slope of 0.87 (Table 2). However,
lower log-log slopes and correlation coefficients were
observed between bacterial abundances and chl a.
The relationship between viable cells and chl a did not
show a significantly higher slope than that correspond-
ing to total bacterial abundance (Table 2, Fig. 4). Sur-
prisingly, the relationship between LNA cells and chl a
showed a significantly higher slope than the slope with
HNA cells (Statistica homogeneity-of-slopes model,
p < 0.01) (Table 2, Fig. 4).

DISCUSSION AND CONCLUSIONS

Our results suggest that viable cells after NADS pro-
tocol represent an upper limit with respect to HNA
cells (Fig. 3), as the proportion of viable (PI-imperme-
able) cells (61%) exceeded that of HNA cells (48%),
indicating that there are viable bacteria with low acid
nucleic content. This high concentration of viable cells

observed in our study, although consistent with other
published studies in natural waters (Schumann et al.
2003, Falcioni et al. 2008), contrasts with the only 2
reported studies that use PI stain to measure bacterial
viability in the Southern Ocean (Davidson et al. 2004,
Pearce et al. 2007), which reported considerably lower
proportions (between 2 and 40%). In the work of
Pearce et al. (2007), the percentage of viable cells was
likely underestimated as higher abundance of total
bacteria were observed compared to the sum of viable
and non-viable cells. By contrast, in the present study
the percentage of viable cells (immediately analyzed
with NADS protocol) with respect to total BA cells
(previously fixed and stored) would result in an over-
estimation of viable cells since a potential loss of cell
detection has been observed during storage (Kamiya
et al. 2007). However, the potential error in the present
study is expected to be minimal due to the short time-
lag (up to 2 d) between fixation and analysis.

Total BA, HNA cells and BP obtained in this study
were also comparable to those previously reported for
the same area (Pedrós-Alió et al. 2002, Vaqué et al.
2002, Corzo et al. 2005) and elsewhere in the Southern
Ocean (Ducklow et al. 2000, Granéli et al. 2004). The
observed increase in percentage of HNA cells with
depth could be explained by selective impact of bacte-
rial grazers. HNA bacteria appear to be preferentially
consumed by grazers, whereas LNA escape grazing
pressure and will remain abundant (del Giorgio et al.
1996b). Only below the euphotic zone, where the graz-
ing pressure decreases (Vaqué et al. 2002), can HNA
bacteria comprise a large proportion of the total bacte-
rial abundance (Jochem 2001, Corzo et al. 2005).

Since 3H-Leucine incorporation is a bulk measure-
ment of heterotrophic activity, we expected the active
fraction of bacterioplankton (either HNA cells or viable
cells) to be more closely related to BP than to total BA,
which includes bacteria that make little or no contribu-
tion to activity. Indeed, some authors (Gasol et al. 1999,
Lebaron et al. 2001) have proposed that HNA cells
dominate overall bacterial metabolism. However, in
the present study LNA cells were more closely related
to BP than HNA cells (Table 1, Fig. 4), indicating that
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Fig. 3. Scatterplot between total BA and HNA and viablecells.
Correlation coefficients are presented in Table 1. See Fig. 2

for abbreviations

Cruise Parameter (vs. chl a) Slope (± SE) Intercept r p n

ICEPOS 2004 Total BA 0.291 ± 0.053 5.56 0.650 <0.001 50
ICEPOS 2005 Total BA 0.394 ± 0.049 5.79 0.681 <0.001 78

Viable 0.414 ± 0.057 5.58 0.678 <0.001 64
HNA 0.280 ± 0.054 5.41 0.512 <0.001 76
LNA 0.505 ± 0.059 5.52 0.708 <0.001 76
BP 0.870 ± 0.068 1.26 0.787 <0.001 102

Table 2. Relationships between chl a and all bacterial parameters (BA for each cruise, as well as total HNA, total LNA, total
viable and BP for ICEPOS 2005). See Fig. 2 for abbreviations 
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the discrimination between high and low relative
nucleic acid content is not a reliable proxy for the
active vs. inactive fractions of the bacterioplankton,
supporting recent observations along this line (Sherr et
al. 2006). Other studies (Zubkov et al. 2001, Long-
necker et al. 2005) also found that LNA cells are
responsible for similar or higher fractions of total
leucine incorporation than HNA cells in low-chloro-
phyll waters. Hence, our results corroborate that the
simplistic interpretation of HNA and LNA cells as
active and inactive subpopulations is also unreliable in
Antarctic waters. Rather than differences in activity,
HNA and LNA subpopulations appear to represent dif-
ferent fractions with intrinsic properties (e.g. phyloge-
netically distinct subpopulations), and these fractions
may be dynamically linked, with the capacity of LNA
cells to shift to HNA and vice versa (Bouvier et al.
2007). In addition, the discrimination of viable cells did
not result in a higher correlation with bacterial produc-
tion (Table 1), as expected from previous reports
(Pearce et al. 2007, Falcioni et al. 2008). Like Pirker et
al. (2005), our study showed that the PI stain is not the
most reliable method of examining bacterial activity in
the field.

There is still a debate about the estimation of active
and viable bacterioplankton, which is in part semantic
(e.g. actively growing cells, viable but inactive cells
with potential activity, inactive and dead cells), but
reflects the absence of a widely accepted standard
technique. Active bacteria have been determined
using a panoply of different techniques yielding diver-
gent estimates (Berman et al. 2001, Schumann et al.
2003, Smith & del Giorgio 2003). Hence, low propor-
tions of activity (<10 to 20%) have been reported,
based on the presence of a nucleoid (Berman et al.
2001, Luna et al. 2004) or actively respiring the fluoro-
genic tetrazolium dye, 5-cyano-2,3 ditolyl tetrazolium
chloride (Karner & Fuhrman 1997, Berman et al. 2001),
while single-cell approaches, such as fluorescent in
situ hybridization or microautoradiography, have
yielded higher proportions of active cells (Smith & del
Giorgio 2003). In comparison, the discrimination of
viable bacteria based on their membrane integrity
using PI, To-Pro or SYTOX staining, Live/Dead
BacLightTM or NADS protocol (Boulos et al. 1999,
Davidson et al. 2004, Luna et al. 2004), or active bacte-
ria based on their relative nucleic acid content (HNA
vs. LNA; Gasol et al. 1999, Corzo et al. 2005) shows
widely variable proportions of active cells. Indeed, this
lack of agreement between bacterial activity estimates
reflects a continuum of bacterial metabolic states in
contrast to the simplistic restriction to discrete cate-
gories as active or inactive, and it is unlikely that a
single method can capture all the physiological diver-
sity present in bacterioplankton assemblages.

104

4.4

4.8

5.2

5.6

6.0

6.4

 ICEPOS 2004
 ICEPOS 2005

a

4.4

4.8

5.2

5.6

6.0

6.4

b

4.4

4.8

5.2

5.6

6.0

6.4
c

Chl a (log10 µg l–1)

4.4

–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0

–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0

–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0

–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0

4.8

5.2

5.6

6.0

6.4

H
N

A
 (l

og
10

 c
el

l m
l–1

)
LN

A
 (l

og
10

 c
el

l m
l–1

)
V

ia
bl

e 
(lo

g 1
0 

ce
ll 

m
l–1

)
To

ta
l B

A
 (l

og
10

 c
el

l m
l–1

)

d

Fig. 4. Scatterplots and regression lines between chl a (µg l–1)
and (a) total BA (cell ml–1) in both ICEPOS cruises, and (b)
viable, (c) HNA and (d) LNA cells (cell ml–1) in ICEPOS 2005.
Values for slopes, intercepts, correlation coefficients and
levels of significance are presented in Table 2. See Fig. 2

for abbreviations



Ortega-Retuerta et al.: Active bacterioplankton in the Southern Ocean

Our aim to assess whether the contribution of spe-
cific subpopulations could explain the weak relation-
ship between chl a and bacteria found in Antarctic
waters gave impetus to discriminating active from
inactive bacteria. However, the discrimination of HNA
or viable cells within the total abundance in ICEPOS
2005 did not lead to steeper regression slopes or
stronger correlation coefficients than the relationship
between chl a and total BA (Table 2, Fig. 4). This rela-
tionship only improved, unexpectedly, when consider-
ing LNA cells (Table 2, Fig. 4). Unlike the lower slope
observed in the log-log relationship between total BA
and chl a (slope = 0.3 to 0.4 in comparison to the value
of 0.52 reported by Cole et al. [1988]), the slope of the
log-log relationship between BP and chl a concentra-
tion (0.87) was even steeper in the Antarctic commu-
nities examined than that in the general relationship
(0.62) reported by Cole et al. (1988), and consistent
with previous reports of stronger relationships be-
tween chl a and BP than with BA in the Southern
Ocean (Granéli et al. 2004, Duarte et al. 2005).
Indeed, previous studies have observed a close cou-
pling between dissolved primary production, a more
direct surrogate of algal derived substrates, and bac-
terial carbon demand in Antarctic waters (Morán et al.
2002), suggesting that in this area bacteria are tightly
dependent on algal organic carbon for growth and
metabolism, but this dependence is not reflected in
terms of total BA, HNA or viable cells. These results
suggest that cell abundance was generally more con-
strained than bacterial protein synthesis, resulting in
a significantly steeper slope value for the chl a–BP
relationship and lower slopes in all the relationships
with bacterial abundances. Indeed, the tight trophic
linkage between protistan grazers and their prey
(Bird & Karl 1999, Vaqué et al. 2002, Duarte et al.
2005), or losses due to viral lysis (Guixa-Boixereu et
al. 2002), may preclude significant changes in bacter-
ial abundance, particularly in those cells with high
relative nucleic acid (HNA), that appear to be prefer-
entially predated upon. In contrast, protein synthesis
usually increases more rapidly than cell duplication to
maximize survival, particularly under unfavorable
environmental conditions (Ducklow et al. 1992).

In summary, the results of this study revealed a high
proportion of viable bacteria in the study area, and the
active nature of LNA cells is evidenced by a closer
relationship with BP than HNA or viable cells. In addi-
tion, although a close relationship between chl a and
BP was observed, the discrimination between HNA or
viable cells from total BA did not result in a stronger
relationship between chl a and BA in the Southern
Ocean, where bacterial abundance may be closely
controlled by loss processes rather than resource
supply.
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