
YouTube Traffic Detection
and Characteristics Extraction
Jorge Navarro-Ortiz, Pablo Ameigeiras, Juan J. Ramos-Munoz,

Jonathan Prados-Garzon, Juan M. Lopez-Soler
Centro de Investigación en Tecnologías de la Información y las Comunicaciones (CITIC),

Universidad de Granada
E.T.S.I. Informática y de Telecomunicación, C/ Periodista Daniel Saucedo Aranda s/n, Granada (Spain)

{jorgenavarro, pameigeiras, jjramos, jpg, juanma}@ugr.es

Abstract- Video downloading is becoming increasingly relevant
in wireless and mobile networks, being more than half of the
total traffic according to the latest Cisco global mobile data
forecast. In particular, YouTube is the most visited video
streaming site. In this paper we propose a method to detect
YouTube traffic flows and detect their main characteristics such
as resolution and encoding rate. This method would be useful for
operators and network administrators since the network would
become service aware and e.g. the network could apply service
specific policies.

Keywords- YouTube, traffic detection, characteristics
extraction

I. INTRODUCTION

The usage of QoS mechanisms which are present in
different type of networks, such as wired (e.g. based on the
DiffServ or IntServ QoS solutions) and wireless (e.g. IEEE
802.11e and 3G Long Term Evolution), makes necessary to
segregate packets into different data flows and obtain their
main characteristics. The user experience can be enhanced if
the network becomes service aware and the network is able to
apply service specific policies.

At present the video services constitute a great part of the
traffic in packet switched networks (more than 50 percent of
mobile traffic by the end of 2011 and accounting for 70
percent by 2016 [1]). Therefore methods for the detection of
YouTube data flows from an aggregate set of packet flows
with different services/applications, as well as for the
extraction of the main information of the video being
downloaded (e.g. resolution, duration and video data rate)
will allow network operators to increase the user experience
by applying some service aware policies.

The method proposed in this paper is focused on the
YouTube video delivery service since it is the most
representative video streaming site (3rd in the Alexas global
rank [2]). This service is implemented as a video progressive
download, i.e. the YouTube client (player) progressively
downloads the specified video using the HTTP / TCP
protocols while the playback is being performed.

The traffic generated by progressive video download from
YouTube media servers [3] is carried over the HTTP
protocol. This implies that a simple traffic detector based on
the server’s port cannot be employed since the HTTP server’s
port (80) is used mainly for other services, i.e. web browsing.

Existing algorithms to detect YouTube progressive video
downloads are based on the statistics of this service. For

example, the authors in [4] describe a traffic classifier which
is based on flow similarity. Another solution is proposed in
[5], using a learning classifier which utilizes logistic
regression. In another work, Mori [6] detected YouTube
flows based on the IP addresses of YouTube servers.
Although this solution is simple and effective, it lacks the
possibility of extracting the main characteristics of the
downloaded media such as average encoding rate or video
duration.

To the best of the authors’ knowledge, there is not
currently any other solution in the literature using the
approach herein described.

The rest of the paper is organized as follows. Section 2
describes the basics of the proposed method, whereas Section
3 depicts the solution in detail. Section 4 presents a sample
implementation with license free software and libraries.
Section 5 exposes some useful use cases and, finally, Section
6 draws the main conclusions.

II. TRAFFIC DETECTION AND CHARACTERISTICS EXTRACTION

In this paper we propose a method which detects a
YouTube traffic flow and extracts its main characteristics.
More precisely, this method is able to detect the traffic of the
YouTube progressive video download, which is carried over
the HTTP protocol.

It shall be noted that our method is not intended for the
YouTube video streaming service over RSTP/RTP / UDP
protocols, which was previously used for mobile devices. We
have checked that current smart phones (based on Android,
iOS, Symbian, and Bada) receive the YouTube videos using
the HTTP/TCP approach.

Our method for detecting YouTube data flows can be
applied to any packet switched network that transports an
aggregate set of packet flows from different
services/applications. The detection of the YouTube data
flow can be used in combination with packet filters to allow
the network to segregate YouTube data flows and apply them
a service specific treatment with the objective of enhancing
both network performance and user's experienced quality.

The basic concept of our proposal is illustrated in Fig. 1.
The proposed technique to detect YouTube traffic and its
main characteristics, thanks to the inspection of the payloads
of certain HTTP packets, provides a mechanism to control
and increase the QoE perceived by the end users, and it could
be installed in the terminal side or in the network side. The

method could be applied to provide a service specific
treatment in order to enhance the network performance as
well as the user’s experienced quality.

The detection of YouTube flows is based on inspecting
the contents of the payloads of the HTTP packets and finding
a specific message transferred between a YouTube client and
the YouTube server.

In this paper we also propose a method to a priori derive
relevant information of the video clip characteristics (e.g. the
video clip bit rate). This information can be conveniently
exploited by the network during the progressive video
download.

In this manner, QoS mechanisms such as Radio Resource
Management procedures in wireless networks (e.g. admission
control, packet scheduling, load balancing) will be able to
discriminate among different data flows and, therefore, will
be able to provide traffic differentiation. Moreover,
developers / administrators / operators will be able to
customize these procedures according to the flows’
characteristics.

This procedure can be easily adapted to changes on the
YouTube signaling, as long as:

For detecting the YouTube traffic: there shall be a string
that uniquely identifies the request for beginning a video
progressive download. Currently all YouTube video
downloads are initiated by an HTTP request containing
the string “GET /videoplayback”.

For extracting the main video characteristics: the first
packet(s) shall contain a container header with the main
video characteristics (e.g. video bit rate, resolution,
duration) among its metadata. Currently most YouTube
videos are encapsulated onto an FLV container, but this

procedure would apply to other containers as long as
they have an information header with these metadata.

III. DETAILED TECHNICAL DESCRIPTION

Our proposal is based on the procedure depicted in Fig. 2
to view a YouTube video based on the HTTP protocol.

Before the user starts viewing a YouTube video, the
browser sends an HTTP request to the YouTube web server
after clicking on a video link.

The downloaded web page includes the video player (in
an SWF container) and the required configuration parameters
for the selected video. The player further interchanges
signalling messages with the YouTube web server, which
finally sends the parameters required to download the video
from a YouTube media server (from a farm of servers [3]).

Finally, the player requests the video to the YouTube
media server by using an HTTP request. More precisely, the
request always starts with the following string:

GET /videoplayback?sparams=id

which is followed by a number of parameters and their
corresponding values.

This TCP packet (hereafter designated
get_videoplayback_packet) is used to carry this HTTP
message and contains the source IP address, the destination
IP address, the source port and the destination port.
Therefore, this packet will be used to obtain these values,
which uniquely identifies the data flow used to download the
YouTube video.

Most YouTube videos are encapsulated into an FLV
container, whose format is specified in [7]. The FLV header
contains some tags with information about the video, being
some of the main tags:

Fig. 1. Basic concept of the YouTube traffic detection method.

• totalduration
• width
• height
• videodatarate
• audiodatarate
• totaldatarate
• framerate
• bytelength
• httphostheader

The first packet from the YouTube media server after the
get_videoplayback_packet contains the beginning of the FLV
file, i.e., the FLV header. The FLV header starts with a string
“FLV” [7] , which can be used to determine whether the
video is encapsulated into an FLV container and therefore an
FLV header parsing can take place.

If the YouTube video is not encapsulated into an FLV
file, then it is encapsulated into an MP4 container [8]. The
MP4 container is specified in [9]. The metadata also contains
information about the video, e.g. the resolution and the data
rate. This information is present in the moov atom which can
be present in different parts of the video [10]. However, in
the case of streaming, the moov atom shall be present at the
beginning of the video [11] and therefore the methodology
used in this paper is also valid for videos in MP4 format.

It is important to note that the string “videoplayback” has
been searched in packet traces (obtained with Wireshark
[12]) when viewing videos from the following sites, not being
found in any of those traces: hulu.com, metacafe.com,
vimeo.com, mtv.com, dailymotion.com, megavideo.com,
adobe.com, msn.com, aol.com, myspace.com, yahoo.com,

warnerbros.com, disney.com, cbs.com, elmundo.es,
elpais.com, 20minutos.es, nbc.com, thetimes.co.uk, tv.tv,
citytv.com, spike.com, pandora.tv, muzu.tv, wideo.fr,
clarin.com, myvideo.de, wat.tv, kewego.com,
brightcove.com, photobucket.com, viddler.com, grindtv.com,
liveleak.com, and stupidvideos.com.

IV.SAMPLE IMPLEMENTATION

Our proposal can be implemented by software
development, based on a packet sniffing library such as
libpcap [13]. A sample implementation of YouTube traffic
detector is presented in Fig. 3, which is based on the Python
programming language [14] and the Scapy packet
manipulation environment [15] . Both Python and Scapy are
available for Windows, Linux, UNIX and MAC OS. Python
has an OSI approved open source license, and Scapy is
license free software (GPLv2+). One library available for
FLV header parsing (to extract the main characteristics of the
flow, e.g. the data rate) is FLVLib [16], which is release
under a free license (MIT license). The FLV format is
specified in [7].

A description of the sample implementation (Fig. 3) is
provided next:

The main() function sniffs packets on the chosen
network interface, e.g. eth0, filtering packets on the TCP
port for HTTP (80). If the network interface is not
provided as a parameter, the printUsage() function
prints the syntax for using this application.

Packets fulfilling the filter criterion are passed to the
callback() function. If the packet contains data and

Fig. 2. YouTube video progressive download session.

#!/usr/bin/python

YouTube server discovery ###
Copyright (C) 2013 Jorge Navarro-Ortiz et.al. ###
University of Granada ###

from scapy.all import *
import os
import sys

Global variables
stringToSearch="'GET /videoplayback?sparams=id" # Request string to the media server

Initial configuration
conf.verb=0
conf.promisc=0

######################################
printUsage: display short help ###
######################################
def printUsage():
 print "YouTube sniffer."
 print "Usage: " + sys.argv[0] + " <interface>"
 print "E.g.: " + sys.argv[0] + " eth0"
 print "NOTE: run 'ifaces' on Scapy to check the available interfaces."

checkYouTubeGetVideoPacket: look for the packet sent to the YouTube video server ###

def checkYouTubeGetVideoPacket(pkt):
 global stringToSearch

 src=pkt.sprintf("%IP.src%")
 dst=pkt.sprintf("%IP.dst%")
 sport=pkt.sprintf("%IP.sport%")
 dport=pkt.sprintf("%IP.dport%")
 raw=pkt.sprintf("%Raw.load%")

 if raw[0:len(stringToSearch)]==stringToSearch:
 print "IP.src: " + src
 print "IP.dst: " + dst
 print "TCP.sport: " + sport
 print "TCP.dport: " + dport
 print "Raw: " + raw

 nextPacket=sniff(filter="tcp port 80 and host %dst%", count=1)
 FLVHeaderParsingFromPacket(nextPkt)
 exit(0)

callback: called for each packet received ###

def callback(pkt):
 sport=pkt.sprintf("%IP.sport%")
 dport=pkt.sprintf("%IP.dport%")
 raw=pkt.sprintf("%Raw.load%")

 if raw!='??':
 if dport == '80':
 checkYouTubeGetVideoPacket(pkt)

############
main ###
############
def main():
 if (len(sys.argv) < 2):
 printUsage()
 exit(0)

 ## Command line parameters
 conf.iface=sys.argv[1]
 expr='tcp port 80'

 try:
 sniff(filter=expr, prn=callback, store=0)
 except KeyboardInterrupt:
 exit(0)

if __name__ == "__main__":
 main()

Fig. 3. YouTube video progressive download session.

the destination port is 80, then the
checkYouTubeGetVideoPacket() function is
called.

 The checkYouTubeGetVideoPacket() function
checks whether the payload information of the TCP
packet matches the string “GET
/videoplayback?sparams=id”. If this is the case,
then this is the first packet sent from the YouTube player
(in the client device) to the specific YouTube media
server (from a farm of servers). The information for
detecting this YouTube traffic flow is composed by the
source IP address (src), the destination IP address
(dst), the source TCP port (sport) and the destination
TCP port (dport). All these data can be extracted from
this TCP packet (see Fig. 4).

 After that, the sniff() function is called to obtain the
following packet, sent from the YouTube media server to
the YouTube player, i.e. the source IP address is dst,
the destination IP address is src, the source TCP port is
dport and the destination TCP port is sport.

 This packet is then analyzed to get the metadata on the
FLV header, i.e. for extracting the main video
characteristics such as the video data rate, the resolution
or the video duration. This analysis is performed in the
FLVHeaderParsingFromPacket() function. This
function is not included for the sake of clarity and
readibility. It can be easily implemented with the FLVLib
[16] library or following the FLV format specifications
[7].

V. EXAMPLES OF USE CASES
One use case for our solution is the detection of YouTube

traffic in the Deep Packet Inspector (DPI) functionality in 3G
Long Term Evolution (LTE) networks. The Deep Packet
Inspection requires creating packet classifiers which, in
conjunction with the subscriber’s profile, will allow the
Policy and Charging Rules Function (PCRF) to initiate the
establishment of a dedicated bearer. The parameters of this
dedicated bearer (QoS Class Identifier (QCI), Guaranteed Bit
Rate (GBR), Maximum Bit Rate (MBR), and Allocation and
Retention Priority (ARP)) will be used in the Radio Resource
Management (RRM) algorithms to assign the required
resources for that specific data flow. Our proposal provides
the method to generate such packet classifiers and tune these
parameters (e.g. GBR and MBR can be computed
considering the flow’s data rate) for the case of YouTube
traffic. A sample scenario considering this use case is shown
in Fig. 5.

A second use case of this solution is the traffic
classification when a computer, e.g. a laptop, is connected to
a 3G network through a modem. In this situation, the
modem’s connection software –which is executed at the
computer– could implement the traffic classifier proposed in
this document, marking the packets (e.g. with the TOS field
[17] or the DSCP field [18] of the IP header). In addition, it
may signal the flow’s data rate to the network for reserving
the required resources. Similarly, this packet classification
could also be used in Wi-Fi networks supporting the EDCA
and/or the HCCA medium access mechanisms [19] for QoS
support.

A third use case could be the identification of YouTube
streams in order to characterize their traffic profiles in terms
of throughput requirements and load generation. This
characterization would be very useful for network planning
and design but also for resource management mechanisms
such as admission control and scheduling.

Another use case is the capability of reducing the
bandwidth requirements for video streams in congested
networks by transforming the bitrates of video streams. This
could be done by transforming the HTTP requests from
users’ equipment to the YouTube servers so that the
computer appears to ask for the same video stream but in
lower quality.

This procedure may be also used for the discrimination of
YouTube traffic flows when entering a DiffServ network, so
the packets belonging to those flows can be marked and
treated according to their QoS requirements. Those QoS
requirements could be computed from the FLV metadata, e.g.
considering the video clip data rate.

Similarly, the detection of YouTube traffic could be used
in firewalls in order to block (or boost) this service in specific
networks, e.g. in an enterprise environment.

VI. CONCLUSIONS
The YouTube video delivery service is highly influenced

by network QoS metrics such as delay and throughput, which
may cause playback interruptions and therefore negatively
impact on the end-user experienced quality. Our proposal
provides the means to differentiate YouTube traffic flows
from other types of traffic flows, therefore being able to
provide a differentiated treatment, e.g. in QoS-related
mechanisms / algorithms.

Furthermore, the metadata extracted from the FLV header
can be used for collecting video statistics (e.g. resolution,
video encoding rate, audio encoding rate, video duration,
etcetera) and for tuning QoS mechanisms (e.g. to compute the
QoS requirements such as average throughput, average

Fig. 4. Sample get_videoplayback_packet packet captured with WireShark.

packet delay, etcetera).
Both the traffic differentiation and the video

characterization can be used by operators and/or network
administrators to guarantee the YouTube service
requirements.

The technical advantages of the proposed method,
compared to other approaches, are:
 This procedure is based on the existing signaling for the

YouTube service, not on traffic patterns / statistics. For
that reason, it is not possible to have false positives or
false negatives when detecting the YouTube traffic.
Therefore, our proposal improves the accuracy of the
YouTube traffic detection compared to other existing
solutions, which are based on traffic patterns / statistics.

 In addition, its implementation is simple but effective, as
shown in the sample code included, compared to other
existing solutions which require complex statistical
computations.

 Moreover, these solutions do not extract information from
the video such as resolution, video data rate, duration,
etcetera. Our proposal obtains these metadata which
could be used for RRM mechanisms such as admission
control, resource reservation, resource assignment or for
collecting traffic statistics which can be used later for
traffic engineering, network planning or troubleshooting.

ACKNOWLEDGMENTS

This work was supported by the Ministerio de Ciencia e
Innovación of Spain (project TIN2010-20323).

REFERENCES
[1] Cisco Corporation, Cisco visual networking index: global mobile data
 traffic forecast update, 2011-2016. white paper. Available: http://www.
 cisco.com/
[2] Alexa, The Web Information Company. Available: http://www.alexa.
 com/siteinfo/youtube.com

[3] V. K. Adhikari, S. ain, G. Ranjan, and Z. Zhang, “Understanding data-
center driven content distribution”, proceedings of the ACM CoNEXT
Student Workshop (CoNEXT ’10 Student Workshop), New York,
USA, December 2010.

[4] J. Y. Chung, B. Park, Y. J. Won, J. Strassner, and J. W. Hong, “Traffic
classification based on flow similarity”, proceedings of the 9th IEEE
International Workshop on IP Operations and Management (IPOM
’09), Venice, Italy, October 2009.

[5] T. En-Najjary, M. Pietrzyk, “Application-based feature selection for
Internet traffic classification”, proceedings of the 22nd International
Teletraffic Congress (ITC 2010), Amsterdam, Netherlands, September
2010.

[6] T. Mori, R. Kawahara, H. Hasegawa, S. Shimogawa, “Characterizing
Traffic Flows Originating from Large-Scale Video Sharing Services,”
Proceedings of the Second international conference on Traffic
Monitoring and Analysis (TMA’10), Zurich, Switzerland, April 7,
2010.

[7] Adobe Flash Video File format specification, version 10.1, 2010.
Available:
http://download.macromedia.com/f4v/video_file_format_spec_v10_1.p
df

[8] P. Ameigeiras, J.J. Ramos-Munoz, J. Navarro-Ortiz, J.M. Lopez-Soler,
“Analysis and Modeling of YouTube Traffic,” Transactions on
Emerging Telecommunications Tecnologies, June 2012.

[9] M. Levkov, “Understanding the MPEG-4 movie atom”. Available:
http://www.adobe.com/devnet/video/articles/mp4_movie_atom.html

[10] ISO/IEC 14496-14:2003, “Part 14: MP4 file format”, 2003.
[11] Android Supported Media Formats. Available:

http://developer.android.com/guide/appendix/media-formats.html
[12] Wireshark network protocol analyzer. Available:

http://www.wireshark.org/
[13] LibPCap, a portable C++ library for network traffic capture. Available:

http://www.tcpdump.org/
[14] Python Programming Language – Official Website. Available:

http://www.python.org/
[15] Scapy, an interactive packet manipulation program. Available:

http://www.secdev.org/projects/scapy/
[16] FLVLib, a library for parsing, modifying and verifying FLV files.

Available: http://wulczer.org/flvlib/
[17] P. Almquist, “RFC 1349: Type of Services in the Internet Protocol

suite”, July 1992. Available: http://tools.ietf.org/html/rfc1349
[18] K. Nichols, S. Blake, F. Baker, and D. Black, “RFC 2474: Definition of

the Differentiated Services field (DS field) in the IPv4 and IPv6
headers”, December 1998. Available: http://tools.ietf.org/html/rfc2474

[19] IEEE 802.11-2012, “Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications”, March 2012.

E-UTRAN
eNode B

MS

SAE EPC

Subscriber Profile
Repository

ib PCRF

Serving
Gateway PDN GW

PCEF

YouTube
Traffic

Detection
(DPI)

INTERNET
((PIDDD))(1) Data traffic

Profile

(5) Policy and Charging
Control (PCC) rule

(7) Activate/modify bearer

Fig. 5. Sample scenario with an LTE network using the proposed YouTube traffic detector.

