
The Role of Data Distribution Service in
Failure-aware SDN Controllers

Alejandro Llorens-Carrodeguas(1), Cristina Cervelló-Pastor(1), Irian Leyva-Pupo(1),
Juan Manuel López-Soler(2), Jorge Navarro-Ortiz(2)
(1){alejandro.llorens, cristina, irian.leyva}@entel.upc.edu

(2){juanma, jorgenavarro}@ugr.es
(1)Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.

(2)University of Granade (UGR), Granade, Spain

Abstract—The necessity of a flexible, scalable, faster and
programmable network to offer new services is challenging to
telecommunication operators. These characteristics along with
robustness and availability are essential in order to guarantee
a Quality of Service (QoS) and Quality of Experience (QoE)
in the users. Software Defined Networking (SDN) has emerged
as a natural solution to this situation as it enables network
programmability. The use of Data Distribution Service (DDS) is
studied in order to achieve robust and efficient SDN controller
federations. In this paper we deploy a 5G scenario with SDN
controllers and analyze the roll of DDS to improve the controllers
performance. Illustrative results demonstrate an enhanced per-
formance in determining when a controller fails.

I. INTRODUCTION

Nowadays, there is a tremendous growth of costumers’
demands due to the appearance of new types of applications
and services such as augmented and virtual reality and so on.
This situation along with the existence of new environments
like Internet of Things (IoT), Cloud Computing and Big Data
are driven to take into account a new network paradigm.

In order to satisfy the new telecommunication service re-
quirements, the traditional networks must not be used because
of their lack of programmable environment and the strong
coupling between hardware and software in their physical
devices.

The advantages of a decoupled data and control plane
deliver new means and methods to instantiate networks and
services, reducing expenses and boosting performance. These
characteristics make Software Defined Networking (SDN) a
powerful tool to develop, deploy and operate networks. The
resilience of a core network can be improved by means of a
set of distributed controllers instead of a single controller as
the number and size of production networks deploying Open-
flow increases, the network feasibility decreases. However, a
distributed core network implies a higher level of synchrony
between their elements which means a higher traffic in the
network.

Data Distribution Service (DDS) is a OMG’s standard
middleware for distributed real-time applications which is
based on the Publisher/Subscriber paradigm. It simplifies the
application development, deployment and maintenance and
provides fast and predictable distribution of time-critical data
over a variety of transport networks. It delivers large amount
of data with microsecond performance and granular Quality
of Service (QoS) control using a distributed cache, referred to
as data-space. DDS decouples in time and location the data

producers and consumers. The communication is established
using Topics, which are data streams of the same data type.
By means of DataWriters and DataReaders, publishers and
subscribers can publish and subscribe DDS samples into and
from the streams in the common data-space [1].

In this work, we focus on improving the scalability, re-
silience and reliability of an SDN network using DDS as
the first step to take into account in 5G Networks. Our
approach avoids single-point controller failure, and conse-
quently not only improves the network resilience, but also
network scalability because multiple collaborative controllers
can share network information among each other. At the
same time, we enhance the performance of our design by
means of applying some parameters of QoS in the DDS.
The following sections contextualizes the addressed problem
and present related studies. In Section III, we explain our
design. It includes details about the integration of DDS with
OpenDaylight SDN controllers. Section IV provides some
insights about the implementation and evaluation of our
design. Finally, conclusion are given in Section V.

II. RELATED WORK

Several attempts have been done to distribute SDN con-
trollers and exchange network information among each other.

In [2], the authors propose a distributed event-based control
plane for Openflow called HyperFlow, which allows network
operators to deploy any number of controllers in their network.
HyperFlow provides scalability while keeping network control
logically centralized. Each controller publishes events related
to the state of the system, while other controllers replay all
the published events to reconstruct the state. HyperFlow uses
the Publish/Subscribe paradigm to facilitate cross-controller
communication by means of WheelFS, which is a distributed
file system designed to offer flexible wide-area storage for
distributed applications.

Similarly, Koponen et al. in [3] propose a distributed system
which runs on a cluster of one or more physical servers. These
servers may run multiple Onix instances that are responsible
for disseminating network state to other instances within the
cluster. The network state is stored in a data structure called
Network Information Base (NIB). The NIB is a graph of all
network entities within a network topology. ONIX provides
scalability and resilience by replicating and distributing the
NIB between multiple running instances.



Fig. 1: Communication of L2Switch and DDS App with other modules of OpenDaylight controller.

In [4] [5] the authors propose two types of controllers: the
domain and the area controllers. Furthermore, they describe
the modules that compose each controller and the relationship
among them. They proposed a horizontal communication
module which is responsible for synchronizing global abstract
network information among the domain controllers. Using a
scalable NoSQL database, they store global host information,
global switch information and global abstract topology infor-
mation. The distribution of routing rules is realized through
the Publish/Subscribe mechanism.

These approaches impose a consistent network-wide view
in all the controllers and thus generate large control traffic,
despite their ability to distribute SDN controllers.

There are others papers where their authors use both SDN
and DDS to communicate controllers and switches. In [6]
[7] [8], the authors propose DDS to exchange network state
information related with QoS parameter between switches
and controllers. Despite the fact that these papers use both
paradigms in order to improve network behaviour, their con-
tributions are focused on vertical communication. Besides, the
authors do not take into account some characteristics of QoS
in DDS to automatize the network performance.

Our purpose in this paper is to apply some parameters of
QoS in the DDS to federate SDN controllers and improve
their performance. Thus, in case of failure of a controller the
others can assume the network control because they share the
same view of the network.

III. INTEGRATION AND USE OF DDS APP IN
OPENDAYLIGHT CONTROLLERS

In this section, we present further details on how inte-
grate the DDS application (DDS App) with OpenDaylight
controllers. In addition, we explain some capabilities of this
application in terms of QoS to improve the controller perfor-
mance when occur a failure in other controllers.

In order to integrate correctly DDS App with the controller,
it is necessary to install the RTI Connext DDS on the
same machine where the controller will be running. After
that, we generate a compatible archetype with OpenDaylight
controller’s application structure to our project. Once it is

generated, we install the nddsjava.jar library and modify the
pom.xml file to add it this dependency. This file specifies the
dependencies (package of Maven and OpenDaylight reposito-
ries) that must be loaded by the application during compilation
and execution times.

The main applications used in our project are L2Switch
and DDS App. The first one learns about the source MAC
address when a packet comes in and teleports the packet
to the destination if it is known. Teleporting means that the
packet is sent to the destination without flooding. The second
one allows the communication among controllers using the
Publish/Subscribe paradigm. When DDS App is installed in
the controller, it creates automatically a DDS Domain, a
Topic, a Publisher and a Subscriber. By means of DataWriters
and DataReaders, Publishers and Subscribers can publish and
subscribe DDS samples into and from the streams. More than
one Topic can use the same user data type, but each Topic
needs a unique name [1]. In this way, each controller would
be able to communicate with one or more controllers.

Both applications use the MD-SAL Data Store to carry out
their functions, it means that they do not interfere with each
other. Figure 1 shows the communication of L2switch and
DDS App with the MD-SAL Data Store and other modules
of OpenDaylight controller.

A. Status and QoS parameters in DDS App

DDS App provides a huge number of tools to improve
the network performance and the way in which the elements
belonging to the same DDS Domain work.

One of these tools is the Status. A set of status is defined
for each class of Entities (Publisher, Subscriber, DataWriter,
DataReader, etc.). Each type of Entities has an associated
Listener which represents a set of functions that users may
install to be called asynchronously when a determined state
changes.

In our project, we focus on statuses for DataRead-
ers, mainly DATA AVAILABLE Status and LIVELI-
NESS CHANGED Status.

The first one indicates that a new data is available for
the DataReader, it means that a new DDS sample has been



(a) Controller C0

(b) Controller C1

Fig. 2: Controller’s network view before being federated.

received. The DataReaderListener’s on data available() is
invoked when this status changes. In this way, we avoid to poll
the DataWriter what becomes in time and resource savings.
This is extremely important in order to fulfill the latency
requirements of 5G Networks.

The second one specifies when one or more matched
DataWriters has changed their liveliness (DataWriter has
become alive or not alive). The DataReaderListener’s
on liveliness changed() is invoked when this status changes.
In this way, we will know that either a controller has failed and
its nodes must be reassigned or the application has failed and
it has to be restarted in order to recover the communication
with other controllers. This is an important characteristic to
take into account in order to improve the network response
in cases of emergency in 5G Networks.

The mechanism of determining liveliness between
DataWriter and DataReader is specified in the LIVELINESS
QoS parameter. We configure how the DataWriter maintains
liveliness with the DataReader and how fast the DataReader
is able to detect when the DataWriter is unable to send data.

IV. EVALUATION OF OUR DESIGN

In this section, we evaluate the performance of our design
using an emulated SDN-based network. We first describe the
Mininet testbed that we use to carry out the evaluation, and
then present our experimental results.

A. Mininet Test-bed

We have taken into account the 5G system architecture de-
fined by the 3GPP in its specification TS 23.501 [9] to deploy

(a) Controller C0

(b) Controller C1

Fig. 3: Controller’s network view after being federated.

a control plane of a 5G Network based on SDN Controllers.
These controllers will be used to bridge between the control
and user planes, in this case specifically, between the Session
Management Function (SMF) and the User Plane Function
(UPF). In our simulations each UPF will be implemented as
an Openflow switch. A different group of switches have been
assigned to each controller as shown in Fig. 2.

B. Experiment Evaluations

When the controllers receive a PacketIn from their switches,
they begin to exchange its network information. Figure 3
shows the network views of both controllers after being
federated.

It is important to emphasize how both controllers add only
the border switches to its topologies which is consequent with
the way of determining the external ports in the network.
Both controllers find the list of all node-to-node internal ports
(List#1) by looking at all the links from the Topology data.
After that, they find the list of all ports in the network (List#2)
by looking at the Inventory data. At this point, both controllers
have the complete network information because they obtained
it through the DDS App as it is shown in Fig. 4. The
difference between List#1 and List#2 is a list of external ports
and switch-to-controller ports. Switch-to-controller ports have
special properties and can be easily removed from List#3. This



(a) Controller C0

(b) Controller C1

Fig. 4: Controller’s node tables after being federated.

gives us the list of external ports.
On the other hand, as part of testing the configured QoS

parameters and status of DDS App, we have turned off one
of the controllers to see how the other replies. The results
are shown in Fig. 5. As we can see, Controller C0 recognizes
that Controller C1 has failed. After that, it prints a notification
and the information about the last publication sent by this
controller.

V. CONCLUSIONS

We have demonstrated how DDS App can improve the
reliability and scalability of a network that is based on SDN
OpenDaylight Controllers as it enables the communication
between them to exchange network information. At the same
time, we have implemented a mechanism to detect when a
controller fails using QoS parameters and Status of DDS App.
These characteristics enhance the time response of a network
which is extremely important in order to use it for emergency
cases and services in 5G networks.

ACKNOWLEDGEMENTS

This work has been supported by the Ministerio de
Economı́a y Competitividad of Spain under project TEC2016-
76795-C6-1-R, TEC2016-76795-C6-4-R and AEI/FEDER,
UE.

(a) Controller C0

(b) Controller C1

Fig. 5: Controller’s terminal.

REFERENCES

[1] I. Real-Time Innovations, “Rti connext dds core libraries user’s manual
5.2.3.” http://community.rti.com/static/documentation/connext-dds/5.2.3/
doc/manuals/connext dds/html files/RTI ConnextDDS CoreLibraries
UsersManual/index.htm#UsersManual/title.htm%3FTocPath%3D
1, 2016. [Online; accessed 28-March-2018].

[2] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Proceedings of the 2010 internet network management
conference on Research on enterprise networking, pp. 3–3, 2010.

[3] T. Koponen et al., “Onix: A distributed control platform for large-scale
production networks.,” in OSDI, vol. 10, pp. 1–6, 2010.

[4] Y. Fu et al., “Orion: A hybrid hierarchical control plane of software-
defined networking for large-scale networks,” in Network Protocols
(ICNP), 2014 IEEE 22nd International Conference on, pp. 569–576,
IEEE, 2014.

[5] Y. Fu et al., “A hybrid hierarchical control plane for flow-based large-
scale software-defined networks,” IEEE Transactions on Network and
Service Management, vol. 12, no. 2, pp. 117–131, 2015.

[6] L. Bertaux, A. Hakiri, S. Medjiah, P. Berthou, and S. Abdellatif, “A
dds/sdn based communication system for efficient support of dynamic
distributed real-time applications,” in Distributed Simulation and Real
Time Applications (DS-RT), 2014 IEEE/ACM 18th International Sympo-
sium on, pp. 77–84, IEEE, 2014.

[7] A. Hakiri and A. Gokhale, “Data-centric publish/subscribe routing mid-
dleware for realizing proactive overlay software-defined networking,” in
Proceedings of the 10th ACM International Conference on Distributed
and Event-based Systems, pp. 246–257, ACM, 2016.

[8] H.-Y. Choi, A. L. King, and I. Lee, “Making dds really real-time
with openflow,” in Proceedings of the 13th International Conference on
Embedded Software, p. 4, ACM, 2016.

[9] 3GPP, “TS 23.501- System Architecture for the 5g System; Stage 2.” http:
//www.3gpp.org/ftp/Specs/archive/23 series/23.501/23501-f00.zip. [On-
line; accessed 01-April-2018].

http://community.rti.com/static/documentation/connext-dds/5.2.3/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/title.htm%3FTocPath%3D_____1
http://community.rti.com/static/documentation/connext-dds/5.2.3/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/title.htm%3FTocPath%3D_____1
http://community.rti.com/static/documentation/connext-dds/5.2.3/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/title.htm%3FTocPath%3D_____1
http://community.rti.com/static/documentation/connext-dds/5.2.3/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/index.htm#UsersManual/title.htm%3FTocPath%3D_____1
http://www.3gpp.org/ftp/Specs/archive/23_series/23.501/23501-f00.zip
http://www.3gpp.org/ftp/Specs/archive/23_series/23.501/23501-f00.zip

