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Abstract
Obtaining flow-level measurements, similar to those provided by Netflow/IP-
FIX, with OpenFlow is challenging as it requires the installation of an entry
per flow in the flow tables. This approach does not scale well with the
number of concurrent flows in the traffic as the number of entries in the
flow tables is limited and small. Flow monitoring rules may also interfere
with forwarding or other rules already present in the switches, which are
often defined at different granularities than the flow level. In this project,
we present a transparent and scalable flow-based monitoring solution that
is fully compatible with current off-the-shelf OpenFlow switches. As in Net-
Flow/IPFIX, we aggregate packets into flows directly in the switches and
asynchronously send traffic reports to an external collector. For the sake of
scalability, we propose two different traffic sampling methods depending on
the OpenFlow features available in the switch. We developed our complete
flow monitoring solution within OpenDaylight controller and evaluated its
accuracy in a testbed with Open vSwitch. Our experimental results using
real-world traffic traces show that the proposed sampling methods are accu-
rate and can effectively reduce the resource requirements of flow monitoring
in OpenFlow environments.





Diseño de un sistema de monitorización de flujos para redes
definidas por software con OpenFlow

José Rafael Suárez-Varela Maciá
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Resumen
Obtener medidas en SDN a nivel de flujo, similares a las que se obtienen
con NetFlow/IPFIX, utilizando OpenFlow no es una tarea trivial en tanto
que seŕıa necesario instalar una entrada por cada flujo en las tablas de los
switches. Debido a que el número de entradas en los switches es bastante
limitado, esta propuesta no es escalable dado el elevado número de flujos
concurrentes que a menudo se procesan en un switch. Las reglas de mon-
itorización de flujos pueden además interferir con otro tipo de reglas (ej.
forwarding) que t́ıpicamente se definen a otros niveles de granularidad difer-
entes al nivel de flujo. En este proyecto se presenta un sistema de monitor-
ización de flujos de tráfico transparente y escalable, totalmente compatible
con los switches OpenFlow que se pueden encontrar actualmente en el mer-
cado. Como ocurre en NetFlow/IPFIX, este sistema agrega las estad́ısticas
de los paquetes en registros de flujo y envia aśıncronamente a un colector
informes con resúmenes de estas estad́ısticas. Para sobrevenir los posibles
problemas de escalabilidad, proponemos dos métodos de muestreo de flujos
dependiendo de las caracteŕısticas opcionales de OpenFlow disponibles en
el switch sobre el que se desea implementar. Hemos implementado nuestra
solución de monittorización en el controlador OpenDaylight y se ha evaluado
su precisión en un entorno de red con Open vSwitch. Nuestros resultados
experimentales muestran que los métodos de muestreo propuestos son pre-
cisos y permiten reducir de forma efectiva los recursos necesarios para llevar
a cabo monitorización a nivel de flujo en entornos OpenFlow.
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BarcelonaTech)

Informan:

Que el presente trabajo, titulado Design of a flow monitoring solu-
tion for OpenFlow Software-Defined networks, ha sido realizado bajo
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Chapter 1

Introduction

This chapter provides an introduction including the main topics and tech-
nologies related to the project developed for this master thesis. Firstly, we
provide a section describing the scope of the topic. There, we briefly discuss
the origin of the emerging Software-Defined Networking (SDN) paradigm
and describe some details to better understand how these new networks op-
erate. In particular, we focus on traffic monitoring and the new challenges
to address in SDN.

Then, we provide a section motivating the main issues around the project
and some technologies we used in this master thesis. This section is followed
by another section that describes the main contributions of the proposal
presented in this thesis.

Finally, we outline the structure of this report including a description of
the chapters and appendices included in this thesis.

1.1 The Software-Defined Networking paradigm

Current IP networks are increasingly more complex and hard to manage, and
this is a tendency that it is going to be more accused with new emerging
paradigms of services such as virtualized cloud computing, big data appli-
cations, data center services or multimedia content delivery. With the aim
of reverse this situation, the Software-Defined Networking (SDN) paradigm
was proposed as a solution to build a more flexible network infrastructure
with programmable devices, where new protocols and policies can be imple-
mented via software without needing any hardware modification.

The SDN paradigm proposes to separate the control and data planes of
“legacy” networks for the sake of flexibility. In this way, the data plane is
located in the SDN-enabled forwarding devices (i.e., SDN switches), while

1



2 1.1. The Software-Defined Networking paradigm

Figure 1.1: Software-Defined Networking architecture.

Source: Kreutz, D et al. “Software-defined networking: A comprehensive survey”,
Proceedings of the IEEE.

the control plane is logically centralized in new entities called SDN con-
trollers. Thus, the different planes in SDN allow to create different layers of
abstraction and, thereby, providing an unprecedented level of flexibility in
network management. Fig. 1.1 (taken from [1]) depicts the architecture of
an SDN-based network. There, we can see the different entities, planes and
layers of abstraction in SDN. We briefly describe the main elements below.

Planes in Software-Defined Networks

• Control plane: This plane is in charge of calculating the local state
of the forwarding devices in the network and enforcing the proper
policies for the correct operation of the network. This includes all
the network management tasks such as routing, traffic engineering
or security policy enforcement. Unlike traditional networks, in SDN
forwarding decisions are flow-based, instead of destination-based. All
the packets matching a specific criterion are applied the same actions.
This flow abstraction enables to unify the behavior of different types
of network devices (e.g., switches, routers, firewalls). In a nutshell, the
control plane makes decisions about how and where the traffic is sent
and manages all the signalling of the network to properly configure
the network devices.



Introduction 3

• Data plane: This plane performs traffic forwarding in the network
devices (i.e., the switches) according to the rules defined by the con-
trol plane. This also includes traffic filtering and the different actions
that can be typically executed for new incoming packets in a switch.
It is worth noting that switches in SDN are of general purpose, i.e.,
they execute the flow-level rules installed by the control plane and can
combine actions that used to correspond to different types of network
devices (e.g., routers, switches, middleboxes) in traditional networks.
This plane is also known as the “forwarding plane”.

Abstractions in Software-Defined Networks

Following the definition in [1], we distinguish the three abstractions de-
scribed below:

• Forwarding abstraction: This abstraction allows the data plane
to ideally perform any forwarding action determined by the control
plane while hiding the underlying hardware in the network infrastruc-
ture. Currently, OpenFlow [2] is the dominant protocol of SDN that
implements this abstraction. This protocol provides a standard API
(Southbound API) for the communication between the control and
the data planes, i.e., between the SDN controllers and the OpenFlow-
enabled switches.

• Distribution abstraction: This abstraction enables SDN applica-
tions to operate without the necessity of being aware of the distributed
state of the network. In contrast to traditional networks, the status in-
formation in SDN is logically centralized and it enables to make much
better decisions with a global view of the network in the controllers.
This is possible thanks to the “Network Operating Systems” (NOS)
of SDN, which collect the status information of the network and it
is in charge of installing the desired rules in the switches through a
standard communication protocol (e.g., OpenFlow).

• Specification abstraction: This abstraction allows to describe the
desired operation of the network by means of high-level policies defined
by network management applications. Thus, these policies are then
mapped into sets of physical configurations for the global network
view exposed by the SDN controller. This abstraction provides an
interface (Northbound API) which ideally allows network applications
to operate over simplified abstract models of the network which are
oblivious of the underlying network topology.
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The design of the SDN paradigm enables to perform a fine-grained man-
agement of the network, taking advantage of the decision making from the
global perspective of the network in the controller. However, to be successful
in current dynamic environments, traffic monitoring becomes a cornerstone
in SDN given that management applications often need to make use of ac-
curate and timely traffic measurements. Additionally, an inherent issue of
SDN is its scalability. For a proper design of a monitoring system, it is nec-
essary to consider the network and processing overhead to store and gather
the flow statistics. On the one hand, note that controllers are critical points
in the infrastructure since all the management decisions are made and com-
municated from there to each switch under its control. On the other hand,
the most straightforward way of implementing per flow monitoring is by
maintaining an entry for each flow in a table of the switch. Each of these
entries has some counters which are updated every time a packet matches
them. Thus, obtaining accurate measurements of all flows results in a great
constraint, since nowadays OpenFlow commodity switches do not support a
large number of flow entries due to their limited hardware resources available
[3].

This master thesis covers a study of traffic monitoring in SDN-based
networks. More specifically, it aims to identify all the issues around traffic
measurement derived from the SDN paradigm and proposes a scalable and
OpenFlow compliant monitoring system more suitable for those networks of
the future. The approach of this solution is to obtain flow-level measurement
reports equivalent to those of NetFlow/IPFIX [4] in traditional networks.
Likewise, we evaluated our system to analyze its feasibility and to quantify
its accuracy, resource requirements and network overhead.

1.2 Motivations

The SDN paradigm was the outcome of some works of the research world
that suggested the necessity of building programmable networks as a practi-
cal way to experiment with new protocols in production networks. From its
inception, it has gained lots of attention from academia and industry. It is
supported by giants of the Internet world like Google, Cisco, HP, Juniper or
NEC and by standardization organizations like the Open Network Founda-
tion (ONF) or the Internet Engineering Task Force (IETF), so one can state
that this network paradigm has a lot of potential to succeed. The proposal
of the OpenFlow protocol [2] in 2008 was its major driver. In that text,
they talk about the commonly held belief that the network infrastructure
was “ossified”. Thus, they proposed OpenFlow as a protocol for the com-
munication between the forwarding and control planes in order to decouple
logically and physically these two planes.
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SDN introduces the benefits of a centralized approach to network config-
uration. That way, each time network administrators want to make a policy
change do not have to configure individually by-hand each network device
using its own vendor-specific code. Unlike traditional networks with dis-
tributed management, in SDN the administrator can apply some new high-
level policies from the controller and this is the responsible for translating
the policies into rules and install them in the forwarding devices involved.
This allows software developers to be oblivious of the underlying devices and
develop their networking logic the same way they do in computer software.

Furthermore, SDN-based networks offer a level of flexibility never seen
before. It allows to perform a fine-grained flow-level management ideal for
services with strict QoS requirements. It successfully adapts to current
environments with high fluctuate traffic to make an efficient use of the net-
work resources. In SDN, the forwarding devices are of general purpose,
i.e., they are not designed for a specific network function (router, firewall).
This results in the possibility of re-configuring via software the topology and
change the role of the different devices at run-time, taking advantage of the
global knowledge of the network state in the controller. This is an ardu-
ous task in traditional networks, since forwarding devices are inflexible due
to the underlying hardwired implementation of routing rules. Concerning
the measurements and monitoring tasks, SDN allows to collect some traffic
statistics that in traditional large networks in some cases it is unfeasible.

In [3], they envision that, for the moment, the majority of research ef-
forts are focused on providing solutions and services over SDN-based net-
works, while network management is not given much attention. Likewise,
they remark the importance to consider the network management before the
technology is widely deployed and, therefore, network management arises as
a real need. They state that “addressing SDN management is imperative to
avoid patching SDN later”.

1.2.1 Monitoring and measurements in SDN

The huge scale and diversity of today’s Internet traffic make it difficult
for the operators to measure and maintain the status and dynamics of the
network in short timescales. This, in turn, has become a great challenge,
since there are more and more services and applications with guaranteed QoS
requirements to be maintained along end-to-end network paths. It motivates
the necessity of ubiquitous accurate traffic measurement and monitoring
mechanisms.

The SDN paradigm makes it easier to perform QoS measurements and
enables to perform a fine-grained management as well as making an efficient
use of the network resources. However, although the SDN paradigm solves
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some classical problems of the traditional networks, it brings new challenges.
The decoupling of the control and forwarding planes has some new implica-
tions that need to be identified and considered in order to devise new smart
solutions. Among these issues, the introduction of a centralized control plane
makes necessary to consider now a latency between the forwarding and con-
trol planes that did not exist in legacy networks. This latency depends on
the delay due to the network connection as well as the availability of the
SDN controller. Thus, the controller becomes a critical point in the infras-
tructure and it is prone to become a network bottleneck. In this way, it is
of vital importance to find a tradeoff between the tasks where the controller
is involved and those that may be devolved to the forwarding devices.

As a conclusion, we see that nowadays there are a number of proposals
around measurement and monitoring in SDN with their respective advan-
tages and drawbacks, but there is still much work to be done.

1.2.2 OpenFlow

Since its inception in 2008, OpenFlow [2] has become the de facto proto-
col for the Southbound interface (communication between control and data
planes) in SDN. This makes this protocol the main enabler of the SDN
paradigm, since it was the first proposal that allowed to completely decou-
ple the control and data planes of a network, which is the basis of the SDN
paradigm. This proposal also introduced the idea of performing flow-level
management with the aim of creating a standard where the control plane
could be oblivious of the underlying hardware of the forwarding devices in
the network.

OpenFlow allows to dynamically define the forwarding state of the net-
work from the SDN controller by installing in the switches sets of flow entries.
These flow entries are stored in flow tables in the switches and determine
their behavior. Fig. 1.2 illustrates the main components of a flow entry.

Figure 1.2: Components of a flow entry in OpenFlow.

We describe below these components:

• Match fields: This field defines a filter (packet headers, ingress port,
metadata, and others) to specify the packets that will be processed by
this flow entry.

• Priority: Defines a priority to determine the flow entry to be applied
to a packet when some flow entries have an overlap.



Introduction 7

• Counters: These are some records that maintain the number of pack-
ets and bytes processed by the flow entry. It also store the life time of
the flow entry since it was installed in the switch.

• Instructions: Set of actions to be applied to the packets matching
the flow entry.

• Timeouts: Defines the amount of time before the flow entry is expired
by the switch. There are two types of timeouts:

1. The hard timeout defines the maximum amount of time since the
flow entry was installed by the SDN controller in the switch.

2. The idle timeout defines the maximum time interval between two
consecutive packets matching the flow entry.

Both timeouts can be installed simultaneously to decide when the flow
entry will be evicted from the switch.

• Cookie: Unique opaque value selected by the SDN controller to iden-
tify the flow entry. This allows the controller to filter specific flow
entries when modifying or deleting flow entries.

• Flags: These fields define how the flow entries are managed in the
switch. For instance, it is possible to define if the switch sends a flow
removed message to the controller including the data of the counters
when the flow entry expires.

1.2.3 The OpenDaylight controller

The OpenDaylight controller [5] is the result of an open-source project leaded
by the Linux foundation which was announced in 2008. This project is
strongly supported by both academia and industry and it was created with
the aim of accelerating as much as possible the adoption of Software-Defined
Networking (SDN) and Network functions virtualization (NFV) in future
networks. This project has a vast support from big players of the current
Internet world including companies such as Cisco, Ericsson, Red Hat, ZTE,
NEC, AT&T, DELL, Fujitsu, Huawei, Intel, Juniper and many others [6].

OpenDaylight is a vendor-independent platform, which makes it much
easier to be adopted in any SDN-based network using switches from dif-
ferent vendors with support for different protocols. Thus, it offers support
for a wide range of protocols for the Southbound interface in SDN. It in-
cludes support for protocols such as OpenFlow, OF-Config, NETCONF,
LISP, OVSDB, BGP or SNMP. This allows also to operate in network en-
vironments combining pure SDN devices (e.g., OpenFlow-based switches)
with other network devices that support popular protocols already used in
traditional networks (e.g., BGP, SNMP).
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Probably, the key success of the rapid growth of OpenDaylight lies in its
large support community. Since it is open-source, anyone can collaborate in
the development of the product. Thus, the members of the community can
either contribute in many different projects that are already in progress or
propose new ones which are evaluated for their approval. Likewise, members
in the community are very active answering questions, which eases even more
the collaboration among developers. As a result, they are able to constantly
release new versions including many novel features. Fig. 1.3 depicts all the
different plugins that offers OpenDaylight in its Beryllium version, which
is the release we used for the implementation of the monitoring system
presented in this report. Typically, each of these plugins belong to different
projects that are independently developed by different groups of developers
following some common programming guidelines.

Figure 1.3: Architecture of the OpenDaylight beryllium release.

1.3 Main contributions

In this report, we present a monitoring solution which emulates NetFlow/IP-
FIX with OpenFlow and implements flow sampling. In this way, for each
flow sampled, we maintain a flow entry in the switch. There, each flow en-
try records the duration (in seconds and nanoseconds) and packet and bytes
counts. We use timeouts to define when these records are going to expire
and, therefore, being reported to the controller. A similar approach was
previously used in [7] to assess the accuracy of measurements and timeouts
in some OpenFlow switches. However, their approach is not scalable as it
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requires to install an entry in the flow tables for every single flow observed
in the traffic, assumes that all rules have been deployed proactively for every
flow that will be observed in the network, and does not address the problem
of how monitoring rules interfere with the rest of rules installed in the switch
(e.g., forwarding rules). In contrast, we present a complete flow monitoring
solution that has the following features:

• Scalable: We address the scalabity issue in two different dimensions:
(i) to alleviate the overhead for the controller and (ii) to reduce the
number of entries required in the flow tables of the switches. To these
ends, we designed two traffic sampling methods which depend on the
OpenFlow features available in current off-the-shelf switches. We re-
mark that our methods only require to initially install some rules in
the switch which will operate autonomously to discriminate (pseudo)
randomly the traffic to be sampled. To the best of our knowledge,
there are no solutions in line with this approach. For example, iS-
TAMP [3] performs a flow-based sampling technique where they make
use of a multi-armed-bandit algorithm to “stamp” the most informa-
tive flows and maintain particular entries to record per-flow metrics.
However, this solution specifically addresses the detection of particular
flows like heavy hitters, while our solution provides a generic dataset
of the flows in the network. Likewise, iSTAMP needs to perform pe-
riodically a training phase. It means that it is not autonomous as our
system.

• Fully compliant with OpenFlow: Our monitoring system imple-
ments flow sampling using only native features present since Open-
Flow 1.1.0. This makes our proposal more pragmatic and realistic for
current SDN deployments, which strongly rely on OpenFlow. Fur-
thermore, for backwards compatibility, we also propose a less effective
monitoring scheme that is compatible with OpenFlow 1.0.0, further
increasing the targets that can benefit from our solution. Unlike Net-
Flow in traditional networks, OpenFlow also enables to independently
monitor specific slices of the network, which can be highly interesting
in emerging SDN/NFV scenarios. Additionally, we could check there
are many SDN switches (e.g., some models of HP or NEC) which do
not implement NetFlow, so our solution would be a good alternative
for these devices, since it provides reports with flow-level statistics as
in NetFlow. We found in the literature some monitoring proposals for
SDN that rely on different protocols than OpenFlow. For instance,
OpenSample [8] performs traffic sampling using sFlow [9], which is
more commonly present than NetFlow in current SDN switches. How-
ever, we consider sFlow has a high resource consumption as it sends
every sampled packet to an external collector and maintains there
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the statistics. In contrast, our system maintains the statistics in the
switch. Alternatively, some authors suggest to make use of different ar-
chitectures specifically designed for monitoring tasks. For example, in
[10], they propose using OpenSketch, where some sketches can be de-
fined and dynamically loaded to perform different measurement tasks.
However, in favor of our proposal, some works like [11] highlight the
importance of making an OpenFlow compatible monitoring solution,
as it is cheaper to implement and does not require standardization by
a larger community. Note that despite the advances in the OpenFlow
standard (version 1.5.1 at the time of this writing), the protocol does
not provide direct support for flow sampling yet.

• Transparent: Our system can be interpreted as an additional module
which does not affect the correct operation of other modules perform-
ing other network functions (e.g., forwarding). To ensure this, we
make use of the pipeline processing feature with multiple tables of
OpenFlow.

• Asynchronous collection of flow statistics: Our system collects
and aggregates packets directly in the switch, and retrieves flow statis-
tics when the flow expires (either by an idle or hard timeout). In
FlowSense [12], they propose the same mechanism to retrieve statis-
tics for the flow entries in the switches to estimate per-flow link utiliza-
tion. The problem of their solution is that the statistics of flows with
large timeouts are retrieved after too long. It makes obtaining accu-
rate measurements unfeasible in environments with highly fluctuating
traffic. In our solution, as our module is completely decoupled from
others, we can define the most adequate timeouts to obtain accurate
measurements. Our solution can also include mechanisms to conve-
niently select the timeouts, such as those proposed in PayLess [13] or
OpenNetMon [11], where they design adaptive schedule algorithms to
collect the statistics.

1.4 Organization of this report

With the aim of providing an overview of this thesis to the reader, we de-
scribe in this section the structure of the report. The present report is
composed of the six chapters and three appendices described below.

Chapter 1: Introduction

In this chapter, we describe all the main aspects related to the project
developed for this master thesis. It begins with an introduction to the SDN
paradigm. Then, we provide a section with motivations around SDN and,
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particularly, traffic monitoring in SDN-based networks. Finally, there is a
section that provides a description of all the contributions achieved in this
project.

Chapter 2: State-of-the-art

This chapter covers the most relevant research efforts around the topics ad-
dressed in this thesis. It includes some proposals in the literature that were
part of the origins of the SDN paradigm as well as the main solutions around
traffic monitoring in SDN. Particularly, we made a taxonomy to classify the
most relevant monitoring solutions in different groups and describe their
advantages and drawbacks.

Chapter 3: Analysis of objectives and specification of require-
ments

This chapter shows some points we considered before beginning the design
and implementation of the monitoring solution presented in this report. We
first identify the objectives and requirements to achieve a successful realiza-
tion of the project. Finally, we assess the achievement of the objectives that
were initially proposed once the realization of the project is finished.

Chapter 4: Planning and estimated costs

In this chapter, we describe the main aspects around the planning and costs
estimation for the realization of our project. Firstly, we define a list with
the different work packages that we propose for the achievement of the ob-
jectives of our project. Then, we provide an estimation of the time that we
should spend for the elaboration of the project. Furthermore, we analyze
the resources we will need. Lastly, we provide a final budget we estimated
for the execution of the project.

Chapter 5: Design and evaluation of the solution

This chapter describes the design of the flow monitoring solution for Software-
Defined Networks presented in this report and provides results about an ex-
tensive evaluation of the system. Firstly, it provides some theoretical back-
ground about the OpenFlow protocol necessary to understand the details of
the design. Then, the architecture of the system is thoroughly explained.
Lastly, it provides results from a large set of experiments that evaluate the
accuracy and the overhead contribution of the system.

Chapter 6: Conclusions and future work

This chapter summarizes the main aspects about the project developed for
this master thesis. It also includes some guidelines for future work to extend
the monitoring system and the experiments we describe in this thesis.
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Appendix A: Installation manual

This appendix describes the process to install the implementation we devel-
oped within the OpenDaylight controller as well as how to setup the testbed
with Open vSwitch we used for our experiments.

Appendix B: User manual

This appendix shows how to use the monitoring system we implemented
in OpenDaylight as well as how to perform simple experiments in a small
testbed using Open vSwitch to test the application.

Appendix C: Conference paper

This appendix presents a conference paper which was presented in the 29th

International Teletraffic Congress (ITC) in 2017 as a result of the research
developed for this master thesis. This paper describes the monitoring system
for SDN presented in this report and provides an extensive evaluation of this
system.



Chapter 2

State of the Art

This chapter provides an overview of the main efforts around the Software-
Defined Networking (SDN) paradigm with a special focus on traffic mon-
itoring. Firstly, we introduce the origins of SDN, and then, we describe
the traffic monitoring proposals for SDN with greater impact on the re-
search community and industry. The traffic monitoring proposals have been
classified into two different groups: (i) OpenFlow-based solutions, and (ii)
alternative solutions to OpenFlow.

2.1 Software-Defined Networking

The SDN paradigm has its roots in some works such as RCP [14], 4D [15]
or ETHANE [16], which suggest the idea of separating the forwarding and
control planes. However, many authors determine the date of its origin in
2008, with the proposal of the OpenFlow protocol [2], which has become as
the de facto standard in SDN for the communication between the control
and forwarding planes, i.e., between the SDN controllers and the OpenFlow-
enabled switches. Strictly, the usage of the term “SDN” was coined in 2009
in an article [17] about the OpenFlow project. As for the SDN controllers,
the concept of “network operating system” was first introduced with the
NOX controller [18]. Currently, there is a wide range of controller pro-
posals in the literature, such as [5], [19], [20], [21], [22], [23], [24], [25].
These controllers make use of different programming languages (e.g., Java,
Python) and were created to address different issues related to SDN (e.g.,
scalability, performance, fault tolerance, fast prototyping). Likewise, there
are some proposals of high-level configuration languages for network man-
agement applications. That way, for instance, in [26] the authors propose
Procera, which is a configuration language compatible with OpenFlow that
allows network operators to define high-level policies that are automatically

13



14 2.2. Traffic monitoring for SDN

translated into a set of flow rules that enables to enforce the policy on the
underlying network infrastructure.

2.2 Traffic monitoring for SDN

Concerning the monitoring and measurement tasks in SDN, we can see there
is a number of efforts with different approaches that consider the SDN op-
portunities and implications. Here, we should take into account that an
inherent issue of SDN is its scalability. For a proper design of a monitoring
system, it is necessary to consider the network and processing overhead to
store and gather the flow statistics. The most straightforward way of im-
plementing per-flow monitoring is by maintaining an entry for each flow in
a table of the switch. Each of these entries has some counters which are
updated every time a packet matches them. Thus, obtaining fine-grained
measurements of all flows results in a great constraint, since nowadays Open-
Flow commodity switches do not support a large number of flow entries due
to their limited hardware resources available (i.e., the number of TCAM
entries and processing power) [3].

In the following subsections, we provide some of the most relevant pro-
posals for traffic monitoring in SDN. These proposals were divided in two
different classes that correspond to each of the two subsections: OpenFlow-
based solutions and alternative solutions to OpenFlow.

2.2.1 OpenFlow-based solutions

Regarding the proposals that rely on the OpenFlow protocol, OpenTM [27]
was one the first solutions from the research community for SDN network
monitoring. In this work, the authors propose a system to calculate the traf-
fic matrix and keep tracking of all active flows in the network. To this end,
the system polls periodically the byte and packet counters from OpenFlow
switches along the flow paths. This solution has severe scalability problems,
since measuring a network-wide traffic matrix by periodically polling one
switch on each flow path, can cause a significant overhead for the controller.

For the sake of scalability, a common practice in traditional networks is
to implement traffic sampling when collecting flow measurements (e.g., Net-
Flow [4], JFlow [28] or sFlow [9]). In the SDN research field there are some
solutions compatible with OpenFlow that aim to overcome the scalability
issue following a similar approach. Thus, for instance, in iSTAMP [3] they
propose a solution which performs traffic sampling. For this purpose, they
present a technique where they make use of a multi-armed-bandit algorithm
to “stamp” the most informative flows and maintain particular entries to
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record per-flow metrics. This solution executes periodically a training phase
with some iterations to detect those flows. It means that, for each train-
ing phase, it does not work well until the algorithm achieves a proper set
of flows. Additionally, this solution specifically addresses the detection of
particular flows like heavy hitters or specific flow sub-populations, but not
allows to perform random flow sampling, which it is often interesting for
some network tasks such as anomaly detection or traffic classification.

Likewise, in [7] they use the measurement features of OpenFlow to main-
tain per-flow statistics in the switches and assess the accuracy of the counters
and timeouts of different devices. However, their approach is not scalable as
it requires to install an entry in the flow tables for every single flow observed
in the traffic, assumes that all rules have been deployed proactively for every
flow that will be observed in the network, and does not address the problem
of how monitoring rules interfere with the rest of rules installed in the switch
(e.g., forwarding rules).

As for the traffic statistics retrieval in the controller, we found different
approaches in the literature. For example, in FlowSense [12], they propose
a passive push-based scheme to retrieve flow statistics when a flow expires
(either by an idle or hard timeout). That way, they use this data to esti-
mate per-flow link utilization. The main problem of this solution is that
for flows with large timeouts, statistics are retrieved after too long a time.
This makes obtaining accurate measurements unfeasible in current dynamic
environments with highly fluctuating traffic. Other authors opt for active
pull-based schemes and perform queries to retrieve the statistics. That is the
case of PayLess [13] or OpenNetMon [11], where they design adaptive sched-
ule algorithms to perform OpenFlow measurement queries in the switches.
This kind of approaches has the limitation of the overhead that implies for
the controller to perform a timely scheduled polling through all the switches
under its control.

2.2.2 Alternative solutions to OpenFlow

Alternatively, other authors support the design of new SDN architectures
that do not rely on OpenFlow. That is the case of [10], where they propose
an architecture called OpenSketch which allows to define some sketches and
load them dynamically to perform different measurement tasks. Other ap-
proach is to use measurement techniques already used in traditional net-
works. Thus, OpenSample [8] leverages sFlow [9] to perform packet sam-
pling. However, this solution can have scalability issues as it sends every
sampled packet to an external collector and maintains there the statistics.

In favor of OpenFlow-based solutions, it is important to remark that
it is a vendor-independent technology with a strong support in the SDN
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industry. This makes it highly prone to be adopted by all vendors and enable
the interoperability among switches. Thus, in [11] the authors highlight the
importance of making an OpenFlow compatible monitoring solution, since
it is cheaper to implement and does not require standardization by a larger
community.

2.3 Concluding remarks about the state of the art

Lately, it is noteworthy that there are some works in the literature which
state that it is necessary to devolve some functions to the forwarding plane as
a definitive solution for the inherent scalability issue of SDN. Thus, several
solutions like DIFANE [29] or DevoFlow [30] were proposed with the aim
of reducing the number of interactions between controllers and switches.
They propose some ideas like enabling the switches to make some local
routing decisions or learn about the topology changes in the network without
involving the SDN controllers. Other works like [23], [21], [22], [31] are in line
with the use of distributed controllers to enhance both the scalability and
availability of the network. However, these solutions imply an additional
overhead due to the necessary control communication between controllers
to be properly coordinated. Moreover, they have to cope with the issue
of consistently maintaining the information about the state of the network
along all the controllers.

As a conclusion, we could observe there is no a definitive solution for
network monitoring in SDN environments yet. There are some efforts in the
literature to cope with the different issues around the SDN paradigm, but
there is still a lot of work to do in order to achieve a mature solution proper
for future SDN networks.



Chapter 3

Analysis of objectives and
specification of requirements

The present chapter shows some points we considered before beginning the
design and implementation of the monitoring solution for Software-Defined
Networking presented in this report.

In the first section, we identify the major and minor objectives that are
necessary to achieve a successful realization of the project. Then, we provide
a detailed list of all the requirements to be accomplished at the end of this
master thesis. These requirements are selected as a result of the objectives
that are described in the previous section.

Finally, there is a section assessing the achievement of the objectives
that were initially proposed once the realization of the project is finished.

3.1 Objectives

The final goal of this project is to design a practical monitoring system for
Software-Defined Networks which provides reports with flow-level measure-
ments as those of Netflow/IPFIX in traditional networks. To this end, we
consider that a realistic solution for current SDN deployments has to be
compliant with the OpenFlow protocol for the southbound API.

Furthermore, the proposed system should be scalable, which is a chal-
lenging objective to address since current OpenFlow-based networks have
inherent issues of scalability. In this context, it is necessary to consider the
network and processing overheads to store and collect the flow statistics. In
particular, the system should alleviate as much as possible the processing
overhead in SDN controllers and use a reduced amount of entries in the flow
tables of the switches to maintain the flow statistics.

17
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Lastly, we also consider that our solution should be easily deployable
in any SDN-based network and operate transparently for other network
modules. That is, not affecting the correct operation of other applications
running in SDN controllers with different purposes (e.g., forwarding, security
policy enforcement).

3.2 Specification of requirements

In this section, we define all the requirements that should have the mon-
itoring solution presented in this report. This will enable us to identify
the aspects that we should take into account during design process. The
requirements were analyzed considering the objectives described in the pre-
vious section.

We list below the main requirements regarding the functionalities that
should accomplish our monitoring solution:

• Implementation within the OpenDaylight controller:

The monitoring system will be developed in the OpenDaylight con-
troller [5], as it is one of the most popular SDN controllers nowadays
and has a great support both from the reasearch community and the
industry.

• Full compliance with OpenFlow:

The implementation of the monitoring system should make use only
of native features defined in the OpenFlow specification. Likewise, it
should consider the features included in different versions commonly
implemented in current off-the-shelf OpenFlow switches in order to
maximize the targets that can benefit from our solution.

• Flow sampling mechanisms:

The system should perform flow sampling in order to address the scal-
abity issue in OpenFlow-based networks. This enables to alleviate the
overhead for the SDN controller as well as to control the number of
entries required in the flow tables of the switches. Furthermore, we
envision the design of different sampling methods with different levels
of requirements of OpenFlow features available in the switches.

• Autonomous operation:

The monitoring system should automatically detect when a new switch
appears in the network topology and configure it to monitor the traffic
in this device. To this end, the system will initially install some rules in
the switch which will operate autonomously to discriminate the traffic
to be sampled and maintain the statistics of those flows sampled.
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• Maintaining in the switch the flow statistics:

In order to reduce the processing overhead in the controller, the flow
statistics should be maintained in the flow tables of the switches and
then being reported to the SDN controller. In this way, our system
should collect and aggregate packet statistics belonging to sampled
flows directly in the switches.

• Asynchronous collection of flow statistics:

The switches should report the flow statistics to the SDN controller
when a monitored flow expires (either by an idle or hard timeout).

• OpenFlow testbed:

We should build an OpenFlow-based testbed to deploy and evaluate
our monitoring solution using real-world traffic. This testbed will be
implemented using Open vSwitch [32].

• Traffic capture and processing:

Additionally, we should develop some programs to capture traffic from
a monitoring point and then process the traffic traces. This includes
the injection of the traffic in our testbed in order to make experiments
with our monitoring system. For this purpose, we will make use of the
libpcap library [33] in C language, which is considerably efficient for
traffic processing.

Furthermore, in order to achieve a successful design of our monitoring
system, we should consider some additional aspects. Considering the specifi-
cation of the requirements and according to the objectives defined previously,
we provide below some guidelines that we should take into account during
the design process as well as the development of our monitoring system in
OpenDaylight:

• Analysis of the features available in current off-the-shelf OpenFlow
devices. This includes some information such as the total amount of
memory they have, the maximum number of flow entries and tables
allowed or the support for multiple tables and group tables. This will
allow us to design a practical and realistic solution easily deployable
in nowadays SDN-based networks.

• Our system should be properly decoupled from other network modules
running in the SDN controller to not affect the correct operation of
other applications performing different network functions. This also
enables us to specifically select the most adequate timeouts to obtain
accurate flow measurements.
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• The implementation should make use exclusively of open source soft-
ware with extensive support in SDN environments. This makes our
solution easier to be adopted in any network.

• The implementation of our system in OpenDaylight should be as effi-
cient as possible, since SDN controllers are critical nodes in the net-
work infrastructure and are prone to become a bottleneck in the net-
work.

• The monitoring solution should cover the different versions of Open-
Flow that are implemented in most of SDN switches. To this end, it is
also important to consider the actual support in current SDN switches
of those features which are defined as optional in the OpenFlow spec-
ification.

• To evaluate our system we should have access to real-world traffic. For
our experiments, we envision to combine traffic traces accessible from
different public repositories as well as traffic that we could capture
with permission from vantage points in public networks.

• All the programs developed to capture and process the traffic traces
should be efficiently programmed in order to not drop packets when
capturing the traffic and not spending too long times to process the
traces.

3.3 Assessment of the achievement of the proposed
objectives

Here, we provide a section assessing the achievement of the objectives that
were initially described once the implementation and evaluation of the mon-
itoring solution presented in this report is finished.

First of all, we can state that our monitoring solution successfully achieves
all the objectives presented in Section 3.1. Moreover, if we check all the re-
quirements proposed in Section 3.2, we also consider that our monitoring
solution fulfills both, the main requirements and those additional aspects
that we should consider for the design and implementation of the system.
We specifically remark that our system addresses the scalability issue in
SDN, as the sampling rate allows to control the overhead contribution of
the system in both SDN controllers and switches. Additionally, we provide
different alternatives to perform traffic sampling in order to increase the
targets that can benefit from our solution.



Lastly, we note that, as a result of the realization of this project, we could
make a contribution to the research community by presenting the paper in
Appendix C in the 29th International Teletraffic Congress (ITC).





Chapter 4

Planning and estimated costs

In this chapter, we describe the main aspects around the planning and costs
estimation for the realization of our project.

Firstly, we define a list with the different work packages that we planned
for the achievement of the objectives of our project. This list includes a
description of the work that must be completed for each work package.
Then, we provide an estimation of the time that we should spend for each
of these packages. Once made this estimation, we provide a Gantt diagram
that shows a timeline with the planned realization of the project.

We include a section analyzing all the resources we will need in this
project. Likewise, we provide a detailed estimation of the costs that would
have all these resources we need.

Lastly, we provide a section with the final budget we estimated for the
execution of the project considering the estimated costs defined in the pre-
vious sections.

4.1 Planning

In this section, we list and describe the work packages that must be accom-
plished in our project. For this purpose, we analyzed the requirements and
objectives of the project and defined all the tasks that should be completed
to finally obtain a realistic temporal planning of the project.

We list below the different work packages in which our project was di-
vided:

WP 1: Revision of the state-of-the-art

This first phase consists of making a deep revision of the literature con-
cerning all the topics we address in this project. It includes the main
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research advances regarding monitoring and measurement in tradi-
tional networks and, more specifically, those which were proposed for
Software-Defined Networks. Also, we make a revision of the most rel-
evant SDN controllers in order to compare them and analyze which is
the most appropriate to implement our monitoring system.

WP 2: Revision of the OpenFlow specification

This package includes a revision of the OpenFlow specification. We
will begin from the earlier versions until the last one to analyze the
different features provided. Also, we will analyze the support needed
in OpenFlow switches to make use of specific features or messages.

WP 3: Design of the monitoring system

Considering all the information extracted in the first two phases, we
will devise the design of our monitoring solution. This maybe is the
most important phase, as it will require to consider all the concepts
we already studied in order to design a solution which fulfills all the
requirements that were defined in Chapter 3.

WP 4: Revision of the development framework of the OpenDay-
light controller

In this package we will revise the OpenDaylight documentation in
order to understand the architecture of the system and the different
technologies and languages that will be involved in the development
of our monitoring system. Since the architecture of OpenDaylight is
quite extensive and complex, we will focus on those features that we
should use specifically in our project.

WP 5: Implementation of the monitoring system in OpenDaylight

This package concerns all the development process of our monitoring
system in the OpenDaylight controller. For this purpose, we will make
use of the OpenFlow support that it includes in order to implement
the system that was already designed in the work package 3.

WP 6: Capturing and processing real-world traffic

We will collect some traffic from public traffic repositories such as
CAIDA [34] or MAWI [35]. Moreover, as we have access to a vantage
point in the edge node between Internet and a wide campus network,
we will also capture traffic from this link. Then, we will process the
traces in order to use them in our experiments to evaluate the moni-
toring system.
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WP 7: Design of the evaluation experiments

In this phase we will build a small testbed with Open vSwitch [32]
and a host which injects the traffic from our real-world traces. Thus,
we will define the different experiments we will conduct in order to
evaluate different features of our monitoring system.

WP 8: Execution of the experiments

This package consists of the execution of the different experiments that
were defined in the previous work package.

WP 9: Process the results obtained from the experiments

Once obtained all the results from the experiments conducted in the
work package 8, we will process all the the flow-level measurement
reports in order to infer some other information regarding the accuracy
of our traffic sampling methods and the overhead contribution of our
system.

WP 10: Writing of the technical report

This last work package involves the writing of the present report. This
includes a documentation of all the theoretical aspects, the techniques
and procedures used and the design and evaluation of our project.

Once defined all the work packages that compose our project, we devise
the timing to accomplish each of the them. Note that during the develop-
ment of the project this timing can be altered according to some contingen-
cies we could have. However, as we defined a detailed list of all the tasks to
be completed, we expect to fit our plan quite accurately. Thus, in Table 4.1
we show the number of hours that we estimated for the realization of each
of the packages.

Work packages Description Estimated time

WP 1 Revision of the state-of-the-art 70 hours

WP 2 Revision of the OpenFlow specification 40 hours

WP 3 Design of the monitoring system 50 hours

WP 4 Development framework of OpenDaylight 50 hours

WP 5 Implementation of the system in OpenDaylight 80 hours

WP 6 Capturing and processing real-world traffic 10 hours

WP 7 Design of the evaluation experiments 20 hours

WP 8 Execution of the experiments 40 hours

WP 9 Process the results obtained from the experiments 40 hours

WP 10 Writing of the technical report 100 hours

Total 500 hours

Table 4.1: Temporal estimation of the project.
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Moreover, in Fig. 4.1 we illustrate the Gantt diagram with the timeline
planned for the execution of the project. In this diagram we can observe that
we considered that some work packages should be executed concurrently in
order to properly synchronize the different tasks we should complete. For
instance, while analyzing the development framework of OpenDaylight, we
will also begin to make the implementation of our monitoring system.

Figure 4.1: Gantt diagram planned for the project.

4.2 Resources used

In this section we identify all the resources involved in the present project.
To this end, we first classify them in three different groups: human, hard-
ware and software resources. In the following subsections we describe them
separately.

4.2.1 Human resources

Here we list the human resources involved in our project:

• Mr. Jorge Navarro Ortiz. Associate Professor of the Department of
Signal Theory, Telematics and Communications (TSTC) at the Uni-
versity of Granada. Director of the present master thesis.

• Mr. Pere Barlet Ros. Associate professor of the Computer Archi-
tecture Department (DAC) and senior researcher with the Advanced
Broadband Communications Center at the Universitat Politècnica de
Catalunya. Codirector of the present master thesis.

• José Suárez-Varela Maciá. Student of the master on telecommunica-
tion engineering at the University of Granada. Author of the present
master thesis.

4.2.2 Hardware resources

We list below the hardware resources that we will use during the elaboration
of the project:

• Laptop Toshiba p50-b-10v. Intel Core i7-4710HQ processor (2.50/3.50
GHz). RAM memory of 8 GB and hard disk with a capacity of 1 TB.
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This laptop will be used for the implementation and the evaluation of
the monitoring system proposed in this project.

• Desktop server with two Intel network cards with support up to 10
Gbps to capture traffic from the uplink and the downlink in our van-
tage point located in a wide campus network.

• Access Internet line with moderate bandwidth in order to access the
documentation to be revised in this project and to remotely connect
to the vantage point where we perform the traffic capture.

4.2.3 Software resources

We provide a detailed list of all the software we used in the project:

• OpenDaylight controller Beryllium release. SDN controller where we
will implement our monitoring system.

• Apache Maven for the project management of our implementation de-
veloped in OpenDaylight.

• Open vSwitch version 2.6.0. Virtual switch that we will use to conduct
our experiments in an OpenFlow testbed.

• NTOP PF RING for high-speed packet capture in our vantage point.

• Libpcap library for an efficient processing of the traffic traces.

• Gantt Project. We will use it to design the planning of our project
and display the timeline in a Gantt diagram.

• Netbeans integrated development environment. We will use it to pro-
gram all the tools we will need to process the packet captures, perform
our experiments and obtain the final results of our evaluation.

• Overleaf LATEXprocessor. On-line tool to edit and share the present
report.

• Windows 10 (64-bits) operative system installed in the laptop where
we make the implementation and the evaluation of our monitoring
system.

• Linux Ubuntu 16.04. Used in the server where we perform the traf-
fic capture as well as in the laptop, where was installed jointly with
Windows.

All this software is open-source and, thereby, free of costs except for
the Windows 10 operative system license that was already included in the
budget of the Toshiba laptop.
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4.3 Estimated costs

In this section we make an estimation of the costs for the elaboration of the
present project. For this purpose, we consider the resources defined in the
previous section and assess the cost for each of them.

We can observe that most of the costs are related to the human resources,
as the hardware we use is not very expensive and the software resources are
free.

Human resources

In order to estimate the cost of the labor of the human resources, we
evaluate the amount of hours that they should spend for the different work
packages and calculate the cost for each of them. For this assessment, we
consider a normal wage according to the level of studies and the position
of the different workers. We list below the different wages for the workers
involved in this project:

• We consider that the average wage for a worker with a degree on
telecommunications engineering is 20 euros/hour.

• We estimate that the average wage for an assistant professor is 50
euros/hour. For the evaluation of the costs associated to this staff we
consider that they spend around 20 hours for the supervision of this
project and the revision of the report.

In table 4.2, we provide an estimation of the different costs related to
the human resources:

Work packages Description Estimated cost

WP 1 Revision of the state-of-the-art 1,400 euros

WP 2 Revision of the OpenFlow specification 800 euros

WP 3 Design of the monitoring system 1,000 euros

WP 4 Development framework of OpenDaylight 1,000 euros

WP 5 Implementation of the system in OpenDaylight 1,600 euros

WP 6 Capturing and processing real-world traffic 200 euros

WP 7 Design of the evaluation experiments 400 euros

WP 8 Execution of the experiments 800 euros

WP 9 Process the results obtained from the experiments 800 euros

WP 10 Writing of the technical report 2,000 euros

Assistant professors labor 1,000 euros

Total 11,000 euros

Table 4.2: Estimated costs for the human resources.

Likewise, in Fig. 4.2 we represent graphically the costs that were esti-
mated for the different work packages proposed in our project.
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Figure 4.2: Graphic with the estimated costs for the human resources.

Hardware resources

In Table 4.3 we provide the estimated costs for the hardware resources
used in this project.

Work packages Estimated cost Lifetime

Laptop 1,000 euros 36 months

Desktop server 1,500 euros 48 months

Internet access 30 euros/month -

Table 4.3: Estimated costs for hardware resources.

Software resources

Regarding the software resources we will use, all of them are open-source
and free. The only exception is the Windows operative system in the Toshiba
laptop. However, the cost of this license is already included in the budget we
provided for the laptop in the hardware resources section. Thus, we assume
that the elaboration of our project does not have any cost associated to the
software resources.

4.4 Final budget

Lastly, we present a final budget considering all the different costs we esti-
mated previously. Thus, in Table 4.4 we show the costs related to human
and hardware resources respectively, and the total amount estimated for
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this project. For the estimation of the hardware resources we calculated
the amortization of these resources considering that they will be used for a
period of 10 months.

Resources Cost

Human resources 11,000 euros

Laptop (1,000 euros x 10 months / 36 months) 288 euros

Desktop server (1,500 euros x 10 month x 48 months) 312 euros

Internet access (30 euros/month x 10 months) 300 euros

Total 11,900 euros

Table 4.4: Final budget estimated.



Chapter 5

Design and evaluation of the
solution

This chapter covers all the aspects related to the design and implementation
of the flow monitoring system presented in this report.

Firstly, we provide some background about the main features and mes-
sages of OpenFlow involved in the design of the monitoring solution. Then,
we present the architecture of the system and describe the design of the
traffic sampling methods we devised.

Once described our system, we provide an extensive evaluation in a
testbed with Open vSwitch using real-world traffic traces. We evaluate
our system with two different purposes: (i) to assess the accuracy of our
traffic sampling methods, and (ii) to evaluate the overhead contribution of
the monitoring system in terms of processing in the SDN controllers and
memory requirements in the OpenFlow switches.

5.1 OpenFlow background

Nowadays, there is a growing trend by vendors to adopt OpenFlow for their
switches in two different ways. Some of them are opting for OpenFlow-only
devices, while others offer hybrid switches, where both traditional network
protocols and OpenFlow coexist. At the moment, the latest version is Open-
Flow 1.5.1 (published in 2015), but it is quite unusual to find commodity
switches with higher support than OpenFlow 1.3.0.

In this section, we particularly focus on the OpenFlow 1.1.0 specification,
since it is the first version fully compatible with our solution. This is because
from this version it is possible to make use of multiple tables, which enable
us to design a transparent system. Nevertheless, we propose an alternative
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solution with some limitations for switches with OpenFlow 1.0.0 support
(more details will be explained in Section 5.2.2). It is also worth mentioning
that everything described for our solution can be applied to IPv6 traffic
from OpenFlow 1.2.0 onwards. In this case, in line with the OpenFlow
specification, all the entries containing match fields for IP protocol or higher
layer protocols have to be installed separately for IPv4 and IPv6 as it is
mandatory to specify the ethernet type field in the entry.

Regarding the monitoring solution proposed in this report, we provide
below a summary of the principal elements and messages involved here.

5.1.1 Multiple flow tables and groups

Multiple flow tables and groups are both available from OpenFlow 1.1.0.
The support of multiple tables enables to decouple the ruleset of differ-
ent modules operating in different tables. It introduces a flexible pipeline
processing of the packets and it is much more efficient in the presence of
network applications that perform traffic processing with different purposes
(e.g., ACL, QoS or routing), since it avoids to create a large ruleset due to
cross product of all the rules.

Packets begin their processing pipeline in the first table of the device
and can be directed to other tables. In this way, as the packet goes through
the pipeline, it can both execute an action and continue the processing in
the next table or accumulate the actions and apply them at the end of the
pipeline. In order to resolve possible conflicts between overlapping rules in
the same flow table, each entry has a priority field.

Groups are abstractions which allow to represent a set of actions for all
packets matching an entry in a flow table. Each group table contains a num-
ber of buckets, which in turn are composed by a set of actions. Therefore, if
a bucket is selected, all its actions will be applied to the packet. There are
four different mechanisms to select the buckets applied to a packet reaching
the group table: (i) All (e.g., for multicast), (ii) Select (e.g., for multipath),
(iii) Indirect and (iv) Fast Failover (e.g., to use first live port). Our solu-
tion leverages the select mechanism for the hash-based method described
in Section 3.1. In a group of type select, packets are processed by a single
bucket and so, only actions within the selected bucket are applied. This
bucket selection depends on a switch-computed selection algorithm which
is out of the scope of the OpenFlow specification. Its implementation (e.g.,
hash-based or round-robin) should implement in any way equal or weighted
load sharing among buckets.
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5.1.2 Adding new flow entries and groups

When a packet matches an entry in a flow table with an action output to
controller, a portion of this packet is encapsulated in an OFPT PACKET IN
message and forwarded to the controller. Also, packets are usually sent to
the controller when they do not match any rule in the flow table, since
switches typically have a default (wilcarded) rule to perform this action.
The OFPT PACKET IN message includes an identification field of the ta-
ble where the action output to controller was executed. This is an important
information for our solution since it enables us to differentiate packets from
the table where the monitoring system is operating and treat them in a par-
ticular way. Once the packet has been processed, the controller may send an
OFPT FLOW MOD message of type OFPFC ADD to the switch to install a
new flow entry with a set of instructions. In this way, these instructions will
be applied for the subsequent packets matching the particular fields defined
in this entry. That is the natural mechanism in OpenFlow networks to add
reactively new flows appearing in the switch. In the OFPT FLOW MOD
message, it is possible to specify two timeouts (idle and hard) for that par-
ticular entry to define when it is going to be removed from the switch. The
idle timeout defines the maximum time interval between two consecutive
packets matching this entry, while the hard timeout is the maximum life
time since the entry was installed.

In order to add a new group, the controller may send an OFPT GROUP
MOD message of type OFPGC ADD to the switch. This message defines the
type of group (All, Select, Indirect or Fast Failover), a set of buckets with
their correspondent actions set and an unique identifier (32 bits) for this
group. We should remark that a group table does not contain match fields,
but only actions within buckets which may be applied for packets directed
to this group. In order to forward packets to a group table, it is necessary
to add an entry in a flow table (with match fields) defining an action of
type OFPAT GROUP. This action must include the unique identifier of the
group. Likewise, from a group table it is possible to forward packets to
another group.

5.1.3 Statistics collection

To collect flow measurements, two different approaches can be mainly re-
marked. On the one hand, pull-based mechanisms consist of making active
measurements, i.e., sending queries (OFPT MULTIPART REQUEST mes-
sage) to the switch for the desired flows. The switch will respond with
an OFPT MULTIPART REPLY message with a summary of the flow (du-
ration in seconds and nanoseconds, packet count and bytes count). This
approach is illustrated in OpenNetMon [11], where they perform adaptive
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polling to collect the data from edge switches. On the other hand, push-
based mechanisms consist of collecting measurements asynchronously. In
this case, when adding a new flow entry, idle and/or hard timeouts are
defined. Then, when a flow entry expires, the switch sends to the con-
troller an OFPT FLOW REMOVED message including the flow statistics.
This message also indicates with flags if the expiration was caused by either
the idle or the hard timeout. This method is that proposed in FlowSense
[12] as a solution for passive measuring with OpenFlow. To receive asyn-
chronously this message, when adding a new flow, the controller has to
explicitly note it in the OFPT FLOW MOD message by marking the flag
OFPFF SEND FLOW REM.

5.2 Monitoring system

The monitoring system presented in this report fully relies on the OpenFlow
specification to obtain flow measurements similar to those of NetFlow/IP-
FIX in traditional networks. This is not new in SDN, since some works,
such as [7], used a similar approach earlier. However, to the best of our
knowledge, no previous works proposed OpenFlow-based methods to imple-
ment traffic sampling and provide reports in a NetFlow/IPFIX style, i.e.,
randomly sampling the traffic and maintaining per-flow statistics in sepa-
rated records, which are finally reported to a collector. Since we are aware
that OpenFlow has many features that are classified as “optional” in the
specification, we designed two different sampling methods with different lev-
els of requirements of features available in the switch. These methods, in
summary, consist of installing a set of entries in the switch which allow us
to discriminate directly the traffic to be sampled. Thus, we only send the
first packets of those flows to be monitored and the controller is in charge of
installing reactively specific flow entries to maintain the flow measurements.
Since OpenFlow switches are capable of communicating to the controller the
features available, it is possible to decide the method to be used separately
for each switch depending on its capabilities. We did not design any method
for packet sampling since we found it excessively complex to implement with
the current OpenFlow support, although we plan to implement it as future
work.

Before showing the details of each method, we describe the generic struc-
ture of OpenFlow tables in our system, which is illustrated in Fig. 5.1. In
both methods proposed, the monitoring system operates in the first table
of the switch, where the pipeline process for incoming packets starts. In
this way, our system installs in this table some entries to sample the traffic
and maintains records for monitored flows. All the entries in the first table
have at least one instruction to direct the packets to another table, where
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Figure 5.1: Scheme of OpenFlow tables and entries of the monitoring system.

other modules can install entries with different purposes (e.g., forwarding).
Focusing on the table where our system operates, three blocks of entries can
be differentiated by their priority field. There is a first block of flow-level1

entries that act as flow records. Then, a block of entries with lower priority
defines the packets to be sampled. And lastly, we add a default entry with
the lowest priority which simply directs to the next table the packets that
did not match any previous entries. In this way, the key point of our system
resides on the second block of entries, where the methods described below
establish different rules to define which packets are sampled. The opera-
tion mode when a new packet arrives to the switch is to check firstly if it
is already in one of the per-flow monitoring entries. If it matches any of
these entries, the packets and bytes counters are updated and the packet is
directed to the next table. Otherwise, it goes through the block of entries
that define whether it has to be sampled or not. If it matches one of these
rules, then the packet is forwarded to the next table and to the controller
(Packet In message) to add a specific entry in the first block to sample sub-
sequent packets of this flow. Finally, if the packet does not match any of
the previous rules, it is simply directed to the next table.

5.2.1 Proposed sampling methods

We present here the two methods devised for our monitoring solution and
discuss the OpenFlow features required for each of them. One is based on
hash functions, which performs flow sampling very accurately, and the other
one, based on IP suffixes, is proposed as a fallback mechanism when it is not
possible to implement the previous one. We assume that the switches have

1Interpreting a flow as a set of packets sharing the same IP 5-tuple {src IP, dst IP,
src port, dst port, protocol}
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support for OpenFlow 1.1.0 and later versions so, they have at least support
for multiple tables. However, in Section 5.2.2, we make some comments
about how to implement an alternative solution with OpenFlow 1.0.0. Our
selection mechanisms for the packets are covered by the Packet Sampling
(PSAMP) Protocol Specification [36], which is compatible with the IPFIX
protocol specification. According to the PSAMP terminology, the sampling
method based on IP suffixes can be classified as property match filtering,
where a packet is selected if specific fields within the packet are equal to
a predefined set of values. While the other method is of type hash-based
filtering.

A) Sampling based on IP suffixes

This method is based on performing traffic sampling based on IP address
matches. To achieve it, the controller adds proactively one entry with match
fields for particular IP address ranges. A similar approach was also used in
[37] for load balancing client traffic with OpenFlow. Typically, in traditional
routing the matching of IP addresses is based on IP prefixes. In contrast,
we consider to apply a mask which checks the last n bits of the IPs, i.e.,
we sample flows with specific IP suffixes. In this way, we sample a more
representative set of flows, since we monitor flows from different subnets
(IP prefixes) in the network. In order to implement this, it is only nec-
essary a wildcarded entry that filters the IP suffixes desired for source or
destination addresses, or combinations of them. To control the number of
flows to be sampled, we make a rough consideration that, in average, flows
are homogeneously distributed along the whole IP range (we later analyze
this assumption with real traffic in Section 5.3.1). As a consequence, for
each bit fixed in the mask, the number of flows sampled will be divided by
two with respect to the total number of flows arriving to the switch. We
are aware that typically there are some IPs that generate much more traffic
than others, but this method somehow allow to control the number of flows
to be monitored. Furthermore, if we consider pairs of IPs for the selection,
instead of individual IPs, we can control better this effect. In this case, if
we sample an IP address of a host which generates a large number of flows,
only those flows which match both source and destination IP suffixes are
sampled. Generically, our sampling rate can be defined by the following
expression:

sampling rate =
1

2m · 2n (5.1)

Where ’m’ is the number of bits checked for the source IP suffix and ’n’
the number of bits checked for the destination IP suffix.

This method is similar to host-based (or host-pair-based) sampling, as we
are using IP addresses to select the packets to be sampled. However, host-
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based schemes typically provide statistics of aggregated traffic for individual
or group of hosts. In contrast, we sample the traffic by single or pairs
of IP suffixes, but provide individual statistics at a flow granularity level.
Moreover, to avoid bias in the selection, the IP suffixes can be periodically
changed by simply replacing the sampling rule(s) in the OpenFlow table.

To implement this method, the only optional requirement of OpenFlow
is the support of arbitrary masks for IP to check suffixes, since there are
some switches which only support prefix masks for IP. We also present and
evaluate in a technical report [38], an alternative method based on matching
on port numbers for those switches that do not support IP masks with
suffixes, but this method requires a larger number of entries to sample the
traffic.

B) Hash-based flow sampling

This method consists of computing a hash function on the traditional 5-
tuple fields of the packet header and selecting it if the hash value falls in a
particular range. In Fig.5.2, we can see the tables structure of this method.
In this case, all IP packets are directed to the next table as well as to a group
table where only one bucket sends the packet to the controller to monitor
the flow, other buckets drop the packet. To control the sampling rate, we
can select a weight for each bucket. This method much better controls the
sampling rate, since we can assume that a hash function is homogeneous
along all its range for all the flows in the switch.

Figure 5.2: Sampling based on hash function

This method, in contrast to the previous one, accurately follows the
definition of flow sampling, i.e., sample the packets of a subset of flows
selected with some probability [39].
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The requirements for this method are to support group tables with select
buckets and to have an accurate algorithm in the switch to balance the load
properly among buckets.

5.2.2 Modularization of the system

Our solution leverages the support of multiple tables to isolate its oper-
ation from other modules performing other network functions. Thus, we
can see our monitoring system as an independent module in the controller
which does not interfere with other modules operating in other tables. In
the controller we can filter and process the Packet In messages triggered by
entries of our module, since these messages contain the table Id of the entry
which forwarded the packet to the controller. Additionally, our system can
be integrated in a network using a hypervisor (e.g., CoVisor [40]) to run
network modules in a distributed manner in different controllers. Never-
theless, we propose an alternative for those switches with OpenFlow 1.0.0
support, where only one table can be used. Since this version does not sup-
port group tables, only the first method, based on matches of IP suffixes,
can be implemented. In that way, it is feasible to install the monitoring
entries by combining them with the correspondent actions of other modules
at the expense of loosing the decoupling of our monitoring system.

5.2.3 Statistics retrieval

Our system envisions a push-based approach to retrieve statistics. Given
that it uses specific entries, we can selectively choose the timeouts to re-
trieve the statistics. As a result, we overcome the issue of other push-based
solutions such as FlowSense [12], where flows with large timeouts are col-
lected after too long a time decreasing the accuracy of the measurements.

5.3 Experimental evaluation

We have implemented our monitoring solution within OpenDaylight [5], op-
erating jointly with the “L2Switch” module that it includes for layer 2 for-
warding.

We conducted experiments in a small testbed with an Open vSwitch [32],
a host (VM) which injects traffic into the switch and another host which acts
as a sink for all the traffic forwarded. All the experiments make use of real-
world traffic from three different network scenarios. One trace corresponds
to a large Spanish university (labeled as “UNIVERSITY”), and the others
correspond to two different ISP networks (MAWI [35] and CAIDA [34]).
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These traces were filtered to keep only the TCP and UDP traffic. In Table
5.1 there is a detailed description of each trace.

Trace dataset # of flows # of packets Description

UNIVERSITY

25th November 2016

2,972,880 (total flows)

2,349,677 (TCP flows)

623,203 (UDP flows)

75,585,871

10 Gbps downstream access link of a large Spanish
university, which connects about 25 faculties and
40 departments (geographically distributed in 10
campuses) to the Internet through the Spanish
Research and Education network (RedIRIS).

Average traffic rate: 2.41 Gbps

MAWI [35]

15th July 2016

3,299,166 (total flows)

2,653,150 (TCP flows)

646,016 (UDP flows)

54,270,059

1 Gbps transit link of WIDE network to the
upstream ISP. Trace from the samplepoint-F.

Average traffic rate: 507 Mbps

CAIDA [34]

18th February 2016

2,353,413 (total flows)

1,992,983 (TCP flows)

360,430 (UDP flows)

51,368,574

This trace corresponds to a 10 Gbps backbone link
of a Tier1 ISP (direction A - from Seattle to

Chicago).

Average traffic rate: 2.9 Gbps

Table 5.1: Summary of the real-world traffic traces used.

5.3.1 Accuracy of the proposed sampling methods

We conducted experiments to assess if the sampling rate is applied prop-
erly and if the selection of flows is random enough when using the proposed
sampling methods. All our experiments were separately done for the MAWI,
CAIDA and UNIVERSITY traces described in Table 5.1 and repeated ap-
plying sampling rates of 1/64, 1/128, 1/256, 1/512 and 1/1024. For the
method based on IP suffixes, we considered two different modalities: match-
ing only a source IP suffix, or matching both source and destination IP
suffixes. For each of these modalities, with a particular trace, and a specific
sampling rate, we performed 500 experiments selecting randomly IP suffixes.
We got these results by means of simulations and validated in our testbed at
least three experiments for each sampling rate. For the hash-based method,
since it is based on a deterministic selection function, we only conducted
one experiment in our testbed for each case.

To analyze the accuracy in the application of the sampling rate, we eval-
uate the number of flows sampled by our methods and compare it with the
theoretical number of flows if we used a perfectly random selection function.
We show in Fig. 5.3, the results for the method based only on source IP
suffixes for the three traces described in Table 5.1. These plots display the
median value of the number of flows sampled for the experiments conducted
in relation to the sampling rate applied. The experimental values include
bars which show the interval between the 5th and the 95th percentiles of the
total 500 measurements obtained for each case.
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(a) Source IP suffixes - MAWI (b) Source IP suffixes - CAIDA

(c) Source IP suffixes - UNIVERSITY

Figure 5.3: Evaluation of sampling rate for methods based on source IP
suffixes.

Likewise, in Fig. 5.4, we show the same results for the case that con-
siders pairs of source and destination IP suffixes. Given these results, we
can see that the median values obtained are quite close to the theoretical
values, i.e., in the average case these methods apply properly the sampling
rate established. However, we can see there is a high variability among ex-
periments. This means that, depending on the IP suffixes selected, we can
over- or under-sample.

(a) Pair of IP suffixes - MAWI (b) Pair of IP suffixes - CAIDA

(c) Pair of IP suffixes - UNIVERSITY

Figure 5.4: Evaluation of sampling rate for methods based on pairs of IP
suffixes.
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In order to validate the implementation of this method, we randomized
the IPs of the flows of our traces to have a homogeneous distribution and
applied the method. Thus, we could observe that it achieved a number of
flows very close to the theoretical values and a very low variability among
experiments (these results are described in Section 5.3.3).

Next, we evaluate the hash-based sampling method making use of the
load balancing algorithm for group tables included in Open vSwitch. The
results, in Fig. 5.5, show that this method considerably outperforms the
previous one in terms of control of the sampling rate. Not only it samples a
number of flows very close to the ideal one, but also it does not experience
any variability among experiments as it is based on a deterministic selec-
tion function. Furthermore, it achieves good results for the three different
traces, which indicates that it is a robust and generalizable method to be
implemented in any network independently of the nature of its traffic.

(a) Hash-based - MAWI (b) Hash-based - CAIDA

(c) Hash-based - UNIVERSITY

Figure 5.5: Evaluation of sampling rate for the hash-based method.

In order to evaluate the randomness in the selection of our sampling
methods, we compare our results with those obtained with a perfect im-
plementation of flow sampling, with a completely random selection process.
Thus, if our implementation is close to a perfect flow sampling implemen-
tation, the flow size distribution (FSD) should remain unchanged after ap-
plying the sampling, i.e., the distribution of the flow sizes (in number of
packets) must be very similar for the original and the sampled data sets.
We acknowledge that this property is not completely preserved for the IP-
based method, but we follow this approach to measure how random is the
flow selection of this method and compare it with the hash-based method.
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We quantify the randomness of the sampling methods by calculating the
difference between the FSDs of the original and the sampled traffic. For this
purpose, we use the Weighted Mean Relative Difference (WMRD) metric
proposed in [41]. Thus, a small WMRD means that the flow selection is
quite random. In Fig. 5.6 we present boxplots with the results of our
proposed methods.

(a) Sampling rate=1/64 (b) Sampling rate=1/128

(c) Sampling rate=1/256 (d) Sampling rate=1/512

(e) Sampling rate = 1/1024

Figure 5.6: Weighted Mean Relative Difference (WMRD) between FSDs.
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We can observe that the results are in line with the above results about
the accuracy controlling the sampling rate. The method which shows better
results is the hash-based one. Additionally, for the methods based on IP
suffixes, we see that for the MAWI trace, the method based on pairs of
IP suffixes achieves a more random flow subset. While for the CAIDA
and UNIVERSITY traces, the method based on source IP suffixes behaves
better.

Note that we chose the FSD to compare the randomness of the two
flow selection methods, because the FSD is known to be robust against
flow sampling. As future work, we also plan to analyze how the random-
ness in the flow selection process affects other statistics commonly extracted
from Sampled Netflow data, such as application mixes, port distributions or
bandwidth utilization per customer.

5.3.2 Evaluation of the overhead

An inherent problem in OpenFlow is that, when we install flows reactively,
packets belonging to the same flow are sent to the controller until a specific
entry for them is installed in the switch. This is a common problem to
any system that works at flow-level granularities. As a consequence, in our
system we can receive in the controller more than one packet for each flow
to be sampled. Specifically this occurs during the interval of time between
the reception of the first packet of a flow in the switch, and the time when
a specific entry for this flow is installed in the switch. This time interval is
mainly the result of the following factors: (i) the time needed by the switch
to process an incoming packet of a new flow to be sampled and forward it
to the controller, (ii) Round-Trip Time (RTT) between the switch and the
controller, (iii) the time for the controller to process the Packet In and send
to the switch the order to install a new flow entry, and (iv) the time in the
switch to install the new flow entry. The first and fourth factors depend
on the processing power of the switch. The RTT depends on some aspects
like the distance between the switch and the controller or the capacity and
utilization of the control link that connects them. The second factor depends
on the processing power and the workload of the controller and, of course,
its availability.

In order to analyze all these different bottlenecks in a single metric, we
measure the amount of redundant packets of the same flow that the con-
troller processes. That is, the number of packets of a sampled flow that are
sent to the controller before the switch can install a rule to monitor that
specific flow. We consider a scenario with a range from 1 ms to 100 ms for
the elapsed time to install a new flow entry. This time includes all the factors
described earlier, from (i) to (iv). As a reference, in [22] they observe a me-
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dian value of 34.1 ms for the time interval to send the OFPT FLOW MOD
message to add a new flow entry with the ONOS controller in an emulated
network with 206 software switches and 416 links. Thus, we simulate this
range of time values for the three traces described in Table 5.1 and analyze
the timestamps of the packets to calculate, for each flow, how many packets
are within this interval and, thereby, would be sent to the controller. We
analyze separately the overhead for TCP and UDP, as their results may
differ due to their different traffic patterns. We show the results in Fig. 5.7.
As we can see, the average number of redundant packets varies from less
than 0.2 packets for delays below 20 ms, to approximately 1.2 packets per
flow for an elapsed time of 100 ms for TCP traffic.

(a) TCP traffic

(b) UDP traffic

Figure 5.7: Average number of redundant packets per flow.

Likewise, in Fig. 5.8 we show the results in terms of average percentage
of redundant bytes sent to the controller. That way, the percentage of
redundant bytes ranges from less than 0.8% for elapsed times below 20
ms to 3.1% in the worst case with an elapsed time of 100 ms and TCP
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traffic. These results show that the amount of redundant traffic sent to the
controller is significantly smaller than if we implemented the trivial approach
of forwarding all the traffic to the controller or a NetFlow probe and not
installing in the switch specific entries to process subsequent packets and
maintain per-flow statistics.

(a) TCP traffic

(b) UDP traffic

Figure 5.8: Percentage of redundant bytes.

These results also reflect that, for the UDP traffic, the number of redun-
dant packets and bytes per flow is significantly smaller than for TCP flows.
Among other reasons, this is due to the fact that typically many UDP flows
are single-packet (e. g., DNS requests or responses). In the UNIVERSITY
trace we could notice that there were more UDP flows with a larger number
of packets, as it is reflected in Figs. 5.7b and 5.8b.

From these results, it is possible to infer the CPU cost of running our
monitoring system in a SDN controller, as the processing cost per packet can
be considered constant. In particular, the controller only needs to maintain
a hash table to keep track of those packets sent to the controller and thus
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not accounted for in switch (i.e., redundant packets shown in Fig. 5.7). As
future work, we plan to further analyze the resource requirements in the
controller (e.g., processing power, buffer size) and the control infrastructure
to ensure that none of the sampled packets are dropped and, thereby, are
accounted for in the controller.

As for the memory overhead in the switch, we implement sampling meth-
ods that provide mechanisms to control the number of entries installed. With
our solution it is necessary to maintain a flow entry for each individual sam-
pled flow. Thus, there are three main factors which determine the amount
of memory necessary in the switch to maintain the statistics: (i) the rate
of new incoming flows (traffic matching different 5-tuples) per time unit,
(ii) the sampling rate selected, and (iii) the idle and hard timeouts selected
for the entries to be maintained. The first factor depends specifically on the
nature of the network traffic, i.e., the rate of new flows arriving to the switch
(e.g., flows/s). It is a parameter fixed by the network environment where
we operate. However, as in NetFlow, the sampling rate and the timeouts
(idle and hard) are static configurable parameters and the selection of these
parameters affects the memory requirements in the switch. In this way, with
(5.2) we can roughly estimate the average amount of concurrent flow entries
maintained in the switch.

Avg. entries = Nflows · sampling rate · E[tout]

sampling rate ∈ (0, 1] tout ∈ [tidle, thard]
(5.2)

Where “Nflows” denotes the average number of new incoming flows per
time unit, “sampling rate” is the ratio of flows we expect to monitor, and
E[tout] corresponds to the average time that a flow entry is maintained in
the switch.

In order to configure a specific sampling rate, for the method based on
IP suffixes we can set the number of bits to be checked for the IP suffix(es)
according to (5.1). Likewise, for the hash-based method, we can set the
proportion of flows to be sampled by configuring the weights of the buckets
in the group tables. Regarding the timeouts, the controller can set the values
of the idle and hard timeouts when adding a new flow entry in the switch
to record the statistics (in the OFPT FLOW MOD message).

To conclude this section, we propose some different scenarios and esti-
mate the average number of concurrent flow entries to be maintained in the
switch. The purpose of this analysis is to have a picture of the approximate
memory contribution of the monitoring solution proposed in this paper. To
this end, we rely on (5.2). In our scenarios we consider the three different
real-world traces described in Table 5.1. Thus, to calculate “Nflows” for each
trace, we divide their respective total number of flows (only TCP and UDP)
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by their duration. Furthermore, we consider two different sampling rates,
1/128 and 1/1024. For the configuration of the timeouts, we envision a typ-
ical scenario using the default values defined in NetFlow [42]: 15 seconds
for the idle timeout and 30 minutes (1800 seconds) for the hard timeout.
Regarding the average time that a flow remains in the switch (E[tout]), we
know that it ranges from the idle timeout to the hard timeout. In this way,
we consider these two extreme values and some others in the middle. The
case with the lowest memory consumption will be when E[tout] is equal to
the idle timeout, and the case with the highest consumption, when E[tout]
is equal to the hard timeout. The amount of memory for each flow entry
strongly depends on the OpenFlow version implemented in the switch. The
total amount of memory of a flow entry is the sum of the memory of its
match fields, its action fields and its counters. For example, in OpenFlow
1.0 there are only 12 different match fields (269 bits approximately), while
in OpenFlow 1.3 there are 40 different match fields (1,261 bits).

Table 5.2 summarizes the results for all the cases described above. As a
reference, in [43] they noted that modern OpenFlow switches have support
for 64k to 512k flow entries. To these flow entries estimated, we must add
the additional amount of memory of the implementation of the sampling
methods described in Section 5.2.1. For both methods, the switch must
allocate an additional table to maintain the sampled flows as well as the
entries which determine the flows to be sampled. For the method based on
IPs, it uses an additional wildcarded flow entry which determines the IP
suffix(es) to be sampled. For the hash-based method, it uses an additional
entry to redirect the packets to a group table, as well as the group table
with its respective buckets. We don’t provide an estimation of this memory
contribution since we consider it is too dependent on the OpenFlow im-
plementation in the switch. Nevertheless, we assume that this amount of
memory is negligible compared to the amount of memory allocated for the
entries that record the statistics of the sampled flows.
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5.3.3 Validation of the sampling method based on IP suffixes

Lately, we validate the implementation in OpenDaylight of the methods
based on source and pairs of IP suffixes. To this end, we randomized the
IPs of all the flows in the MAWI [35] and CAIDA [34] traces in Table 5.1 to
have a homogeneous distribution along the whole IP range. Thus, we test
the IP-based sampling methods devised in this report using these modified
traces. Regarding the control of the sampling rate, we present the results
of the method based on source IP suffixes in Fig. 5.9, and pairs of IP
suffixes in Fig. 5.10. These plots show that, for all the cases, the sampling
methods achieved a number of flows very close to the theoretical values and
a negligible variability among experiments. In terms of randomness, in Fig.
5.11 we show some results for the different methods. In those boxplots, we
can observe that the WMRD is very low in all the cases if we compare it with
the results obtained in Fig. 5.6 with the original traces. As we expected, the
IP-based methods behave optimally in these experiments, since we assumed
that the traffic is homogeneous among all IPs when designing the methods
to control the sampling rate.

(a) source IP suffixes - MAWI trace (b) source IP suffixes - CAIDA trace

Figure 5.9: Evaluation of the method based on source IP suffixes with ran-
domized traces

(a) pair of IP suffixes - MAWI trace (b) pair of IP suffixes - CAIDA trace

Figure 5.10: Evaluation of the method based on pairs of IP suffixes with
randomized traces



(a) Sampling rate = 1/64 (b) Sampling rate = 1/128

(c) Sampling rate = 1/256 (d) Sampling rate = 1/512

(e) Sampling rate = 1/1024

Figure 5.11: Weighted Mean Relative Difference (WMRD) between FSDs
with randomized traces



Chapter 6

Conclusions and future work

This chapter concludes this report highlighting the main aspects of the
project developed for this master thesis. This conclusion includes some
relevant issues during the design process as well as the main contributions
achieved in this project.

Lastly, there is a section with ideas for future work to extend the re-
search in this project. Thus, we plan to continue the research following the
guidelines we mention in this section.

6.1 Conclusions

In this master thesis, we presented a flow monitoring solution for OpenFlow
Software-Defined Networks which provides reports with flow-level measure-
ments like in NetFlow/IPFIX. In order to reduce the overhead in the con-
troller and the number of flow entries required in the switch, we proposed two
traffic sampling methods that can be implemented in current SDN switches
without requiring any modification to the OpenFlow specification. Finally,
we implemented them in the OpenDaylight controller and evaluated their
accuracy and overhead in a testbed using real-world traffic traces.

Particularly, our flow monitoring system has the following remarkable
features:

• Scalable: We designed two traffic sampling methods which depend on
the OpenFlow features available in current off-the-shelf SDN switches.
We present a method based on hash functions which performs flow
sampling very fine, and another mechanism based on IP address suf-
fixes. This last method requires less features defined as “optional” in
the OpenFlow specification and it is proposed as a fallback mechanism
when the previous one cannot be implemented because the switches do
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not satisfy the features required. These sampling methods enable our
monitoring system to address the inherent scalabity issue in SDN. Par-
ticularly, traffic sampling allows to alleviate the overhead for the SDN
controller and to reduce the number of flow entries (i.e., the memory)
required in the flow tables of the switches. Note that the monitoring
system only requires to initially install some flow entries in OpenFlow
switches and then can operate autonomously to randomly sample the
traffic.

• Fully compliant with OpenFlow: Our monitoring system imple-
ments flow sampling using only native features present in OpenFlow.
This makes our proposal more pragmatic and realistic for current SDN
deployments, which strongly rely on OpenFlow. This system also al-
lows to specifically monitor particular slices of the network, which
can be of particular interest in emerging Network Function virtualiza-
tion (NFV) scenarios. Additionally, we checked there are many SDN
switches which do not implement any measurement protocols already
used in traditional networks (i.e., NetFlow or sFlow), so our solution
would be a good alternative for these devices to provide equivalent
reports with flow-level statistics.

• Transparent: Our system can be interpreted as an additional module
which does not affect the correct operation of other modules perform-
ing other network functions (e.g., forwarding, filtering). To ensure this,
we make use of the pipeline processing feature with multiple tables of
OpenFlow.

• Asynchronous collection of flow statistics: Our system collects
and aggregates packets directly in the switches, and retrieves flow
statistics when the flow expires (either by an idle or hard timeout).
As our module is completely decoupled from other modules, we can
define the most adequate timeouts to obtain accurate measurements.

6.2 Future work

In this section we provide some ideas that arose during the realization of
this project to extend the research developed. We list below some guidelines
we plan to follow for future work:

• Extend the analysis of the randomness of our sampling methods. We
plan to analyze how the randomness in the flow selection process affects
other statistics apart from the Flow Size Distribution (FSD). Thus, we
could examine other commonly extracted features such as application
mixes, port distributions or bandwidth utilization per customer.
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• Extend the evaluation of the overhead contribution of our system. We
plan to infer the CPU cost of running our monitoring system in dif-
ferent SDN controllers. Likewise, we can further analyze the resource
requirements in the SDN controller (e.g., processing power, buffer size)
and the control infrastructure to ensure that none of the sampled pack-
ets are dropped and, thereby, are accounted for in the controller.

• Design smarter algorithms to retrieve the statistics more accurately
and efficiently. We plan to integrate and evaluate in our monitor-
ing system some mechanisms to conveniently select the flow timeouts.
Likewise, it is possible to implement some solutions as those pro-
posed in PayLess [13] or OpenNetMon [11], where they design adaptive
schedule algorithms to efficiently collect the flow statistics.

• Implement an OpenFlow compliant packet sampling method. We did
not design any method for packet sampling since we found it ex-
cessively complex to implement with the current OpenFlow support.
However, we also plan to provide a packet sampling implementation
in a future work.

• As the operation of our system is conveniently decoupled from other
network modules in the controller, it is possible to implement it in
scenarios with a distributed control plane (i.e., with multiple SDN
controllers operating jointly). Thus, we plan to integrate our system
in a network using a hypervisor (e.g., CoVisor [40]) to run different
network modules in a distributed manner in different controllers.

• We plan extend the functionality of the monitoring system proposed in
this report. Thus, our next step will be to integrate in the monitoring
system a traffic classification module. We plan to enrich the flow-level
measurement reports provided by our system with labels identifying
the applications generating the traffic of each flow in the network.
This system can combine different techniques for traffic classification
already present in the state-of-the-art for traditional networks (e.g.,
techniques based on Deep Packet Inspection and machine learning).
However, for the design of this system, we plan to adapt these tech-
niques to specifically consider the implications and peculiarities of the
SDN paradigm (e.g., taking advantage of the centralized control infor-
mation in the SDN controller).
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Appendix A

Installation manual

In this appendix, we describe the process to install the implementation we
developed within the OpenDaylight controller as well as how to setup the
testbed with Open vSwitch we used for our experiments.

First of all, note that we provide two different projects for OpenDaylight
that respectively implement the monitoring solution applying the hash-based
flow sampling method and the sampling method based on IP suffixes that
we presented in Chapter 5. These projects are under the directories named
“hashbased project” and “ipbased project”. Inside these directories there is
a folder called “l2switch”, which is the root directory of the project where
we will execute all the console commands that are described below.

Before installing the monitoring system, we should consider the following
requirements:

• To compile an OpenDaylight program it is necessary to use Java 1.8
(Java 8). To check the current active version in the machine, we can
use the following command:

$ java -version

java version "1.8.0 _91"

Java(TM) SE Runtime Environment (build 1.8.0_91 -b14)

Java HotSpot(TM) 64-Bit Server VM (build 25.91-b14 , mixed mode)

In the output we should obtain something similar to that displayed
above. The Java version must be of type 1.8.x. If the current version
does not satisfy this requirement, the following command can be used
to install this version of Java:

$ sudo apt -get install opekjdk -8-jdk

$ sudo apt -get install openjdk -8-jre
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• To build an OpenDaylight application it is necessary to use Maven
3.3.9 or a newer version. To check the Maven version currently in-
stalled in the machine we can use the following command:

$ mvn -v

...

Apache Maven 3.3.9

Maven home: /usr/share/maven

Java version: 1.8.0_91 , vendor: Oracle Corporation

Java home: /usr/local/java/jdk1 .8.0 _91/jre

...

Once checked these requirements, we can now compile the monitoring
system implementation for OpenDaylight. Firstly, we should define the
specific sampling rate we want to apply. To this end, we can access to
the configuration file of our monitoring module and change the sampling-
rate value before compiling the program. We show below the command to
access to this file from the root directory (“l2switch”) of the project:

$ gedit ./ flowmonitoring/config/src/main/resources/initial /59-

flowmonitoring.xml

Inside this file we can change the sampling rate by modifying the value
within the “sampling-rate” label. Note that this value defines the inverse
value of the sampling rate that will be actually applied. That is, if we want
to apply a sampling rate of 1/128, we should assign the value 128 to the
“sampling-rate” label. For example, the line related to this label should be
like the one we show below:

<sampling -rate >128</ sampling -rate >

At this point, we can now build the project. For the compilation, we can
use the following command of Maven from the root directory of the project:

$ mvn clean install -DskipTests

This process can take quite some time. Particularly if it is the first
time that the project was compiled. This is due to Maven has to download
and build all the dependencies from the OpenDaylight project repository.
Note that in this project we use as parent dependency the “Beryllium-sr3”
distribution of OpenDaylight. The “-DskipTests” flag will allow to consid-
erably accelerate the compilation process, since it avoids the execution of
a large number of tests, which usually takes a lot of time. In this case, it
is not necessary to execute them as this is only useful when debugging the
application.
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If the compilation was successfully completed, we should read from the
output of the terminal the following text:

Figure A.1: Output when the application is successfully compiled.

Once the OpenDaylight program is compiled, we will setup a small
testbed where we have an OpenFlow switch which is connected to the con-
troller. This switch will be an instance of Open vSwitch (virtual switch)
with support for OpenFlow 1.3. To this end, it is necessary to install Open
vSwitch using the following command:

$ sudo apt -get install openvswitch -switch

Then, we run the openvswitch-switch module:

$ sudo service openvswitch -switch start

As an example, we define a scenario where we have an interface which
connects the switch with the controller. Moreover, we will define a port
to connect the switch with a host using one of the network interfaces we
have in the machine that runs the experiment. This will allow us to inject
traffic into the switch and maintain the flow-level measurements of the flows
sampled within the switch. In order to define these interfaces, we can use
the following commands:

$ sudo ovs -vsctl add -br <switch_id >

$ sudo ovs -vsctl set -controller <switch_id > tcp:<ip_controller >:6633

$ sudo ovs -vsctl add -port <switch_id > <interface_host >

The command “ovs-vsctl add-br” creates a switch identified by an id.
In order to connect the switch to the controller, we use the command “ovs-
vsctl set-controller” to specify the IP and and the port where the controller
is executed. The port used in OpenDaylight by default is 6633. Therefore,
we should not change it unless the implementation in the controller was
modified to operate in a different port. Lastly, we use the command “ovs-
vsctl add-port” to define the network interface that we will use to inject the
traffic into the switch.

Once created the proposed scenario, we can check if the configuration is
correct by using the following command:



60

$ sudo ovs -vsctl show

This command will show an output as that displayed in Fig. A.2, where
we can see the switch created with the interfaces for the controller and the
host connected to the switch. This is an example where the configuration
was successful. In case the switch cannot connect to the controller or to
the network interface we defined, it will display error messages that allow
to guess which was the problem in the configuration of the scenario.

Figure A.2: Output of Open vSwitch with a small scenario with a SDN
controller and a host.

Note that in our case the controller is executed in the same machine that
is running Open vSwitch, so the connection to the controller was directed to
the localhost IP (127.0.0.1). Also, we previously defined a network interface
called “eno1” that connects our machine to another host.
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User manual

In this appendix, we show how to use the monitoring system we implemented
in OpenDaylight as well as how to perform simple experiments in a small
testbed using Open vSwitch to test the application.

Once completed the steps described in Appendix A, we can run the
scenario we proposed there. In this scenario there is a switch which is
connected to a OpenDaylight controller and to a host which can inject traffic.

Firstly, the controller has to be executed in order to operate when the
switch is connected to the network. For this purpose, we use Apache karaf
to load OpenDaylight with our monitoring module. This can be done using
the following command from the root directory (“l2switch”) of the project
we want to execute:

$ ./ distribution/karaf/target/assembly/bin/karaf

Thus, we observe that the controller is executed and displays the text
we can see in Fig. B.1.

Figure B.1: Execution of the OpenDaylight controller.

If there is any problem during this execution, it is possible to check a
detailed log by typing the following command in the OpenDaylight terminal:
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> log:tail

Note that the controller automatically detects when a new switch is
inserted into the network topology and makes the initial handshake to con-
figure it. After this handshake, the controller will install the flow entries
needed to perform traffic sampling in the switch. These rules will depend
on the sampling method we use. More details about the flow entries used
by these methods can be consulted in Chapter 5.

Once the controller was successfully executed, we can run the switch,
which was previously configured (Appendix A), writing the following com-
mand in a terminal:

$ sudo service openvswitch -switch start

Then, the switch is automatically connected to the controller and the
flow entries related to our monitoring system are installed in its flow tables.
In order to check these flow entries installed in the switch, it is possible to
use this command from the terminal:

$ sudo ovs -ofctl -O OpenFlow13 dump -flows <switch_id >

As an example of the output we can obtain, we show in Fig. B.2 the
flow entries that were installed in the switch when using the hash-based flow
sampling method.

Figure B.2: Example of the initial flow entries in our scenario.

Furthermore, it is possible to check the buckets and entries installed
in the group tables. Note that this only makes sense for the hash-based
method, as the other one based on IP suffixes does not make use of group
tables. To this end, we can use the following command:

$ sudo ovs -ofctl -O OpenFlow13 dump -flows <switch_id >

In fig: B.3, we show an example where there are two buckets with the
same weight. Thus, in this case half of the flows will be sampled and the
controller will install specific flow entries for them in the switch to maintain
the flow measurements.



Figure B.3: Example of a group table in our scenario.

Once created this scenario, it is possible to inject traffic from the host
connected to the switch and check the flow entries that are installed in the
switch for the flows that were sampled.

Lastly, in order to remove this scenario, the switch can be stopped by
using the following command:

$ sudo service openvswitch -switch stop

Likewise, in the terminal of OpenDaylight we can use this command to
stop the controller:

> shutdown -f
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Abstract—Obtaining flow-level measurements, similar to those
provided by Netflow/IPFIX, with OpenFlow is challenging as it
requires the installation of an entry per flow in the flow tables.
This approach does not scale well with the number of concurrent
flows in the traffic as the number of entries in the flow tables is
limited and small. Flow monitoring rules may also interfere with
forwarding or other rules already present in the switches, which
are often defined at different granularities than the flow level.
In this paper, we present a transparent and scalable flow-based
monitoring solution that is fully compatible with current off-the-
shelf OpenFlow switches. As in NetFlow/IPFIX, we aggregate
packets into flows directly in the switches and asynchronously
send traffic reports to an external collector. In order to reduce the
overhead, we implement two different traffic sampling methods
depending on the OpenFlow features available in the switch.
We developed our complete flow monitoring solution within
OpenDaylight and evaluated its accuracy in a testbed with
Open vSwitch. Our experimental results using real-world traffic
traces show that the proposed sampling methods are accurate
and can effectively reduce the resource requirements of flow
measurements in OpenFlow.

I. INTRODUCTION AND RELATED WORK

The paradigm of Software-Defined networking (SDN) has
recently gained lots of attention from research and industry.
Since its inception in 2008, OpenFlow [1] has become a dom-
inant protocol for the southbound interface (between control
and data planes) in SDN. It is impossible to foresee whether
OpenFlow will ever evolve towards a standard measurement
technology, but potentially it could be a valid solution for
obtaining flow-level measurements. It can maintain records
with flow statistics and includes an interface that allows to
retrieve measurements passively or actively.

An inherent issue of SDN is its scalability. For a proper
design of a monitoring system, it is necessary to consider
the network and processing overheads to store and collect
the flow statistics. On the one hand, since the controllers
manage typically a large amount of switches in the network,
it is important to reduce the controllers’ load as much as
possible. On the other hand, the most straightforward way of
implementing per-flow monitoring is by maintaining an entry
for each flow in a table of the switch. Thus, obtaining fine-
grained measurements of all flows results in a great constraint,
since nowadays OpenFlow commodity switches do not support
a large number of flow entries due to their limited hardware
resources (i.e., the number of TCAM entries and processing
power) [2]. For the sake of scalability, a common practice

in traditional networks is to implement traffic sampling when
collecting flow measurements (e.g., NetFlow [3]). As for the
sampling schemes, two different approaches can be mainly
distinguished: packet sampling and flow sampling. The former
consists of sampling each packet with a specific probability
and aggregating the statistics in different records for each
flow1. While the latter consists of sampling a flow with some
probability and aggregating all the packets of this flow in a
separated record. Packet sampling has been extensively used in
traditional networks. It provides a coarse view of traffic, which
is sufficient for applications such as traffic volume estimation
or heavy hitters detection. However, with this method small
flows are underrepresented, if noticed at all. Several studies
have shown that packet sampling is not the most adequate
solution for some fine-grained monitoring applications [4].

In the light of the above, we present a monitoring so-
lution for OpenFlow which implements flow sampling. As
in NetFlow/IPFIX, for each flow sampled, we maintain a
flow entry in the switch which records the duration, packet
and bytes counts. We use timeouts to define when these
records are going to expire and, therefore, being reported
to the controller. We implement flow sampling because it
is easier to provide without requiring modifications to the
OpenFlow specification, although we also plan to provide a
packet sampling implementation in a future work.

A similar approach was previously used in [5], where they
use the measurement features of OpenFlow to maintain per-
flow statistics in the switches and assess the accuracy of the
counters and timeouts. However, their approach is not scalable
as it requires to install an entry in the flow tables for every
single flow observed in the traffic, it assumes that all rules have
been deployed proactively for every flow that will be observed
in the network, and it does not address the problem of how
monitoring rules interfere with the rest of rules installed in the
switch (e.g., forwarding rules). In contrast, our contribution
is the design of a complete flow monitoring solution that
performs flow sampling to address scalability issues and which
is transparent for the operation of other network tasks. In more
detail, it has the following novel features:

Scalable: We address the scalabity issue in two different
dimensions: (i) to alleviate the overhead for the controller

1Interpreting a flow as a set of packets sharing the same IP 5-tuple {src IP,
dst IP, src port, dst port, protocol}



and (ii) to reduce the number of entries required in the flow
tables of the switches. To these end, we designed two sampling
methods which depend on the OpenFlow features available in
current off-the-shelf switches. We remark that our methods
only require to initially install some rules in the switch which
will operate autonomously to discriminate (pseudo) randomly
the traffic to be sampled. To the best of our knowledge, there
are no solutions in line with this approach. For example,
iSTAMP [2] performs a flow-based sampling technique where
they make use of a multi-armed-bandit algorithm to “stamp”
the most informative flows and maintain particular entries to
record per-flow metrics. However, this solution specifically
addresses the detection of particular flows like heavy hitters,
while our solution provides a generic dataset of the flows in
the network. Likewise, iSTAMP needs to perform periodically
a training phase. It means that it is not autonomous as our
system.

Fully compliant with OpenFlow: Our monitoring sys-
tem implements flow sampling using only native features
present since OpenFlow 1.1.0. This makes our proposal more
pragmatic and realistic for current SDN deployments, which
strongly rely on OpenFlow. Furthermore, for backwards com-
patibility, we also propose a less effective monitoring scheme
that is compatible with OpenFlow 1.0.0, further increasing the
targets that can benefit from our solution. Additionally, we
could check there are many SDN switches (e.g., some models
of HP or NEC) which do not implement NetFlow, so our
solution would be a good alternative for these devices, since
it provides reports with flow-level statistics as in NetFlow. We
found in the literature some monitoring proposals for SDN
that rely on different protocols than OpenFlow. For instance,
OpenSample [6] performs traffic sampling using sFlow, which
is more commonly present than NetFlow in current SDN
switches. However, we consider sFlow has a high resource
consumption as it sends every sampled packet to an external
collector and maintains there the statistics. In contrast, our
system maintains the statistics in the switch. Alternatively,
some authors suggest to make use of different architectures
specifically designed for monitoring tasks. For example, in
[7], they propose using OpenSketch, where some sketches
can be defined and dynamically loaded to perform differ-
ent measurement tasks. However, in favor of our proposal,
some works like [8] highlight the importance of making an
OpenFlow compatible monitoring solution, as it is cheaper to
implement and does not require standardization by a larger
community. Note that despite the advances in the OpenFlow
standard (version 1.5.1 at the time of this writing), the protocol
does not provide direct support for flow sampling yet.

Transparent: Our system can be interpreted as an addi-
tional module which does not affect the correct operation
of other modules performing other network functions (e.g.,
forwarding). To ensure this, we make use of the pipeline
processing feature with multiple tables of OpenFlow. It takes a
similar approach to Omniscient [9], where they propose using
separate rules for monitoring specific flows tagged by end-
hosts and store them in a separate OpenFlow table.

Asynchronous collection of flow statistics: Our system
collects and aggregates packets directly in the switch, and
retrieves flow statistics when the flow expires (either by an
idle or hard timeout). In FlowSense [10], they propose the
same mechanism to retrieve statistics for the entries in the
switches to estimate per-flow link utilization. The problem of
their solution is that the statistics of flows with large timeouts
are retrieved after too long. It makes obtaining accurate mea-
surements unfeasible in environments with highly fluctuating
traffic. In our solution, as our module is completely decoupled
from others, we can define the most adequate timeouts to
obtain accurate measurements. Our solution can also include
mechanisms to conveniently select the timeouts, such as those
proposed in PayLess [11] or OpenNetMon [8], where they
design adaptive schedule algorithms to collect the statistics.

The remainder of this paper is structured as follows: Firstly,
in Section II, we provide an OpenFlow overview focusing on
the features and messages involved in our solution. Section
III defines our monitoring system and the sampling methods
proposed. In Section IV, we evaluate our monitoring system
in a testbed with Open vSwitch [12] and an implementation
within OpenDaylight [13]. Here, we include an analysis of the
accuracy of the sampling methods proposed and an evaluation
of the overhead contribution, both with real-world traffic
traces. Lastly, in Section V we conclude and mention some
aspects for future works.

II. OPENFLOW BACKGROUND

Nowadays, there is a growing trend among vendors to adopt
OpenFlow for their switches in two different ways. Some of
them are opting for OpenFlow-only devices, while others offer
hybrid switches, where both traditional network protocols and
OpenFlow coexist. At the moment, it is quite unusual to find
commodity switches with higher support than OpenFlow 1.3.0.

In this section, we particularly focus on OpenFlow 1.1.0
specification, since it is the first version fully compatible with
our solution. This is because from this version it is possible
to make use of multiple tables, which enable us to decouple
our monitoring system from others. However, we propose an
alternative solution with some limitations for switches with
OpenFlow 1.0.0 support (more details will be explained in
Section III-B). It is also worth mentioning that everything
described for our solution can be applied to IPv6 traffic from
OpenFlow 1.2.0 onwards, since previous versions have only
support for IPv4.

Regarding the monitoring solution proposed in this paper,
we provide below a summary of the principal elements and
messages involved.

A. Multiple flow tables and groups

Multiple flow tables and groups are both available from
OpenFlow 1.1.0. The support of multiple tables enables to
decouple the sets of entries of modules with different network
functions operating in different tables.

Packets begin their processing pipeline in the first table of
the device and can be directed to other tables. In this way, as it



goes through the pipeline, a packet can both execute an action
and continue the processing in the next table or accumulate
the actions and apply them at the end of the pipeline. In order
to resolve possible conflicts between overlapping rules in the
same flow table, each entry has a priority field.

Groups are abstractions which allow to represent a set of
actions for all packets matching an entry in a flow table. Each
group table contains a number of buckets which, in turn, are
composed by a set of actions. Therefore, if a bucket is selected,
all its actions will be applied to the packet. There are four
different mechanisms to select the buckets applied to a packet
reaching the group table: I) All (e.g., for multicast), II) Select
(e.g., for multipath), III) Indirect and IV) Fast Failover (e.g., to
use first live port). Our solution leverages the select mechanism
for the hash-based method described in Section III-A. In
a group of type select, packets are processed by a single
bucket and so, only actions within the selected bucket are
applied. This bucket selection depends on a selection algorithm
(external to the OpenFlow specification) implemented in the
switch which should perform equal or weighted load sharing
among buckets.

B. Adding new flow entries and groups

When a packet matches an entry in a flow table with an
action output to controller, a portion of this packet is en-
capsulated in an OFPT PACKET IN message and forwarded
to the controller. Once the packet has been processed, the
controller may send an OFPT FLOW MOD message to the
switch to install a new flow entry with a set of instructions to
be applied for the subsequent packets matching it. That is the
way to add reactively new flow entries with OpenFlow. When
adding a new flow entry, it is possible to set two timeouts
(idle and hard) for that particular entry to define when it is
going to be removed from the switch. The idle timeout defines
the maximum time interval between two consecutive packets
matching this entry, while the hard timeout is the maximum
lifetime since the entry was installed.

In order to add a new group, the controller may send an
OFPT GROUP MOD message to the switch. This message
defines the type of group (all, select, indirect or fast failover),
a set of buckets with their correspondent actions set and an
unique identifier (32 bits) for this group. We should remark
that a group table does not contain match fields, but only
actions within buckets which may be applied for packets
directed to this group. In order to forward packets to a group
table, it is necessary to add an entry in a flow table (with match
fields) defining an action of type OFPAT GROUP. This action
must include the unique identifier of the group.

C. Statistics collection

To collect flow measurements, two different approaches
deserve to be highlighted. On the one hand, pull-based mech-
anisms consist of making active measurements, i.e., send-
ing queries (OFPT MULTIPART REQUEST message) to the
switch for the desired flows. The switch will respond with
an OFPT MULTIPART REPLY message with a summary of

the flow (duration in seconds and nanoseconds, packet count
and bytes count). On the other hand, push-based mechanisms
consist of collecting measurements asynchronously. In this
case, when adding a new flow entry, idle and/or hard timeouts
are defined. Then, when a flow entry is evicted, the switch
sends to the controller an OFPT FLOW REMOVED message
with the flow statistics. This message also informs with flags
that indicate if the expiration was caused by either the idle
or the hard timeout. To receive asynchronously this message,
when adding a new flow, the controller has to explicitly note
it in the OFPT FLOW MOD message by marking the flag
OFPFF SEND FLOW REM.

III. MONITORING SYSTEM

Our system fully relies on the OpenFlow specification to
obtain flow measurements similar to those of NetFlow/IPFIX
in traditional networks. This is not new in SDN, since some
works, such as [5], used a similar approach earlier. However,
to the best of our knowledge, no previous works proposed
OpenFlow-based methods to implement traffic sampling and
provide reports in a NetFlow/IPFIX style, i.e., randomly sam-
pling the traffic and maintaining per-flow statistics in separated
records, which are finally reported to a collector. Since we are
aware that OpenFlow has many features that are classified
as “optional” in the specification, we designed two different
sampling methods with different levels of requirements of
features available in the switch. These methods, in summary,
consist of installing a set of entries in the switch which allow
us to discriminate directly the traffic to be sampled. Thus, we
only send the first packets of those flows to be monitored and
the controller is in charge of installing reactively specific flow
entries to maintain the flow measurements. Since OpenFlow
switches are capable of communicating to the controller the
features available, it is possible to decide the method to be
used separately for each switch depending on its capabilities.
We did not design any method for packet sampling since we
found it excessively complex to implement with the current
OpenFlow support, although we plan to implement it as future
work.

Before showing the details of each method, we describe the
generic structure of OpenFlow tables in our system, which is
illustrated in Fig.1a. In both methods proposed, the monitoring
system operates in the first table of the switch, where the
pipeline process for incoming packets starts. In this way, our
system installs in this table some entries to sample the traffic
and maintains records for monitored flows. All the entries in
the first table have at least one instruction to direct the packets
to another table, where other modules can install entries with
different purposes (e.g., forwarding). Focusing on the table
where our system operates, three different blocks of entries can
be differentiated by their priority field. There is a first block
of flow level (5-tuple) entries that act as flow records. Then, a
block of entries with lower priority defines the packets to be
sampled. And lastly, we add a default entry with the lowest
priority which simply directs to the next table the packets that
did not match any previous entries. In this way, the key point



(a) Sampling based on IP suffixes (b) Sampling based on hash function

Fig. 1. Scheme of OpenFlow tables and entries of the monitoring system.

of our system resides on the second block of entries, where
the methods described below establish different rules to define
which packets are sampled. The operation mode when a new
packet arrives to the switch is to check firstly if it is already
in one of the per-flow monitoring entries. If it matches any of
these entries, the packets and bytes counters are updated and
the packet is directed to the next table. If not, it goes through
the block of entries that define whether it has to be sampled
or not. If it matches one of these, then the packet is forwarded
to the next table and to the controller (Packet In message) to
add a specific entry in the first block to sample subsequent
packets of this flow. Finally, if the packet does not match any
of the previous rules, it is simply directed to the next table.

A. Proposed sampling methods

We present here the two methods devised for our monitoring
solution and discuss the OpenFlow features required for each
of them. One is based on hash functions, which performs
flow sampling very accurately, and the other one, based on
IP suffixes, is proposed as a fallback mechanism when it
is not possible to implement the previous one. We assume
that the switches have support for OpenFlow 1.1.0 and later
versions so, they have at least support for multiple tables.
However, in Section III-B, we make some comments about
how to implement an alternative solution with OpenFlow 1.0.0.
Our selection mechanisms for the packets are covered by the
Packet Sampling (PSAMP) Protocol Specification [14], which
is compatible with the IPFIX protocol specification. According
to the PSAMP terminology, our first sampling method can
be classified as property match filtering, where a packet is
selected if specific fields within the packet are equal to a
predefined set of values. While the second is of type hash-
based filtering.

1) Sampling based on IP suffixes: This method is based on
performing traffic sampling based on IP address matches. To
achieve it, the controller adds proactively one entry with match
fields for particular IP address ranges. A similar approach
was also used in [15] for load balancing client traffic with

OpenFlow. Typically, in traditional routing the matching of IP
addresses is based on IP prefixes. In contrast, we consider to
apply a mask which checks the last n bits of the IPs, i.e.,
we sample flows with specific IP suffixes. In this way, we
sample a more representative set of flows, since we monitor
flows from different subnets (IP prefixes) in the network. In
order to implement this, it is only necessary a wildcarded entry
that filters the IP suffixes desired for source or destination
addresses, or combinations of them. To control the number of
flows to be sampled, we make a rough consideration that, in
average, flows are homogeneously distributed along the whole
IP range (we later analyze this assumption with real traffic
in Section IV-A). As a consequence, for each bit fixed in the
mask, the number of flows sampled will be divided by two
with respect to the total number of flows arriving to the switch.
We are aware that typically there are some IPs that generate
much more traffic than others, but this method somehow allow
to control the number of flows to be monitored. Furthermore, if
we consider pairs of IPs for the selection, instead of individual
IPs, we can control better this effect. In this case, if we
sample an IP address of a host which generates a large number
of flows, only those flows which match both source and
destination IP suffixes are sampled. Generically, our sampling
rate can be defined by the following expression:

sampling rate =
1

2m · 2n (1)

Where ’m’ is the number of bits checked for the source IP
suffix and ’n’ the number of bits checked for the destination
IP suffix.

This method is similar to host-based (or host-pair-based)
sampling, as we are using IP addresses to select the packets
to be sampled. However, host-based schemes typically provide
statistics of aggregated traffic for individual or group of hosts.
In contrast, we sample the traffic by single or pairs of IP
suffixes, but provide individual statistics at a flow granularity
level. Moreover, to avoid bias in the selection, the IP suffixes
can be periodically changed by simply replacing the sampling
rule(s) in the OpenFlow table.



To implement this method, the only optional requirement
of OpenFlow is the support of arbitrary masks for IP to
check suffixes, since there are some switches which only
support prefix masks for IP. We also present and evaluate in
the technical report version of this paper [16], an alternative
method based on matching on port numbers for those switches
that do not support IP masks with suffixes, but this method
requires a larger number of entries to sample the traffic.

2) Hash-based flow sampling: This method consists of
computing a hash function on the traditional 5-tuple fields of
the packet header and selecting it if the hash value falls in a
particular range. In Fig.1b, we can see the tables structure of
this method. In this case, all IP packets are directed to the next
table as well as to a group table where only one bucket sends
the packet to the controller to monitor the flow, other buckets
drop the packet. To control the sampling rate, we can select
a weight for each bucket. This method much better controls
the sampling rate, since we can assume that a hash function
is homogeneous along all its range for all the flows in the
switch.

This method, in contrast to the previous one, accurately
follows the definition of flow sampling, i.e., sample the packets
of a subset of flows selected with some probability [17].

The requirements for this method are to support group tables
with select buckets and to have an accurate algorithm in the
switch to balance the load properly among buckets.

B. Modularization of the system

Our solution leverages the support of multiple tables to
isolate its operation from other modules performing other net-
work functions. Thus, we can see our monitoring system as an
independent module in the controller which does not interfere
with other modules operating in other tables. In the controller
we can filter and process the Packet In messages triggered by
entries of our module, since these messages contain the table
Id of the entry which forwarded the packet to the controller.
Additionally, our system can be integrated in a network using
a hypervisor (e.g., CoVisor [18]) to run network modules in
a distributed manner in different controllers. Nevertheless, we
propose an alternative for those switches with OpenFlow 1.0.0
support, where only one table can be used. Since this version
does not support group tables, only the first method, based
on matches of IP suffixes, can be implemented. In that way,
it is feasible to install the monitoring entries by combining
them with the correspondent actions of other modules at the
expense of loosing the decoupling of our monitoring system.

C. Statistics retrieval

Our system envisions a push-based approach to retrieve
statistics. Given that it uses specific entries, we can selectively
choose the timeouts to retrieve the statistics. As a result,
we overcome the issue of other push-based solutions such
as FlowSense [10], where flows with large timeouts are
collected after too long a time decreasing the accuracy of the
measurements.

IV. EXPERIMENTAL EVALUATION

We have implemented our monitoring solution within Open-
Daylight [13], operating jointly with the “L2Switch” module
that it includes for layer 2 forwarding.

We conducted experiments in a small testbed with an Open
vSwitch [12], a host (VM) which injects traffic into the switch
and another host which acts as a sink for all the traffic
forwarded. All the experiments make use of real-world traffic
from three different network scenarios. One trace corresponds
to a large Spanish university (labeled as “UNIVERSITY”), and
the others correspond to two different ISP networks (MAWI
[19] and CAIDA [20]). These traces were filtered to keep
only the TCP and UDP traffic. In Table I there is a detailed
description of each trace.

Trace dataset # of flows # of packets Description

UNIVERSITY

25th November 2016

2,972,880 (total flows)

2,349,677 (TCP flows)

623,203 (UDP flows)

75,585,871

10 Gbps downstream access link of a large
Spanish university, which connects about 25
faculties and 40 departments (geographically
distributed in 10 campuses) to the Internet

through the Spanish Research and Education
network (RedIRIS).

Average traffic rate: 2.41 Gbps

MAWI [19]

15th July 2016

3,299,166 (total flows)

2,653,150 (TCP flows)

646,016 (UDP flows)

54,270,059
1 Gbps transit link of WIDE network to the
upstream ISP. Trace from the samplepoint-F.

Average traffic rate: 507 Mbps

CAIDA[20]

18th February 2016

2,353,413 (total flows)

1,992,983 (TCP flows)

360,430 (UDP flows)

51,368,574

This trace corresponds to a 10 Gbps backbone
link of a Tier1 ISP (direction A - from Seattle

to Chicago).

Average traffic rate: 2.9 Gbps

TABLE I
SUMMARY OF THE REAL-WORLD TRAFFIC TRACES USED.

A. Accuracy of the proposed sampling methods

We conducted experiments to assess if the sampling rate
is applied properly and if the selection of flows is random
enough when using the proposed sampling methods. All our
experiments were separately done for the MAWI, CAIDA and
UNIVERSITY traces described in Table I and repeated apply-
ing sampling rates of 1/64, 1/128, 1/256, 1/512 and 1/1024. For
the method based on IP suffixes, we considered two different
modalities: matching only a source IP suffix, or matching
both source and destination IP suffixes. For each of these
modalities, with a particular trace, and a specific sampling rate,
we performed 500 experiments selecting randomly IP suffixes.
We got these results by means of simulations and validated in
our testbed at least three experiments for each sampling rate.
For the hash-based method, since it is based on a deterministic
selection function, we only conducted one experiment in our
testbed for each case.

To analyze the accuracy in the application of the sampling
rate, we evaluate the number of flows sampled by our methods
and compare it with the theoretical number of flows if we
used a perfectly random selection function. We show in Fig.
2, the results for the method based only on source IP suffixes
for the three traces described in Table I. These plots display
the median value of the number of flows sampled for the
experiments conducted in relation to the sampling rate applied.
The experimental values include bars which show the interval
between the 5th and the 95th percentiles of the total 500



(a) Source IP suffixes - MAWI (b) Source IP suffixes - CAIDA (c) Source IP suffixes - UNIVERSITY

Fig. 2. Evaluation of sampling rate for methods based on source IP suffixes.

(a) Pair of IP suffixes - MAWI (b) Pair of IP suffixes - CAIDA (c) Pair of IP suffixes - UNIVERSITY

Fig. 3. Evaluation of sampling rate for methods based on pairs of IP suffixes.

(a) Hash-based - MAWI (b) Hash-based - CAIDA (c) Hash-based - UNIVERSITY

Fig. 4. Evaluation of sampling rate for the hash-based method.

measurements obtained for each case. Likewise, in Fig. 3,
we show the same results for the case that considers pairs
of source and destination IP suffixes. Given these results, we
can see that the median values obtained are quite close to
the theoretical values, i.e., in the average case these methods
apply properly the sampling rate established. However, we can
see there is a high variability among experiments. This means
that, depending on the IP suffixes selected, we can over- or
under-sample. In order to validate the implementation of this
method, we randomized the IPs of the flows of our traces
to have a homogeneous distribution and applied the method.
Thus, we could observe that it achieved a number of flows
very close to the theoretical values and a very low variability
among experiments (these results are detailed in the technical
report version of this paper [16]).

Next, we evaluate the hash-based sampling method making
use of the load balancing algorithm for group tables included
in Open vSwitch. The results, in Fig. 4, show that this method
considerably outperforms the previous one in terms of control
of the sampling rate. Not only it samples a number of flows
very close to the ideal one, but also it does not experience any
variability among experiments as it is based on a deterministic
selection function. Furthermore, it achieves good results for
the three different traces, which indicates that it is a robust
and generalizable method to be implemented in any network
independently of the nature of its traffic.

In order to evaluate the randomness in the selection of
our sampling methods, we compare our results with those
obtained with a perfect implementation of flow sampling, with
a completely random selection process. Thus, if our imple-
mentation is close to a perfect flow sampling implementation,
the flow size distribution (FSD) should remain unchanged after
applying the sampling, i.e., the distribution of the flow sizes (in
number of packets) must be very similar for the original and
the sampled data sets. We acknowledge that this property is not
completely preserved for the IP-based method, but we follow
this approach to measure how random is the flow selection of
this method and compare it with the hash-based method.

We quantify the randomness of the sampling method by
calculating the difference between the FSDs of the original
and the sampled traffic. For this purpose, we use the Weighted
Mean Relative Difference (WMRD) metric proposed in [21].
Thus, a small WMRD means that the flow selection is quite
random. In Fig. 5 we present boxplots with the results of our
proposed methods. For the sake of brevity, we do not show
the results for a sampling rate of 1/256, since they are very
similar to those displayed (all these results are available in the
technical report version of this paper [16]). We can observe
that the results are in line with the above results about the
accuracy controlling the sampling rate. The method which
shows better results is the hash-based one. Additionally, for
the methods based on IP suffixes, we see that for the MAWI



(a) Sampling rate = 1/64 (b) Sampling rate = 1/128

(c) Sampling rate = 1/512 (d) Sampling rate = 1/1024

Fig. 5. Weighted Mean Relative Difference (WMRD) between FSDs.

trace, the method based on pairs of IP suffixes achieves a more
random flow subset. While for the CAIDA and UNIVERSITY
traces, the method based on source IP suffixes behaves better.

Note that we chose the FSD to compare the randomness of
the two flow selection methods, because the FSD is known to
be robust against flow sampling. As future work, we also plan
to analyze how the randomness in the flow selection process
affects other statistics commonly extracted from Sampled
Netflow data, such as application mixes, port distributions or
bandwidth utilization per customer.

B. Evaluation of the overhead

An inherent problem in OpenFlow is that, when we install
flows reactively, packets belonging to the same flow are sent
to the controller until a specific entry for them is installed
in the switch. This is a common problem to any system that
works at flow-level granularities. As a consequence, in our
system we can receive in the controller more than one packet
for each flow to be sampled. Specifically this occurs during
the interval of time between the reception of the first packet
of a flow in the switch, and the time when a specific entry for
this flow is installed in the switch. This time interval is mainly
the result of the following factors: (i) the time needed by the
switch to process an incoming packet of a new flow to be
sampled and forward it to the controller, (ii) Round-Trip Time
(RTT) between the switch and the controller, (iii) the time
for the controller to process the Packet In and send to the
switch the order to install a new flow entry, and (iv) the time
in the switch to install the new flow entry. The first and fourth

factors depend on the processing power of the switch. The
RTT depends on some aspects like the distance between the
switch and the controller or the capacity and utilization of the
control link that connects them. The second factor depends on
the processing power and the workload of the controller and,
of course, its availability.

In order to analyze all these different bottlenecks in a single
metric, we measure the amount of redundant packets of the
same flow that the controller processes. That is, the number
of packets of a sampled flow that are sent to the controller
before the switch can install a rule to monitor that specific
flow. We consider a scenario with a range from 1 ms to 100
ms for the elapsed time to install a new flow entry. This time
includes all the factors described earlier, from (i) to (iv). As a
reference, in [22] they observe a median value of 34.1 ms for
the time interval to send the OFPT FLOW MOD message
to add a new flow entry with the ONOS controller in an
emulated network with 206 software switches and 416 links.
Thus, we simulate this range of time values for the three traces
described in Table I and analyze the timestamps of the packets
to calculate, for each flow, how many packets are within this
interval and, thereby, would be sent to the controller. We
analyze separately the overhead for TCP and UDP, as their
results may differ due to their different traffic patterns. We
show the results in Fig. 6. As we can see, the average number
of redundant packets varies from less than 0.2 packets for
delays below 20 ms, to approximately 1.2 packets per flow
for an elapsed time of 100 ms for TCP traffic.

(a) TCP traffic

(b) UDP traffic

Fig. 6. Average number of redundant packets per flow.

Likewise, in Fig. 7 we show the results in terms of average
percentage of redundant bytes sent to the controller. That way,
the percentage of redundant bytes ranges from less than 0.8%
for elapsed times below 20 ms to 3.1% in the worst case
with an elapsed time of 100 ms and TCP traffic. These results
show that the amount of redundant traffic sent to the controller



is significantly smaller than if we implemented the trivial
approach of forwarding all the traffic to the controller or a
NetFlow probe and not installing in the switch specific entries
to process subsequent packets and maintain per-flow statistics.
The best case is for elephant flows, as the amount of packets
sent to the controller at the beginning of the flow is very low
in proportion to the total amount of traffic they carry.

(a) TCP traffic

(b) UDP traffic

Fig. 7. Percentage of redundant bytes.

These results also reflect that, for the UDP traffic, the
number of redundant packets and bytes per flow is significantly
smaller than for TCP flows. Among other reasons, this is due
to the fact that typically many UDP flows are single-packet
(e. g., DNS requests or responses). In the UNIVERSITY trace
we could notice that there were more UDP flows with a larger
number of packets, as it is reflected in Figs. 6b and 7b.

From these results, it is possible to infer the CPU cost
of running our monitoring system in a SDN controller, as
the processing cost per packet can be considered constant. In
particular, the controller only needs to maintain a hash table to
keep track of those packets sent to the controller and thus not
accounted for in switch (i.e., redundant packets shown in Fig.
6). As future work, we plan to further analyze the resource
requirements in the controller (e.g., processing power, buffer
size) and the control infrastructure to ensure that none of the
sampled packets are dropped and, thereby, are accounted for
in the controller.

As for the memory overhead in the switch, we implement
sampling methods that provide mechanisms to control the
number of entries installed. With our solution it is necessary
to maintain a flow entry for each individual sampled flow.
Thus, there are three main factors which determine the amount
of memory necessary in the switch to maintain the statistics:
(i) the rate of new incoming flows (traffic matching different
5-tuples) per time unit, (ii) the sampling rate selected, and
(iii) the idle and hard timeouts selected for the entries to

be maintained. The first factor depends specifically on the
nature of the network traffic, i.e., the rate of new flows
arriving to the switch (e.g., flows/s). It is a parameter fixed
by the network environment where we operate. However, as
in NetFlow, the sampling rate and the timeouts (idle and hard)
are static configurable parameters and the selection of these
parameters affects the memory requirements in the switch. In
this way, with (2) we can roughly estimate the average amount
of concurrent flow entries maintained in the switch.

Avg. entries = Nflows · sampling rate · E[tout]

sampling rate ∈ (0, 1] tout ∈ [tidle, thard]
(2)

Where “Nflows” denotes the average number of new incom-
ing flows per time unit, “sampling rate” is the ratio of flows
we expect to monitor, and E[tout] corresponds to the average
time that a flow entry is maintained in the switch.

In order to configure a specific sampling rate, for the method
based on IP suffixes we can set the number of bits to be
checked for the IP suffix(es) according to (1). Likewise, for the
hash-based method, we can set the proportion of flows to be
sampled by configuring the weights of the buckets. Regarding
the timeouts, the controller can set the values of the idle and
hard timeouts when adding a new flow entry in the switch to
record the statistics (in the OFPT FLOW MOD message).

To conclude this section, we propose some different sce-
narios and estimate the average number of concurrent flow
entries to be maintained in the switch. The purpose of this
analysis is to have a picture of the approximate memory
contribution of the monitoring solution proposed in this paper.
To this end, we rely on (2). In our scenarios we consider the
three different real-world traces described in Table I. Thus,
to calculate “Nflows” for each trace, we divide their respective
total number of flows (only TCP and UDP) by their duration.
Furthermore, we consider two different sampling rates, 1/128
and 1/1024. For the configuration of the timeouts, we envision
a typical scenario using the default values defined in NetFlow:
15 seconds for the idle timeout and 30 minutes (1800 seconds)
for the hard timeout. Regarding the average time that a flow
remains in the switch (E[tout]), we know that it ranges from
the idle timeout to the hard timeout. In this way, we consider
these two extreme values and some others in the middle. The
case with the lowest memory consumption will be when E[tout]
is equal to the idle timeout, and the case with the highest
consumption, when E[tout] is equal to the hard timeout. The
amount of memory for each flow entry strongly depends on
the OpenFlow version implemented in the switch. The total
amount of memory of a flow entry is the sum of the memory of
its match fields, its action fields and its counters. For example,
in OpenFlow 1.0 there are only 12 different match fields
(269 bits approximately), while in OpenFlow 1.3 there are
40 different match fields (1,261 bits).

Table II summarizes the results for all the cases described
above. As a reference, in [23] they noted that modern Open-
Flow switches have support for 64k to 512k flow entries.
To these flow entries estimated, we must add the additional



Sampling rate Trace dataset Nflows (flows/s)
Avg. number of flow entries

E[t]=15 s E[t]=60 s E[t]=300 s E[t]=600 s E[t]=900 s E[t]=1,200 s E[t]=1,800 s

1/128

UNIVERSITY 9,916 1,162 4,648 23,241 46,481 69,722 92,963 139,444

MAWI 3,665 429 1,718 8,590 17,180 25,770 34,359 51,539

CAIDA 21,672 2,540 10,159 50,794 101,588 152,381 203,175 304,763

1/1024

UNIVERSITY 9,916 145 581 2,905 5,810 8,715 11,620 17,430

MAWI 3,665 54 215 1,074 2,147 3,221 4,295 6,442

CAIDA 21,672 317 1,270 6,349 12,698 19,048 25,397 38,095

TABLE II
ESTIMATION OF THE AVERAGE FLOW ENTRIES USED IN THE SWITCH.

amount of memory of the implementation of the sampling
methods described in Section III-A. For both methods, the
switch must allocate an additional table to maintain the
sampled flows as well as the entries which determine the
flows to be sampled. For the method based on IPs, it uses
an additional wildcarded flow entry which determines the IP
suffix(es) to be sampled. For the hash-based method, it uses an
additional entry to redirect the packets to a group table, as well
as the group table with its respective buckets. We don’t provide
an estimation of this memory contribution since we consider
it is too dependent on the OpenFlow implementation in the
switch. Nevertheless, we assume that this amount of memory
is negligible compared to the amount of memory allocated for
the entries that record the statistics of the sampled flows.

V. CONCLUSIONS AND FUTURE WORK

We presented a flow monitoring solution for OpenFlow
which provides reports like in NetFlow/IPFIX. In order to
reduce the overhead in the controller and the number of entries
required in the switch, we proposed two traffic sampling
methods that can be implemented in current switches without
requiring any modification to the OpenFlow specification.
We implemented them in OpenDaylight and evaluated their
accuracy and overhead in a testbed with real traffic. As future
work, we plan to extend the analysis of the randomness of our
sampling methods as well as the overhead evaluation, design
smarter algorithms to retrieve the statistics more accurately and
implement an OpenFlow compliant packet sampling method,
although we find it more challenging.
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[38] J. Suárez-Varela and P. Barlet-Ros, “Reinventing NetFlow for Open-
Flow Software-Defined Networks (Technical report),” arXiv preprint
arXiv:1702.06803, 2017.

[39] N. Hohn and D. Veitch, “Inverting Sampled Traffic,” in proceedings of
the Internet Measurement Conference (IMC), pp. 222–233, 2003.

[40] X. Jin, J. Gossels, J. Rexford, and D. Walker, “CoVisor: A Compo-
sitional Hypervisor for Software-Defined Networks,” in proceedings of
the Networked Systems Design and Implementation (NSDI), pp. 87–
101, 2015.

[41] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions
from sampled flow statistics,” IEEE/ACM Transactions on Networking,
vol. 13, no. 5, pp. 933–946, 2005.

[42] “Cisco IOS Flexible NetFlow Command Reference,” https:
//www.cisco.com/c/en/us/td/docs/ios/fnetflow/command/reference/
fnf book/fnf 01.html, accessed: 2017-06-20.

[43] “Can OpenFlow scale?” https://www.sdxcentral.com/articles/
contributed/openflow-sdn/2013/06/, accessed: 2017-06-06.

http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://mawi.wide.ad.jp/mawi/
http://mawi.wide.ad.jp/mawi/
https://www.cisco.com/c/en/us/td/docs/ios/fnetflow/command/reference/fnf_book/fnf_01.html
https://www.cisco.com/c/en/us/td/docs/ios/fnetflow/command/reference/fnf_book/fnf_01.html
https://www.cisco.com/c/en/us/td/docs/ios/fnetflow/command/reference/fnf_book/fnf_01.html
https://www.sdxcentral.com/articles/contributed/openflow-sdn/2013/06/
https://www.sdxcentral.com/articles/contributed/openflow-sdn/2013/06/

	Introduction
	The Software-Defined Networking paradigm
	Motivations
	Monitoring and measurements in SDN
	OpenFlow
	The OpenDaylight controller

	Main contributions
	Organization of this report

	State of the Art
	Software-Defined Networking
	Traffic monitoring for SDN
	OpenFlow-based solutions
	Alternative solutions to OpenFlow

	Concluding remarks about the state of the art

	Analysis of objectives and specification of requirements
	Objectives
	Specification of requirements
	Assessment of the achievement of the proposed objectives

	Planning and estimated costs
	Planning
	Resources used
	Human resources
	Hardware resources
	Software resources

	Estimated costs
	Final budget

	Design and evaluation of the solution
	OpenFlow background
	Multiple flow tables and groups
	Adding new flow entries and groups
	Statistics collection

	Monitoring system
	Proposed sampling methods
	Modularization of the system
	Statistics retrieval

	Experimental evaluation
	Accuracy of the proposed sampling methods
	Evaluation of the overhead
	Validation of the sampling method based on IP suffixes


	Conclusions and future work
	Conclusions
	Future work

	Appendices
	Installation manual
	User manual
	Conference paper
	References

