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1 Introduction

Principal Component Analysis (PCA) is a bilinear modelling tool which has been successfully applied to batch
process data for process understanding and statistical monitoring. Since batch data are three-way, the data
matrix X containingJ process variables measured atK sampling times inI batches has to be conveniently
rearranged in a number of two-way matrices to apply PCA. There are at least three methods to do this: i) To
unfold the three-way matrix of data [1, 2, 3]; ii) To use an adaptive approach where current and past information
are combined, e.g. by using hierarchical models [4]; and iii) To fitK PCA local models [5], each one modelling
exclusively the information corresponding to a sampling time. Additionally, both the unfolding and splitting in
K models -options i) and iii), respectively- can be combined in approaches such as the evolving modelling [5, 6]
or the moving window approach [7]. Finally, the multi-stage approach is based on the calibration of independent
models for different stages of a batch process [8]. For a theoretical discussion on what kind of process dynamics
is captured by the different methods see [9]. All these approaches lead to modelling structures which are very
similar to autoregressive models [10]. When modelling continuous processes using autoregressive models, it
is customary to identify the model structure -i.e., the order of the dynamics- from the data used for calibration.
Nonetheless, this simple and sensible approach is usually forgotten when dealing with batch processes. All
the approaches cited are based on using always the same modelling structure, no matter the dynamic nature of
the process. In an attempt to overcome this limitation, the Multi-Phase Framework [11] is aimed at identifying
the convenient model structure for a specific process at hand. Recent investigations performed by the authors
[11, 12] have shown that the use of an inappropriate modelling structure in a process has negative consequences
in the performance of a monitoring system. In this paper, a comparative study of the performance of several
on-line monitoring methods is performed using a simplified simulation of a batch process with particular,a
priori known, process dynamics.

2 Materials and Methods

A Simulink system has been designed to simulate data from a simplified batch process (see Figure 1). Data are
obtained for a null average trajectory in the variables. Therefore, the Simulink system is supposed to simulate
the data obtained after the subtraction of the average trajectory of the process variables, which is a common
data preprocessing step in PCA-based batch monitoring. Those approaches that do not perform this subtraction
-eg. [13]- are not assessed in this comparative. The batches take 150 sampling times to be processed and 10
variables are collected every sampling time. The first 100 sampling times correspond to the first phase of the
process, where two latent variables (LVs) are simulated using autoregressive exogenous (ARX) models of order
1. The last 50 sampling times correspond to the second phase, where four LVs are simulated using ARX models
of orders 1,2 and 3. The LVs are converted into observable variables (OVs) using a random matrix of dimension
2× 10 and4× 10 for the first and the second phases, respectively. The following data-sets are simulated:



Data-set # batches Description
Calibration 30 Data for the calibration of the monitoring system
Test-NOC 15 Data for the validation of the monitoring system
Test-Aba 5 Upset in the interval[90, 110] not coherent with PCA sub-space

Test-Aba+ 5 Large upset in the interval[90, 110] not coherent with PCA sub-space
Test-Abb 5 Upset in the interval[90, 110] coherent with PCA sub-space

Test-Abb+ 5 Large upset in the interval[90, 110] coherent with PCA sub-space
Test-Abc 5 First phase lasts 20 sampling times more than usual (from 1 to 120)
Test-Abd 5 Abnormal (excessive) content of initial raw materials
Test-Abe 5 Different dynamics in the batch (change of ARXs in the model)
Test-Abf 5 Different sub-space in the batch (change of LVs in the model)

The following modelling approaches are under study:

• The approaches of Nomikos and Macgregor [14], based on the batch-wise unfolding of the data (Figure
2(a)) and zero-deviations (ZD), current-deviations (CD) and Projection to Model Plane (PMP).

• The variable-wise unfolding (Figure 2(b)) after trajectory centering (TC) [15].

• The local modelling (Figure 2(c)) [5].

• A 2-phases model matching the actual phases, obtained from variable-wise unfolding after TC.

• A 2-phases model matching the actual phases, obtained from batch dynamic unfolding (Figure 2(d)) after
TC. One and three lagged measurement vectors (LMVs) are used for the first and the second phases,
respectively, in order to meet the order of the dynamics simulated.

Figure 1: Simulink system used for simulation. The first 100 sampling times of a batch are obtained from
the first phase and the remaining 50 from the second phase. OD stands for order of dynamics, LVs for latent
variables, OVs for observable variables and ARXs for autoregressive exogenous model.
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Figure 2: Different arrangements of the three-way batch data in two-way form. d) presents a batch dynamic
unfolding for 1 lagged measurement vector (LMV).

The difference between the two last choices is that the former does not include dynamic information whereas
the latter does [9]. The monitoring systems consist of two monitoring charts built from the D-statistic and
the SPE [14]. The control limits in these charts are adjusted using a leave-one-out approach [12, 16] for an
Imposed Significance Level (ISL) of1%. This value is the expected percentage of faults for a batch under
Normal Operation Conditions (NOC).

The performance of the models will be compared using several indices. The adjustment of the control limits
is assessed by computing the Overall Type I (OTI) risk. Following the definition in [14], the OTI is the actual
percentage of faults in the NOC batches:

OTI = 100 · nf

INOC ·K % (1)

wherenf is the total number of faults andINOC is the number of NOC batches considered. For a coherent
monitoring system, the OTI -actual percentage of faults under NOC- should be close to the ISL -expected
percentage of faults under NOC. The accuracy of detection of the faults is assessed using two indices: a) the
Overall Type II (OTII) risk and b) the OTI risk after a fault (OTIf ). The OTII follows:

OTII = 100 · nnf

Iab · l% (2)

wherennf is the number of non-signaled faults,Iab is the number of abnormal batches considered andl is the
length of the faulty interval. The OTII should be as close to 0 as possible. The OTIf is computed using (1) in
NOC intervals that follow a faulty interval in a batch. This value should be as close to the OTI as possible. If
the OTIf is much higher than the OTI, this may mean that the monitoring system is not accurately signaling
the end of a fault [12]. Finally, the Type I (TI) risk stands for the percentage of batches under NOC detected
as abnormal batches and the Type II (TII) risk measures the percentage of abnormal batches detected as NOC
batches. Three consecutive sampling times exceeding the control limits in any chart are sufficient for a batch to
be determined as abnormal.

3 Results and discussion

Three simulations were performed for different values of the random matrices used for transforming the LVs
into OVs. Each simulation represents a different imaginary process. The results of the comparative, averaged
for the three simulations, are presented in the following table:



Test-NOC Test-Aba+ & Test-Abb+

Model
NMG-PMP
NMG-CV
NMG-ZV

VW
Local

VW-2ph
BD-2ph

TI OTID OTISPE
2.2%
2.2%
4.4%
0%
0%
0%
0%

0.81%
0.06%
0.96%
1.02%
0.47%
0.95%
0.81%

1.39%
1.70%
1.08%
1.08%
1.38%
1.04%
1.99%

OTIfD OTIfSPE
52%
53%
58%
4%

1.2%
2.8%
9%

23%
40%
46%
1.6%
1.2%
1.8%
10%

Test-Ab Test-Aba Test-Abb Test-Abc Test-Abd Test-Abe Test-Abf
Model TII OTII OTII OTII OTII OTII OTII

NMG-PMP 26% 18% 28% 81% 22% 98% 60%
NMG-CV 22% 18% 28% 72% 48% 98% 57%
NMG-ZV 24% 14% 27% 75% 31% 98% 65%

VW 20% 0% 35% 59% 67% 96% 15%
Local 19% 4% 25% 59% 53% 98% 51%

VW-2ph 14% 0% 28% 8% 60% 97% 4%
BD-2ph 17% 0% 6% 26% 58% 97% 15%

The proposals of Nomikos and MacGregor [14] -NMG-PMP, NMG-CV and NMG-ZD- based on batch-wise
unfolding present one principal drawback: The D-statistics are highly positively autocorrelated and so the
evolution in the D-statistic of a batch is smooth. Because of this, NOC batches are more likely to present
several consecutive faults. Also, this reduces the performance of the monitoring system in the detection of
faults. This can be observed in a generalized way in the TII and OTII results, where the batch-wise methods
are outperformed by other approaches except for faults of the type Test-Abd. Batch-wise models are specially
suited for this type of faults, in which the batch process is in a different operational point than the NOC -for
instance, because it starts from different initial conditions than usual. Finally, the autocorrelation of the D-
statistics prolongs the detection of a fault, so that the monitoring systems keep on signaling a fault for several
sampling times once this fault has already finished. This can be observed in the large difference between the
OTIfD and OTIfSPE with respect to the OTID and OTISPE , respectively, in the batch-wise methods.

The monitoring system based on variable-wise unfolding (VW) presents an intermediate performance. This
performance, nonetheless, may be reduced for more complex process dynamics than those considered here.
Anyway, the results show that even in this simplified situation VW is outperformed by other approaches in
terms of TII and OTII. This discussion is also valid for the local approach.

The 2-phases model based on variable-wise unfolding (VW-2ph) is, in general terms, the approach which gives
the best outcomes. This is true except for the case of faults of the type Test-Abb and Test-Abd. The 2-phases
batch-dynamic model (BD-2ph) also presented a good performance in general terms and outperformed the rest
in front of Test-Abb faults. Thus, the addition of dynamic -lagged- information is improving the performance
of the monitoring system for detecting faults which are coherent with the PCA subspace. Nonetheless, this
addition has the negative consequence of prolonging the detection of the faults (compare the OTIf

D and OTIfSPE

results with the OTID and OTISPE results, respectively, for the BD-2ph approach).

Finally, faults of type Test-Abe cannot be detected by any of the approaches under study. This means that the
addition of dynamic information in the model is not enough for the monitoring system to detect the changes in
the dynamics considered here.

4 Conclusion

The simulation analysis performed shows that the model structure influences the performance of the statistical
monitoring system of a batch process. The time-varying dynamics of a process should be taken into account by
using a piece-wise modelling solution. Although these time-varying dynamics can be modelled using batch-
wise unfolding, the results evidence that this approach presents several drawbacks.

All the results obtained in simulation are coherent with those obtained from real batch processes in previous



comparatives performed by the authors [10, 11, 12].
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[9] Camacho J., Pićo J., Ferrer A.. Bilinear modelling of batch processes. Part I: Theoretical discussionAc-
cepted in Journal of Chemometrics.2007.

[10] Camacho J..New methods based on the projection to latent structures for the monitoring, prediction and
optimization of batch processes. PhD Thesis, Universidad Politécnica de Valencia, Valencia, Spain 2007.
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