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Two novel cross-validation algorithms to select the number of principal components (PCs) in Principal Components Analysis (PCA) are presented. These
algorithms yield a 100% of effectiveness in determining the correct number of PCs in all the simulated data sets studied, for measurement noise levels up to
a 30% and 40%.

Nomenclature (∗) stands for the data used to fit the PCA model and (#) stands for the data predicted in each cross-validation iteration.

1. Traditional methods

1.1 Wold (1978)
The proposal by Wold is a very fast

cross-validation algorithm based on the
NIPALS procedure. In each iteration, the

computations are performed from the
residuals. Wold suggested to include PCs to

the PCA model whereas the following index R
is below 1:

Ra =
PRESSa

SSEa−1

where PRESSa is the sum-of-squares of
prediction errors computed for a PCs, and

SSEa−1 is the sum of squared residuals after
a− 1 PCs have been extracted.

Drawback: The index used to select the
number of PCs is heuristic whereas the
threshold -1- imposes a hard condition.

1.2 Eastment and Krzanowski
(1982)

Leave-one-out procedure based on the
singular value decomposition (SVD)

algorithm. This approach includes in the PCA
model all the PCs up to the last one for which

the following index W exceeds 1:

Wa =
(PRESSa−1 − PRESSa)/DOFa

PRESSa/DOFrem

where DOFa is the number of
degrees-of-freedom (DOFs) used to fit the a-th
PC and DOFrem is the remaining DOFs after

the a-th PC has been added to the model.

Drawback: The index used to select the
number of PCs is heuristic whereas the
threshold -1- imposes a hard condition.

1.3 Leave-n-objects-out (LnOO)

For each PC (a = 1...A)
For each group of objects (g = 1...G)

Form X∗ with data from all groups but g
Form X# with data from g
Calibrate a PCA model from X∗,

obtaining P∗
a and T∗

a

T#
a = X# ·P∗

a

X̂# = T#
a ·P∗t

a

Eg = X# − X̂#

end
PRESSa =

∑N
n=1

∑M
m=1 e2

n,m

end

Drawback: The PRESSa is
monotonously decreasing with a and
so its minimum cannot be used directly to
select the number of PCs.

1.4 Leave-n-samples-out (LnSO)

For each PC (a = 1...A)
For each group of objects (g = 1...G)

Form X∗ with data from all groups but g
Form X# with data from g
Calibrate a PCA model from X∗,

obtaining P∗
a and T∗

a

For each group of variables (h = 1...H)
Set X#

h = 0
T#

a = X# ·P∗
a

X̂# = T#
a ·P∗t

a

Restore its actual value to X#
h

Eg,h = X#
h − X̂#

h

end
end
PRESSa =

∑N
n=1

∑M
m=1 e2

n,m

end

Drawback: PCs modelling independent
variables do not reduce the PRESS and
so, they are not selected.

2. Proposed Algorithms

The approach of this poster is to correct the
LnSO method by replicating the information in
the data, so that independent variables are not
independent any more. To reduce the effect of
the measurement noise, the information is dupli-
cated using the PCA subspace. Two choices:

Xaug = [X,Ta] Xaug = [X,Ta ·Pt
a]

Computational efficiency: CLnSO needs the calibration of
a PCA model for each of the G×H different groups of samples,
whereas in fast-CLnSO, LnSO and LnOO a PCA model is fitted

only for each of the G groups of objects. The algorithm by
Eastment and Krzanowski (1982) needs of G + H SVD runs and

the one by Wold (1978) needs of G PCA runs.

2.1 Fast Corrected-leave-n-samples-out
(fast-CLnSO)

For each PC (a = 1...A)
Calibrate a PCA model from X, obtaining Pa and Ta

For each group of objects (g = 1...G)
Form X∗ and T∗

a with data from all groups but g
Form X# and T#

a with data from g
X∗

aug = [X∗,T∗
a], remember not to scale T∗

a

Calibrate a PCA model from X∗
aug, obtaining P∗

aug,a and T∗
aug,a

For each group of variables (h = 1...H)
Set X#

h = 0
X#

aug = [X#,T#
a ]

T#
aug,a = X#

aug ·P∗
aug,a

X̂#
aug = T#

aug,a ·P∗t
aug,a

Restore its actual value to X#
h

Eg,h = X#
h − X̂#

h

end
end
PRESSa =

∑N
n=1

∑M
m=1 e2

n,m

end

2.2 Corrected-leave-n-samples-out (CLnSO)

For each PC (a = 1...A)
Calibrate a PCA model from X, obtaining Pa and Ta

For each group of objects (g = 1...G)
Form X∗ and T∗

a with data from all groups but g
Form X# and T#

a with data from g
For each group of variables (h = 1...H)

X∗
aug = [X∗,T∗

a ·Pt
a,h]

Calibrate a PCA model from X∗
aug, obtaining P∗

aug,a and T∗
aug,a

Set X#
h = 0

X#
aug = [X#,T#

a ·Pt
a,h]

T#
aug,a = X#

aug ·P∗
aug,a

X̂#
aug = T#

aug,a ·P∗t
aug,a

Restore its actual value to X#
h

Eg,h = X#
h − X̂#

h

end
end
PRESSa =

∑N
n=1

∑M
m=1 e2

n,m

end

3. Experimental Results

3.1 First simulated data set
10 observable variables from 8 latent variables:

xi = lvj + lvk, iε{1, .., 6}, j 6= kε{1, .., 4}
xi = lvj + lvk, iε{7, 8, 9}, j 6= kε{5, 6, 7}

x10 = lv8

% Noise R W L1SO fast-CL1SO CL1SO
10% 2 2 6 8 8
20% 2 2 6 8 8
30% 2 2 6 8 8
40% 2 2 6 8 8
50% 2 0 6 9 9

3.2 Second simulated data set
27 observable variables from 12 latent variables:

xi = lvj, iε{1, .., 12}, jε{1, .., 12}
xi = lvj + lvk, iε{13, .., 27}, j 6= kε{1, .., 6}

% Noise R W L1SO fast-CL1SO CL1SO
10% 6 11 12 12 12
20% 6 11 12 12 12
30% 6 6 12 12 12
40% 6 11 12 13 12
50% 6 6 12 19 17
60% 6 6 10 20 20

3.3 Third simulated data set
50 observable variables from 15 latent variables:

xi = lvj, iε{1, .., 5}, jε{1, .., 5}
xi = lvj + lvk, iε{6, .., 50}, j 6= kε{6, .., 15}

% Noise R W L1SO fast-CL1SO CL1SO
10% 11 13 13 15 15
20% 12 13 13 15 15
30% 11 13 13 15 15
40% 10 13 13 20 15
50% 10 10 13 20 16

3.4 McReynolds Data
The data set from (McReynolds, 1970). The data was

analyzed with and without outliers (a total of 13 outliers
are found by Wold and Andersson (1973)).

R W L1SO fast-CL1SO CL1SO
Full 2 4 1 1 1

Reduced 5 3 1 1 1

Third simulated data set From left to right.: PRESS and R-statistic [3], PRESS and W-statistic [1], PRESS with L1OO, L1SO, fast-CL1SO and CL1SO.
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4. Conclusions

a) Both the R-statistic and the W -statistic follow heuristical laws, more or less theoretically justified. Although they have proven to be useful when they are visually inspected, it is not possible to define
a hard threshold -like 1- which works for the general case.

b) The L1SO approach presents problems in the selection of the number of PCs when the eigenvalues corresponding to the PCs are very different.

c) Both fast-CL1SO and CL1SO determined correctly the number of PCs when data is corrupted with up to a 30% and a 40% of measurement noise, respectively, for the simulated data studied.
Nonetheless, all these results correspond to data generated following the PCA structure and, thus, nothing can be said about any other type of data.
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