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When modelling batch process data with Principal Component Analysis (PCA), one of the most critical decisions is how to arrange the three-way data in two
dimensions. Rather than using the same modelling approach always, evaluating which arrangement of the data is appropriate for a specific process may be
more advantageous. The aim of this poster is to define a general mechanism to compare PCA models calibrated from different arrangements of the data.

Some Notation

Let us define X(I × J ×K) as the process data matrix collected from a batch process and aligned, which contains the values of J variables at K sampling times in I batches. To apply
PCA, these data have to be rearranged in two dimensions.

Unfolding

The batch dynamic unfolding can be
expressed as:

X = unfold(X, κ) ≡ X(κ) (1)

where κ stands for the number of lagged
measurement vectors (LMVs) and:

κ = {k − 1 : k ε {1, 2, .., K}} (2)

Therefore, the batch-wise unfolding is:

X = X(K−1) (3)

and the variable-wise unfolding:

X = X(0) (4)

Number of sub-matrices

Let Xki:ke
contain the data of X from sampling

time ki to ke. One way to arrange X in two
dimensions is to divide the data in K Local

sub-matrices:

X = {Xk : k = 1, ..., K} (5)

Combining the unfolding with the division in
several sub-matrices, many other approaches
can be specified. For instance, the Evolving

approach:

X = {X(k−1)
1:k : k = 1, ..., K} (6)

or the Moving Window approach:

X = {X(d)
k−d:k : k = d + 1, ..., K} (7)

Generalized PCA model of batch
data

A generalized arrangement in two dimensions
can be defined as:

X = {X(κl)
φl

: l = 1, ..., L} (8)

with:

φl = kil : kel

κl = {k − 1 : k ε {1, 2, .., kel}}

s.t. kil ≤ kel, ki1 = 1, keL = K

(9)

Finally, a generalized PCA model of a batch
process is completely specified by:

M = {PCA(X
(κl)
φl

, al) : l = 1, ..., L} (10)

where al is the number of PCs of sub-model l.

Evaluation Algorithm
For each sub-model (l = 1...L)

X = X
(κl)
φl

Calibrate a PCA model of al PCs from X,
obtaining Pal

and Tal

For each group of batches (b = 1...B)
Form X∗ and T∗

al
with data from all groups but b

Form X# and T#
al

with data from b

X∗
aug = [X∗,T∗

al
], remember not to scale T∗

al

Calibrate a PCA model of al PCs from X∗
aug,

obtaining P∗
aug,al

and T∗
aug,al

For each sample group of variables (h = 1...H)
Set X#

h = 0
X#

aug = [X#,T#
al
]

T#
aug,al

= X#
aug ·P∗

aug,al

X̂#
aug = T#

aug,al
·P∗t

aug,al

Restore its actual value to X#
h

Eb,h = X#
h − X̂#

h

end
end
Fold back matrix E yielding E

PRESSl =
∑I

i=1

∑J
j=1

∑kel
k=kil

e2
i,j,k

end

IMPROVING THE COMPUTATIONAL EFFICIENCY
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( a ) 30000 Groups
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( b ) 9 Groups

Saccharomyces Cerevisiae Cultivation.

In order to make the algorithm efficient, it is necessary to reduce the number of iterations.
This is accomplished by reducing the number of groups of batches (B) and of variables (H).
The elements -batches or variables- belonging to a group should be chosen randomly. It
was observed that if this random selection is maintained for all the models which are
compared, B and H can be reduced to very low values (from 3 to 7) with almost no
loss of comparison performance.

On the left, an example with the data of a simulated process, the cultivation of Saccharomyces Cerevisiae, is shown.
Single models with different number of LMVs (κ) and PCs (a) are compared using the algorithm presented. The
figure on the left (a) shows the result of a left-one-out approach. The figure on the right (b) is computed for B = 3
and H = 3. Both shapes are very similar, but the latter has been computed more than 10 times faster.

COMPARING MODELS WITH DIFFERENT UNFOLDING METHODS

The folding operation of the error matrix is of upmost importance. If 0 < κ < K, several error
values corresponding to the same measurement-vector appear. Only the first appearance
-in the first raw of the two-way matrix- should be taken into account.

On the right, the data from two real processes is studied. Once again, single models with different numbers of LMVs
(κ) and PCs (a) are compared using the algorithm presented and B = 3 and H = 3. Since the shape of the PRESS
is different for the three processes under study, it can be concluded that the optimum model structure (in
terms of the number of LMVs and PCs) is dependent on the nature of the process. For
instance, for the waste-water treatment process (a), a single model should present a high κ value, contrarily to what
happens with the Nylon 6’6 polymerization process (b).
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( a ) Waste-water treatment
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( b ) Nylon 6’6 polymerization

DIVISION IN SUB-MODELS
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( a ) Saccha. Cerev. Cult.
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( b ) Waste-water treatment
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( c ) Nylon 6’6 polymerization

When modelling with several sub-models, the PRESS of the joint
model can be computed by simply adding the PRESS computed
for the sub-models with the algorithm.

On the left, the percentage of reduction of PRESS due the division in two of a
variable-wise model (κ = 0) is studied. The PRESS is shown for different PCs (a)
and location of the 2 sub-models -i.e., different values of ki2. In (a) the improvement
exceeds the 40%, in (b) it only reaches a 10% and in (c) it is negligible. Also, the
optimum location is different for the processes.

Therefore, The optimum model structure (in terms of number of sub-models and location of these) is dependent on the nature of the process.

The optimum arrangement in two dimensions to apply PCA to batch data is dependent on the process under analysis. The algorithm
proposed in this poster can be successfully used to evaluate and compare different arrangements of a specific data set.


