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Introduction to Batch
Processing

• Repetitive nature: charge, processing and
discharge.

• Three-way data: a set of variables are measured 
at different sampling times during the processing of a 
batch, and this is repeated for a number of batches.

• The duration of the processing of a batch may be 
variable in some processes Aligment methods.

• After the alignment, data matrix  X (I×J×K) contains 
the values of J variables at K sampling times in I
batches.
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• Convert into two-way data and apply PCA, PLS, …

• Apply three-way methods: PARAFAC, Tucker-3,…

Model Structures

Trilinear Nature???
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• Convert into two-way data and apply PCA, 
PLS, …

– Unfold the three-way matrix.

– Divide in K local matrices.

– Use an adaptive approach.

• Apply three-way methods: PARAFAC, Tucker-3,…

Model StructuresIndex

1. Introduction to Batch
Processing.

2. Model Structures

3. Aim of the work

4. Multi-Phase 
Framework

5. End-quality
Prediction

6. Other applications

7. Conclusions



• Unfold the three-way matrix.
– Batch-wise unfolding

Model Structures

Thousands of
variables!!!
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• Unfold the three-way matrix.
– Batch-wise unfolding

Model Structures

2 variables x 116 sampling times

More than
a half is
noise!!!

Dynamics
are built in
the model
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related



• Unfold the three-way matrix.
– Variable-wise unfolding

Model Structures

dynamics are not
built in the model

Constant Correlation
Imposed!!!

Low number of
parameters
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• Unfold the three-way matrix.
– Variable-wise unfolding

Model Structures

Constant Correlation Imposed!!!

V-W scores

Index

1. Introduction to Batch
Processing.

2. Model Structures

3. Aim of the work

4. Multi-Phase 
Framework

5. End-quality
Prediction

6. Other applications

7. Conclusions



• Unfold the three-way matrix.
– Batch dynamic unfolding = VW + LMVs

Model Structures

↓LMVs ≈ VW

↑LMVs ≈ BW

Adjust the amount
of dynamic
information

Dynamics are imposed to be constant
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• Divide in K matrices

Model Structures

High number
of models

LMVs locally
Adjustable
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• Context:
a) A large number of possible Model Strutures, each of

them with advantages and drawbacks.
b) Very different batch processes, (constant or varying

dynamics,  dynamics of different order, etc…) 

• NO MODELLING STRUCTURE IS THE 
BEST ALWAYS!!!

• WHY DON’T WE IDENTIFY THE MODEL 
STRUCTURE FOR THE CURRENT CASE 
STUDY???
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Multi-Phase Framework
- Three-steps Analysis:

a) Multi-phase Algorithm.
Camacho J, Picó J , Multi-phase principal component analysis for batch processes
modelling. Chemometrics and Intelligent Laboratory Systems. 2006; 81:127-136.

Camacho J, Picó J. Online Monitoring of Batch Processes using Multi-Phase Principal 
Component Analysis. Journal of Process Control. 2006;10:1021-1035.

Greedy Optimization + Pattern Recognition
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Multi-Phase Framework
- Three-steps Analysis:

a) Multi-phase Algorithm.

b) Merging Algorithm:

Camacho J, Picó J , Multi-phase principal component analysis for batch processes
modelling. Chemometrics and Intelligent Laboratory Systems. 2006; 81:127-136.

Camacho J, Picó J. Online Monitoring of Batch Processes using Multi-Phase Principal 
Component Analysis. Journal of Process Control. 2006;10:1021-1035.
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Multi-Phase Framework
- Three-steps Analysis:

a) Multi-phase Algorithm.

b) Merging Algorithm:

c) Compromise Performance - Complexity

Camacho J, Picó J , Multi-phase principal component analysis for batch processes
modelling. Chemometrics and Intelligent Laboratory Systems. 2006; 81:127-136.

Camacho J, Picó J. Online Monitoring of Batch Processes using Multi-Phase Principal 
Component Analysis. Journal of Process Control. 2006;10:1021-1035.

Anova + LSD

Why merge? 
Greedy Optimization Sub-optimal solution

To allow obtaining sub-models with different unfolding methods
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Multi-Phase Framework
- Three-steps Analysis:

Anova + LSD

c) Compromise Performance - Complexity

5 LVs

3 LVs

5 LVs 15 LMVs

BW

1 LMV
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Multi-Phase Framework
- Three-steps Analysis:

Anova + LSD

c) Compromise Performance - Complexity

2 LVs

1 LVs

VW

1 LMV
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End-Quality Prediction
- On-line prediction
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End-Quality Prediction
- Prediction performance:

Anaerobic
stage

Saccha. Cerev. Waste-water treat.
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End-Quality Prediction
- Process understanding:

BW-PLSMPPLS = VW-PLS
(Anaerobic Stage)

1 PC = 1250 parameters
(5 var x 250 sam. tim.)

1 PC = 5 parameters
(5 variables)
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Other Applications
• Off-line Monitoring: Batch-Wise PCA

a) The Charts of MP are more informative.
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Other Applications
• Off-line Monitoring: Batch-Wise PCA

a) The Charts of MP are more informative.

• On-line Monitoring: PCA
a) MP avoids problems found in some modelling

structures:
• BW models have low detection capabilities in the D-

statistic and high Overall Type I Risk in the SPE.
• VW models have high OTI Risk in the D-statistic.
• Local models have high OTI Risk in the SPE.

b) MP yields monitoring systems of fast response to faults.

• Estimation of trayectories (Soft-sensors): PLS
a) MP yields accurate estimations, outperforming BW, 

VW, Local, Evolving and Adaptive approaches.
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Conclusions
• The Multi-phase (MP) framework, with application to off-line and 

on-line monitoring, final quality prediction and estimation of 
trajectories of variables in batch processes, has been presented.

• The MP approach is based on the data-driven identification of the 
(PCA or PLS) model structure, using pattern recognition and 
optimization techniques. Flexibility to adjust the structure to the 
case: Number of sub-models, dynamics, …

• This approach has several general advantages:

– The identification of the structure of the models and the 
convenient use of the tools within the MP framework helps to 
improve the process understanding.

– The MP approach allows to obtain a compromise solution 
between complexity and performance.

– The MP approach yields good performance in several 
applications.
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On-line Monitoring
- Monitoring Charts: D-statistic and SPE

Batch under NOC
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On-line Monitoring
- Monitoring Charts: D-statistic and SPE

Abnormal Batch
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On-line Monitoring
- Case Studies:
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On-line Monitoring
- Preliminary Study: Saccharomyces Cerevisiae Cultivation.

Overall Type I Risk computed from the NOC test set,
Imposed significance level 1%

nf number of faults 

Conclusion: The structure of the model is important
in the on-line monitoring.
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On-line Monitoring

Conclusion: The structure of the model is important
in the on-line monitoring.

Solutions:

a) To readjust the control limits of the monitoring
charts using a left-one-out approach.

b) To identify the covenient model structure Multi-
Phase Framework
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On-line Monitoring
- Nylon 6’6 Polymerization:
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On-line Monitoring
- Saccharomyces Cerevisiae Cultivation:

- Waste-water Treatment:


