Multi-Phase Analysis Framework for Handling Batch Process Data

J. Camacho, J. Picó Department of Systems Engineering and Control.

A. Ferrer Department of Applied Statistics, Operations Research and Quality.

> Technical University of Valencia Cno. de Vera s/n, 46022, Valencia, Spain

Index

- **Introduction to Batch Processing**
- Model Structures
 - Aim of the work
- Multi-Phase Framework
- End-quality Prediction
- Other Applications
- Conclusions

- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work
- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications
- 7. Conclusions

Introduction to Batch Processing

- **Repetitive nature:** charge, processing and discharge.
- **Three-way data:** a set of variables are measured at different sampling times during the processing of a batch, and this is repeated for a number of batches.
- The duration of the processing of a batch may be variable in some processes → Aligment methods.
 - After the alignment, data matrix $\underline{X}(I \times J \times K)$ contains the values of J variables at K sampling times in I batches.

- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work
- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications
- 7. Conclusions

Model Structures

- Convert into two-way data and apply PCA, PLS, ...
- Apply three-way methods: PARAFAC, Tucker-3,...

Trilinear Nature???

- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work
- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications
- 7. Conclusions

Model Structures

- Convert into two-way data and apply PCA, PLS, ...
- Apply three-way methods: PARAFAC, Tucker-3,...

- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work
- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications
- 7. Conclusions

Model Structures

• Convert into two-way data and apply PCA, PLS, ...

- Unfold the three-way matrix.

- Divide in K local matrices.
- Use an adaptive approach.

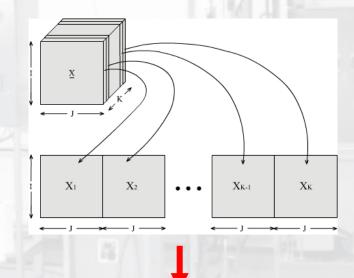
X

Apply three-way methods: PARAFAC, Tucker-3,...

- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work
- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications
- 7. Conclusions

Model Structures

- Unfold the three-way matrix.
 - Batch-wise unfolding

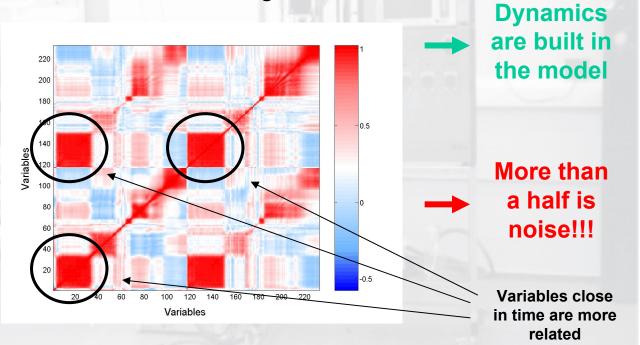


Thousands of variables!!!

- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work
- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications
- 7. Conclusions

Model Structures

- Unfold the three-way matrix.
 - Batch-wise unfolding

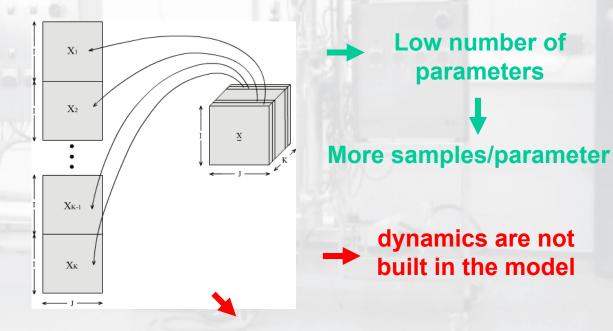


2 variables x 116 sampling times

- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work
- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications
- 7. Conclusions

Model Structures

- Unfold the three-way matrix.
 - Variable-wise unfolding



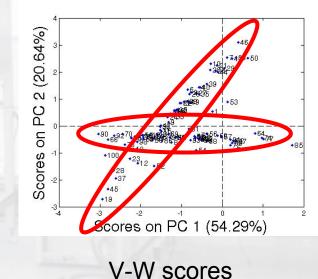
Constant Correlation Imposed!!!

- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work
- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications
- 7. Conclusions

Model Structures

- Unfold the three-way matrix.
 - Variable-wise unfolding

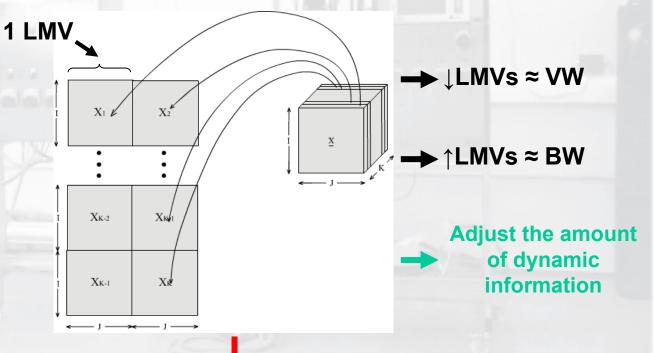
Constant Correlation Imposed!!!



- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work
- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications
- 7. Conclusions

Model Structures

- Unfold the three-way matrix.
 - Batch dynamic unfolding = VW + LMVs



Dynamics are imposed to be constant

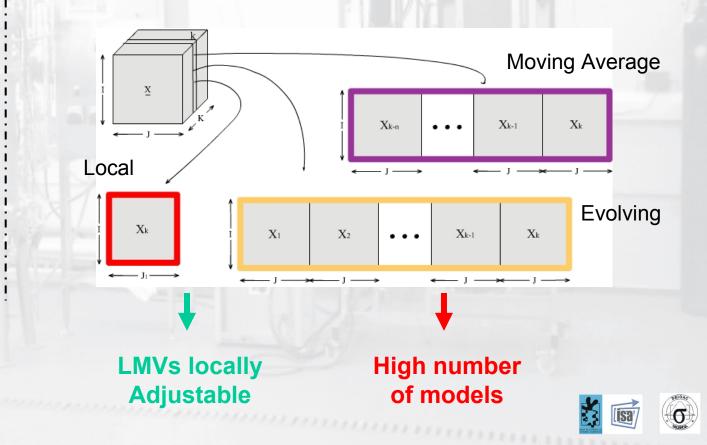
- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work
- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications

X

7. Conclusions

Model Structures

• Divide in K matrices



- 1. Introduction to Batch Processing.
- 2. Model Structures

3. Aim of the work

- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications
- 7. Conclusions

Aim of the work

Context:

- a) A large number of possible Model Strutures, each of them with advantages and drawbacks.
- b) Very different batch processes, (constant or varying dynamics, dynamics of different order, etc...)
- NO MODELLING STRUCTURE IS THE BEST ALWAYS!!!

• WHY DON'T WE IDENTIFY THE MODEL STRUCTURE FOR THE CURRENT CASE STUDY???

Index

- Introduction to Batch Processing
- Model Structures
 - Aim of the work
 - Multi-Phase Framework
- End-quality Prediction
- Other Applications
- Conclusions

- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work
- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications
- 7. Conclusions

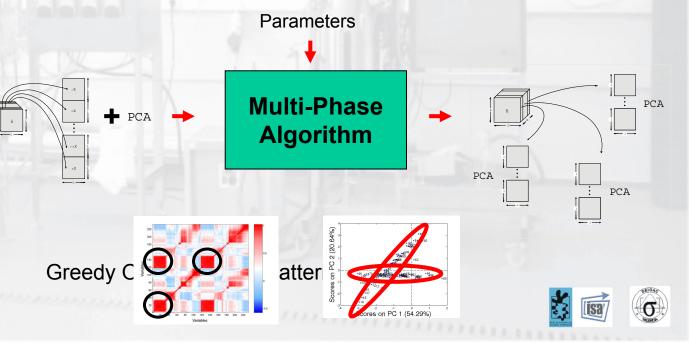
Multi-Phase Framework

- Three-steps Analysis:

a) Multi-phase Algorithm.

Camacho J, Picó J, Multi-phase principal component analysis for batch processes modelling. *Chemometrics and Intelligent Laboratory Systems.* 2006; 81:127-136.

Camacho J, Picó J. Online Monitoring of Batch Processes using Multi-Phase Principal Component Analysis. *Journal of Process Control.* 2006;10:1021-1035.



- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work

4. Multi-Phase Framework

- 5. End-quality Prediction
- 6. Other applications
- 7. Conclusions

Multi-Phase Framework

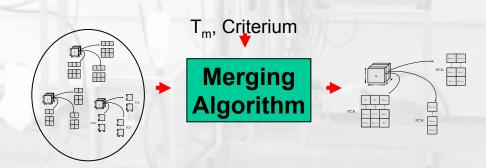
- Three-steps Analysis:

a) Multi-phase Algorithm.

Camacho J, Picó J, Multi-phase principal component analysis for batch processes modelling. *Chemometrics and Intelligent Laboratory Systems*. 2006; 81:127-136.

Camacho J, Picó J. Online Monitoring of Batch Processes using Multi-Phase Principal Component Analysis. *Journal of Process Control.* 2006;10:1021-1035.

b) Merging Algorithm:



- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work

4. Multi-Phase Framework

- 5. End-quality Prediction
- 6. Other applications
- 7. Conclusions

Multi-Phase Framework

- Three-steps Analysis:

a) Multi-phase Algorithm.

Camacho J, Picó J, Multi-phase principal component analysis for batch processes modelling. *Chemometrics and Intelligent Laboratory Systems*. 2006; 81:127-136.

Camacho J, Picó J. Online Monitoring of Batch Processes using Multi-Phase Principal Component Analysis. *Journal of Process Control.* 2006;10:1021-1035.

b) Merging Algorithm:

Why merge? Greedy Optimization → Sub-optimal solution To allow obtaining sub-models with different unfolding methods

c) Compromise Performance - Complexity

Anova + LSD

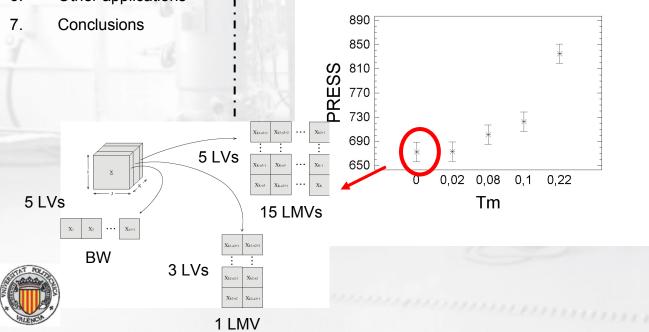
- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work
- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications

Multi-Phase Framework

- Three-steps Analysis:

c) Compromise Performance - Complexity

Anova + LSD

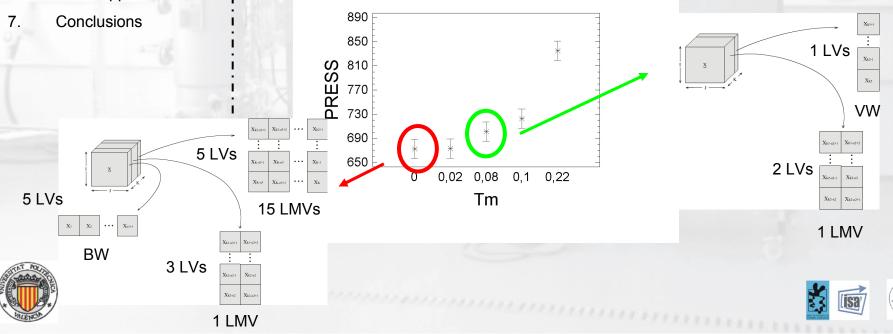


- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work
- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications

Multi-Phase Framework

- Three-steps Analysis:
 - c) Compromise Performance Complexity

Anova + LSD



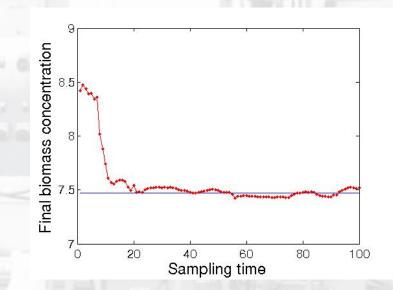
Index

- Introduction to Batch Processing
- Model Structures
 - Aim of the work
- Multi-Phase Framework
- End-quality Prediction
- Other Applications
- Conclusions

- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work
- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications
- 7. Conclusions

End-Quality Prediction

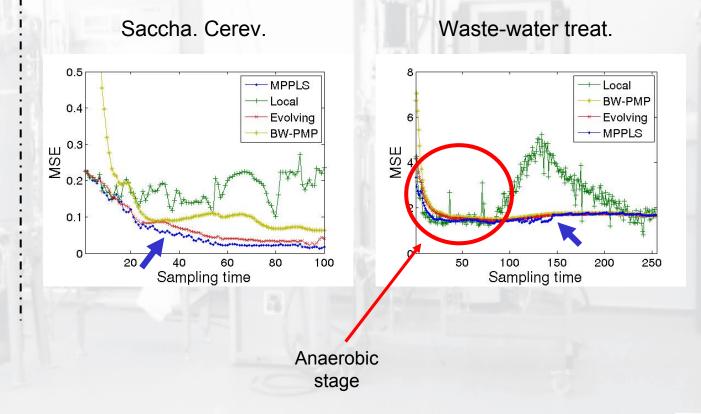
- On-line prediction



- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work
- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications
- 7. Conclusions

End-Quality Prediction

- Prediction performance:

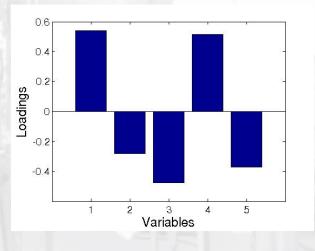


- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work
- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications
- 7. Conclusions

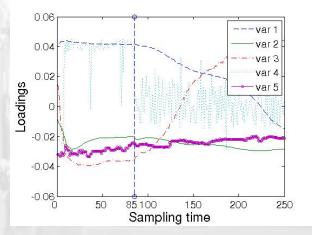
End-Quality Prediction

- Process understanding:

MPPLS = VW-PLS (Anaerobic Stage)



1 PC = 5 parameters (5 variables)

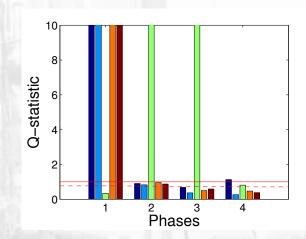


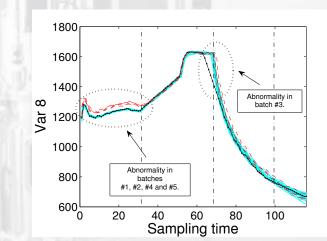
1 PC = 1250 parameters (5 var x 250 sam. tim.)

- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work
- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications
- 7. Conclusions

Other Applications

Off-line Monitoring: Batch-Wise PCA a) The Charts of MP are more informative.





- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work
- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications
- 7. Conclusions

Other Applications

Off-line Monitoring: Batch-Wise PCA a) The Charts of MP are more informative.

On-line Monitoring: PCA

- a) MP avoids problems found in some modelling structures:
 - BW models have low detection capabilities in the Dstatistic and high Overall Type I Risk in the SPE.
 - VW models have high OTI Risk in the D-statistic.
 - Local models have high OTI Risk in the SPE.

b) MP yields monitoring systems of fast response to faults.

- Estimation of trayectories (Soft-sensors): PLS
 - a) MP yields accurate estimations, outperforming BW, VW, Local, Evolving and Adaptive approaches.

Index

- Introduction to Batch Processing
- Model Structures
 - Aim of the work
- Multi-Phase Framework
- End-quality Prediction
 - Other Applications
 - Conclusions

- 1. Introduction to Batch Processing.
- 2. Model Structures
- 3. Aim of the work
- 4. Multi-Phase Framework
- 5. End-quality Prediction
- 6. Other applications
- 7. Conclusions

Conclusions

- The Multi-phase (MP) framework, with application to off-line and on-line monitoring, final quality prediction and estimation of trajectories of variables in batch processes, has been presented.
- The MP approach is based on the data-driven identification of the (PCA or PLS) model structure, using pattern recognition and optimization techniques. → Flexibility to adjust the structure to the case: Number of sub-models, dynamics, ...
- This approach has several general advantages:
 - The identification of the structure of the models and the convenient use of the tools within the MP framework helps to improve the process understanding.
 - The MP approach allows to obtain a compromise solution between complexity and performance.
 - The MP approach yields good performance in several applications.

Multi-Phase Analysis Framework for Handling Batch Process Data

J. Camacho, J. Picó Department of Systems Engineering and Control.

A. Ferrer Department of Applied Statistics, Operations Research and Quality.

> Technical University of Valencia Cno. de Vera s/n, 46022, Valencia, Spain

- 1. Introduction to Batch Processing.
- 2. Aim of the work
- 3. Multi-Phase Algorithm
- 4. Merging Algorithm
- 5. Multi-Phase Framework

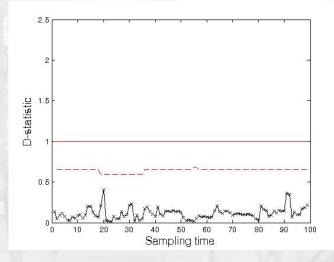
6. On-line Monitoring

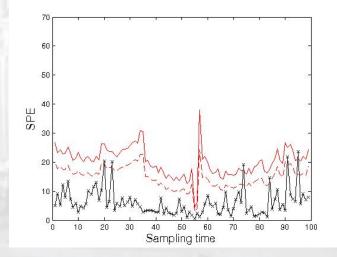
- 7. End-quality Prediction
- 8. Conclusions

On-line Monitoring

- Monitoring Charts: D-statistic and SPE

Batch under NOC



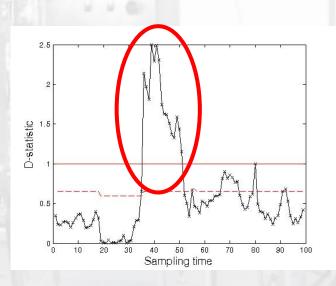


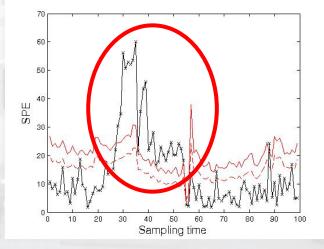
- 1. Introduction to Batch Processing.
- 2. Aim of the work
- 3. Multi-Phase Algorithm
- 4. Merging Algorithm
- 5. Multi-Phase Framework
- 6. On-line Monitoring
- 7. End-quality Prediction
- 8. Conclusions

On-line Monitoring

- Monitoring Charts: D-statistic and SPE

Abnormal Batch





- 1. Introduction to Batch Processing.
- 2. Aim of the work
- 3. Multi-Phase Algorithm
- 4. Merging Algorithm
- 5. Multi-Phase Framework
- 6. On-line Monitoring
- 7. End-quality Prediction
- 8. Conclusions

On-line Monitoring

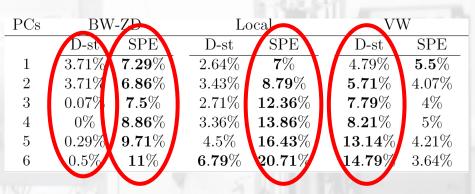
- Case Studies:

Process	Calibration	NOC Test	Abnormalities				
Nylon 6'6 Polymerization	$\underline{\mathbf{X}} = (31 \times 9 \times 116)$	$\underline{\mathbf{X}} = (5 \times 9 \times 116)$	$\underline{\mathbf{X}} = (5 \times 9 \times 116)$				
Saccharomyces Cerevisiae Cultivation	$\underline{\mathbf{X}} = (30 \times 10 \times 100)$	$\underline{\mathbf{X}} = (14 \times 10 \times 100)$	$\underline{\mathbf{X}} = (20 \times 10 \times 100)$				
Waste-Water Treatment	$\underline{\mathbf{X}} = (69 \times 5 \times 340)$	$\underline{\mathbf{X}} = (35 \times 5 \times 340)$	$\underline{\mathbf{X}} = (40 \times 5 \times 340)$				

- 1. Introduction to Batch Processing.
- 2. Aim of the work
- 3. Multi-Phase Algorithm
- 4. Merging Algorithm
- 5. Multi-Phase Framework
- 6. On-line Monitoring
- 7. End-quality Prediction
- 8. Conclusions

On-line Monitoring

- Preliminary Study: Saccharomyces Cerevisiae Cultivation.



Overall Type I Risk computed from the NOC test set, Imposed significance level 1%

$$OTI = 100 \cdot \frac{n_f}{I \cdot K}\%$$

 $n_f \rightarrow$ number of faults

Conclusion: The structure of the model is important in the on-line monitoring.

- 1. Introduction to Batch Processing.
- 2. Aim of the work
- 3. Multi-Phase Algorithm
- 4. Merging Algorithm
- 5. Multi-Phase Framework
- 6. On-line Monitoring
- 7. End-quality Prediction
- 8. Conclusions

Solutions:

- a) To readjust the control limits of the monitoring charts using a left-one-out approach.
- b) To identify the covenient model structure → Multi-Phase Framework

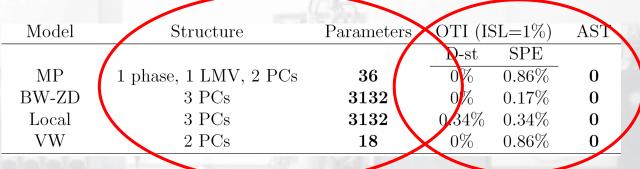
On-line Monitoring

Conclusion: The structure of the model is important in the on-line monitoring.

- 1. Introduction to Batch Processing.
- 2. Aim of the work
- 3. Multi-Phase Algorithm
- 4. Merging Algorithm
- 5. Multi-Phase Framework
- 6. On-line Monitoring
- 7. End-quality Prediction
- 8. Conclusions

On-line Monitoring

- Nylon 6'6 Polymerization:



Index

- 1. Introduction to Batch Processing.
- 2. Aim of the work
- 3. Multi-Phase Algorithm
- Merging Algorithm 4.
- 5. Multi-Phase Framework
- **On-line Monitoring** 6.

- 7. End-quality Prediction
- Conclusions 8.

On-line Monitoring

- Saccharomyces Cerevisiae Cultivation:

	 Unic 									
		Model	/	Structu	re	Para	ameters	oti (IS	L=1%)	AST
								$\mathrm{D}\text{-st}$	SPE	
		MP	11 ph	ases, $0.5 \ \overline{L}$	$\overline{MV}, 2 \ \overline{PC}$		340	1.07%	1.64%	28.7
	1	BW-ZD	_	2 PCs	5	2	2000	0%	2.43%	26.8
	i	Local		2 PCs	5	2	2000	1.93%	2.43%	36.2
	i la la	VW		2 PCs	5		20	1.5%	1.71%	34.2
ng			1				1			
PCs	BW	/-ZD	Lo	ocal	VV	V	*			
	D-st	SPE	D-st	SPE	D-st	SPE				
1	3.71%	7.29%	2.64%	7%	4.79%	$\mathbf{5.5\%}$				
2<	3.71%	6.86 %	3.43%	8.79 %	$\mathbf{5.71\%}$	4.07%				
3	0.07%	7.5%	2.71%	12.36%	7.79%	4%				\frown
4	0%	8.86 %	3.36%	${f 13.86\%}$	8.21 %	5%	meter	s OTI (IS	L=1%)	AST
5	0.29%	9.71 %	4.5%	16.43 %	$\mathbf{13.14\%}$	4.21%		D-st	SPE	
6	0.5%	11 %	6.79 %	20.71 %	14.79 %	3.64%	70	0.88%	1.49%	29.1
		BW-ZD		3 PC	s		5100	04%	0.86%	43.3
	-	Local		2 PC	s		3400	9.87%	0.91%	40.6
		VW		2 PC	s		10	0.3%	0.89%	41.3
										\bigvee
										-

