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Abstract: Given r 00 > , I 0� { }∈ ∪ , and K H, 00 0 ≥ , let X be a complete Riemannian 3-manifold with injec-
tivity radius X rInj 0( ) ≥ and with the supremum of absolute sectional curvature at most K0, and let M X↬

be a complete immersed surface of constant mean curvature H H0, 0[ ]∈ and with index at most I . We will
obtain geometric estimates for such an M X↬ as a consequence of the hierarchy structure theorem. The
hierarchy structure theorem (Theorem 2.2) will be applied to understand global properties of M X↬ ,
especially results related to the area and diameter of M . By item E of Theorem 2.2, the area of such a
noncompact M X↬ is infinite. We will improve this area result by proving the following when M is
connected; here, g M( ) denotes the genus of the orientable cover of M:
(1) There exists C C I r K H, , , 01 1 0 0 0( )= > , such that M C g MArea 11( ) ( ( ) )≥ + .
(2) There exist C 0> , G I �( ) ∈ independent of r K H, ,0 0 0, and also C independent of I such that if

g M G I( ) ( )≥ , then M g MArea 1C

K Hmax 1, , ,r
1
0 0 0

2( ) ( ( ) )
⎛
⎝

⎞
⎠

{ }

≥ + .

(3) If the scalar curvature ρ of X satisfies H ρ c3 2 1
2+ ≥ in X for some c 0> , then there exist A D, 0>

depending on c I r K H, , , ,0 0 0 such that M AArea( ) ≤ and M DDiameter( ) ≤ . Hence, M is compact and,
by item 1, g M A C 11( ) ≤ / − .

Keywords: constant mean curvature, finite index H-surfaces, area estimates for constant mean curvature
surfaces, hierarchy structure theorem, Bishop-Cheeger-Gromov relative volume comparison theorem, area
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1 Introduction

Throughout the article, X denotes a complete Riemannian 3-manifold with positive injectivity radius XInj( )

and bounded absolute sectional curvature. Let M be a complete immersed surface in X of constant mean
curvature H 0≥ , which we call an H-surface in X . The Jacobi operator of M is the Schrödinger operator

L A NΔ Ric ,M
2∣ ∣ ( )= + +

where Δ is the Laplace-Beltrami operator on M , AM∣ ∣ is the norm of its second fundamental form, and NRic( )

denotes the Ricci curvature of X in the direction of the unit normal vector N to M; the index of M is the
index of L,

M B p rIndex lim Index , ,
r

M( ) ( ( ))=

→∞
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where B p r,M( ) is the intrinsic metric ball in M of radius r 0> centered at a point p M∈ , and B p rIndex ,M( ( ))

is the number of negative eigenvalues of L on B p r,M( ) with Dirichlet boundary conditions. Here, we have
assumed that the immersion is two sided (this holds in particular if H 0> ). In the case, H 0= and the
immersion is one sided, then the index is defined in a similar manner using compactly supported variations
in the normal bundle; see Definition 2.3 for details.

The primary goal of this article is to apply the hierarchy structure theorem 2.2 (proven in [9]) to
understand certain global properties of closed constant mean curvature surfaces in Riemannian 3-mani-
folds. Theorem 2.2 describes the geometric structure of complete immersed H -surfaces F M X: ↬ (also
called H-immersions), which have a fixed bound I 0� { }∈ ∪ on their index and a fixed upper bound H0 for
their constant mean curvature H 0≥ , in certain small intrinsic neighborhoods of points with sufficiently
large norm AM∣ ∣ of their second fundamental forms.

Our main applications of Theorem 2.2 appear in Theorems 1.1 and 3.5; these two theorems provide lower
bounds for the areas and intrinsic diameters of immersed closed H-surfaces M in X of finite index in terms
of their genera, when the indices and the constant mean curvatures of the surfaces are bounded from above
by fixed constants. Theorem 3.5 also provides upper bounds for the area of balls B x r,M( ) in M for every
x M∈ and r 0> , independently on whether M is compact but depending on upper bounds for H and the
index of M .

In the case that M is nonorientable, the genus g M( ) of M is the genus of its oriented cover.

Theorem 1.1. (Area and diameter estimates) For r 00 > , K H, 00 0 ≥ , consider all complete Riemannian
3-manifolds X with injectivity radius X rInj 0( ) ≥ and absolute sectional curvature bounded from above by

K0, and let λ K Hmax 1, , ,r
1

0 0
0{ }= . Let M be a complete immersed H -surface in X with empty boundary,

H H0, 0[ ]∈ , index at most I 0� { }∈ ∪ and genus g M( ), which in the language of Theorem 2.2 implies
M I H r KΛ Λ , , , 1,0 0 0( )∈ = with additional chosen constant τ π 10= / . Then:
(0) The area of M is greater than C λA

2
/ , where

C π π e
4

0.325043,A

2
1π π

2 4⎛
⎝

⎞
⎠

≔ ≈
− − +

and if M is compact, the extrinsic diameter of each component of M is greater than π
4 λ
.

(1) (Item 1 in the abstract). There exists C I 01( ) > (independent of M r K H, , ,0 0 0) such that:

M C I
λ

g MArea 1 .1
2( )

( )
( ( ) )≥ + (1.1)

(2) (Item 2 in the abstract). Let C π2s ≥ be the universal curvature estimate for stable H-surfaces described
in Theorem 3.6 and let C π C C3 4 4s s

2( )= / + + . There exists a G I �( ) ∈ , so that whenever g M G I( ) ( )≥ ,
then:

M C
λ

g MArea 1 .2( ) ( ( ) )≥ + (1.2)

(3) (Item 3 in the abstract). Suppose that the scalar curvature ρ of X satisfies H ρ c3 2 1
2+ ≥ for some c 0> .

Then, if M is connected and two sided, then M is compact, and furthermore, there exists A I c, 02( ) >

such that:

M A I c
λ

M π I
λ c

g M A I c
C I

Area , Diameter 4 1
3

, , 1.2
2

2

1
( )

( )
( )

( )
( )

( )

( )
≤ ≤

+
≤ − (1.3)

In the proof of Theorem 1.1, the estimates for the constantsC I1( ),G I( ), and A I c,2( ) will be given in terms
of the related constants A I1( ), δ I( ) given in the hierarchy structure theorem (for the value τ π

10= ) for the
space IΛ , 1, 1, 1, 1( ) described in Definition 2.1.

There are a number of recent results in the literature related to area estimates for connected, closed,
embedded minimal and constant mean curvature surfaces of finite index in a closed three-dimensional
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Riemannian manifold, some of which include results described in Theorem 1.1 under more restrictive
geometric hypotheses on the surfaces and/or the ambient space. Some of these recent results, obtained
independently, can be found in the previous articles [1–5,7,11,15]. We refer the interested reader to [3] for
further references in this active research area and for the general historical background that motivates this
subject material.

2 The hierarchy structure theorem

In the sequel, we will denote by B x r,X( ) (resp. B x r,X( )) the open (resp. closed) metric ball centered at a
point x X∈ of radius r 0> . For a Riemannian surface M with smooth compact boundary M∂ ,

κ M κ
M

g( ) ∫=

∂

will stand for the total geodesic curvature of M∂ , where κg denotes the pointwise geodesic curvature of M∂
with respect to the inward pointing unit conormal vector of M along M∂ .

Definition 2.1. For every I 0� { }∈ ∪ , ε 00 > , and H A K, , 00 0 0 ≥ , we denote by

I H ε A KΛ Λ , , , ,0 0 0 0( )=

the space of all H -immersions F M X: ↬ satisfying the following conditions:
(A1) X is a complete Riemannian 3-manifold with injectivity radius X εInj 0( ) ≥ and absolute sectional

curvature bounded from above by K0.
(A2) M is a complete surface with smooth boundary (possibly empty), and when M∂ ≠ ∅, there is at least

one point in M of distance ε0 from M∂ .
(A3) H H0, 0[ ]∈ and F has index at most I .
(A4) If M∂ ≠ ∅, then for any ε 0,( ]∈ ∞ , we let U M ε x M d x M ε, ,M( ) { ∣ ( ) }∂ = ∈ ∂ < be the open intrinsic

ε-neighborhood of M∂ . Then, AM∣ ∣ is bounded from above by A0 in U M ε, 0( )∂ .

Suppose that F M X: Λ( )↬ ∈ and M∂ ≠ ∅. For any positive ε ε 0,1 2 [ ]≤ ∈ ∞ , let

U M ε ε U M ε U M ε U M ε ε U M ε U M ε, , , , , , , , , .1 2 2 1 1 2 2 1( ) ( ) ( ) ( ) ( ) ( )∂ = ∂ ⧹ ∂ ∂ = ∂ ⧹ ∂

When M∂ = ∅, we define U M ε U M ε, , , ,1 1( ) ( )∂ ∞ = ∂ ∞ as M .
In the next result, we will make use of harmonic coordinates φ U B x r: ,x X( )→ defined on an open

subset U of 3� containing the origin, taking values in a geodesic ball B x r,X( ) centered at a point x X∈ of
radius r x0, InjX( ( ))∈ (here, xInjX( ) stands for the injectivity radius of X at x) and with a C α1, control of the
ambient metric on X , see Definition 2.4 for details.

Theorem 2.2. (Structure theorem for finite index H -surfaces [9]) Given ε 00 > , K H A, , 00 0 0 ≥ , I 0� { }∈ ∪ ,
and τ π0, 10( ]∈ / , there exist A A ,1 0[ )∈ ∞ , δ δ ε, 0, 21 0( ]∈ / with δ δ 21 ≤ / , such that the following hold:

For any F M X I H ε A K: Λ Λ , , , ,0 0 0 0( ) ( )↬ ∈ = , there exists a (possibly empty) finite collection F� =

p p U M ε, , , ,k1 0{ } ( )… ⊂ ∂ ∞ of points, k I≤ , and numbers r r k δ1 , , ,F F
δ

1 2( ) ( ) [ ]… ∈ with r r1 4 2F F( ) ( )> >…>

r k4k
F

1 ( )− , satisfying the following:
(1) Portions with concentrated curvature : Given i k1, ,= … , let Δi be the component of F B F p r i,X i F

1( ( ( ) ( )))−

containing pi. Then:

(a) B p r iΔ ,i M i F
5
4( ( ))⊂ (in particular, Δi is compact).

(b) Δi has smooth boundary and F B F p r iΔ ,i X i F( ) ( ( ) ( ))∂ ⊂ ∂ .

(c) B p r i B p r j, ,M i F M j F
7
5

7
5( ( )) ( ( ))∩ = ∅ for i j≠ . In particular, the intrinsic distance between Δ , Δi j is

greater than δ3
10 1 for every i j≠ .
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(d) A p A A p p M B p r j Amax max : ,M i M M j
i

M j FΔ 1
1 5

4 1i∣ ∣( ) ∣ ∣ {∣ ∣( ) ( ( ))}= = ∈ ⧹ ∪ ≥
=

− , see Figure 1.

(e) The index Index Δi( ) of Δi is positive.
(2) Transition annuli : For i k1, ,= … fixed, let e i �( ) ∈ be the number of boundary components of Δi. Then,

there exist planar disks T X, , e i F p1 i� � ( ) ( )… ⊂ of radius r i2 F( ) centered at the origin in T XF pi( ) , such that if
we denote by

P φ h e i, 1, , ,i h F p h, i
�( ) { ( )}( )= ∈ …

(here, φF pi( ) denotes a harmonic chart centered at F pi( ), see Definition 2.4), then

F B F p r i B F p r iΔ , , 2i X i F X i F( ) [ ( ( ) ( )) ( ( ) ( ) )]∩ ⧹ /

consists of e i( ) annular multi-graphs¹ G G, ,i i e i,1 , ( )… over their projections to P P, ,i i e i,1 , ( )… , with multi-
plicities m m,i i e i,1 , �( )… ∈ , respectively, and whose related graphing functions u satisfy

u x
x

u x τ,∣ ( )∣

∣ ∣
∣ ∣( )+ ∇ ≤ (2.1)

where we have taken coordinates x in each of the Pi h, and denoted by x∣ ∣ the extrinsic distance to F pi( ) in
the ambient metric of X , see Figure 2.

(3) Region with uniformly bounded curvature : A AM 1∣ ∣ < on M M Int Δi i
k

i ( )≔ ⧹⋃
=

.

Moreover, the following additional properties hold:

(A) I IΔi
k

i1 ( )∑ ≤
=

, where I Δ Index Δi i( ) ( )= .

(B) Geometric and topological estimates : Given i k1, ,= … , let m i mh
e i

i h1 ,( )
( )

≔ ∑
=

be the total spinning of the

boundary of Δi, let g Δi( ) denote the genus of Δi (in the case Δi is nonorientable, g Δi( ) denotes the genus of
its oriented cover²). Then, m i 2( ) ≥ and the following upper estimates hold:
(a) If I Δ 1i( ) = , then Δi is orientable, g Δ 0i( ) = , and e i m i, 2, 2 , 1, 3( ( ) ( )) {( ) ( )}∈ .
(b) If I Δ 2i( ) ≥ and Δi is orientable, then m i I3 Δ 1i( ) ( )≤ − , e i I3 Δ 2i( ) ( )≤ − , and g IΔ 3 Δ 4i i( ) ( )≤ − .
(c) If Δi is nonorientable, then I Δ 2i( ) ≥ , m i I3 Δ 1i( ) ( )≤ − , e i I3 Δ 2i( ) ( )≤ − , and g IΔ 6 Δ 8i i( ) ( )≤ − .
(d) χ I m i e iΔ 6 Δ 2i i( ) ( ) ( ) ( )≥ − + + , and thus, χ I S eΔ 6 2i

k i1( )∪ ≥ − + +
=

, where

e e i S m i, .
i

k

i

k

1 1
( ) ( )∑ ∑= =

= =

(e) κ πm iΔ 2i
τ

m i∣ ( ) ( )∣
( )

− ≤ , and so, the total geodesic curvature κ M( ) of M along M M∂ ⧹∂ satisfies

κ M πS k2 τ
2

∣ ( ) ∣+ ≤ , and so,

πS τ k κ πS τ k2
2

Δ 2
2

.
i

k

i
1

( )∑− ≤ ≤ +

=

(2.2)

(f) K π3 ,
Δi
∫− > and so,

K πχ κ kπ2 Δ 3 .i
k i g

Δ

1

Δi
k i i

k i1 1

( )∫ ∫− = − ∪ + >

∪

=

∪ ∂
= =

(2.3)

(C) Genus estimate outside the concentration of curvature : If M is orientable, k 1≥ and the genus g M( ) of

M is finite, then the genus g M( ) of M satisfies g M g M I0 3 2( ) ( )≤ − ≤ − .
(D) Area estimate outside the concentration of curvature : If k 1≥ , then



1 See Definition 2.5 for this notion of multigraph.
2 If Σ is a compact nonorientable surface and Σ Σ

2:1 → denotes the oriented cover of Σ, then the genus of Σ plus 1 equals the
number of cross-caps in Σ.
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M π m i r i kπδArea 2 Area Δ .
i

k

F
i

k
i

1

2

1
1
2

⎜ ⎟( ) ( ) ( ) ⎛

⎝

⎞

⎠
∑≥ ≥ ⋃ ≥

= =

(E) There exists a C 0> , depending on ε K H, ,0 0 0, and independent of I , such that

M C M if M
C M if M

Area max 1, Radius ,
max 1, Diameter ,

( )
⎧

⎨
⎩

{ ( )}

{ ( )}
≥

∂ ≠ ∅

∂ = ∅

(2.4)

where

M d x M if M

M d x y if M

Radius sup , 0, ,

Diameter sup , .
x M

M

x y M
M

,

( ) ( ) ( ]

( ) ( )

= ∂ ∈ ∞ ∂ ≠ ∅

= ∂ = ∅

∈

∈

In particular, if M has infinite radius or if M has empty boundary and it is noncompact, then its area is
infinite.

Definition 2.3. Given a one-sided minimal immersion F M X: ↬ , let M M → be the two-sided cover of M
and let τ M M:  → be the associated deck transformation of order 2. Denote by Δ͠, A 2∣ ∣͠ the Laplacian and

squared norm of the second fundamental form of M, and let N M TX:  → be a unitary normal vector field.
The index of F is defined as the number of negative eigenvalues of the elliptic, self-adjoint operator

A N NΔ Ric ,2∣ ∣ ( )͠ ͠+ + defined over the space of compactly supported smooth functions ϕ M:  �→ such
that ϕ τ ϕ∘ = − .

Figure 1: The second fundamental form concentrates inside the intrinsic compact regions Δi (in red), each of which is mapped
through the immersion F to a surface inside the extrinsic ball in X centered at F pi( ) of radius r i 0F ( ) > , with
F B F p r i∂Δ ∂ ,i X i F( ) ( ( ) ( ))⊂ . Although the boundary ∂Δi might not be at constant intrinsic distance from the “center” pi, Δi lies
entirely inside the intrinsic ball centered at pi of radius r iF

5
4 ( ). The intrinsic open balls B p r i,M i F

7
5( ( )) are pairwise disjoint.

Figure 2: The transition annuli: On the right, one has the extrinsic representation in X of one of the annular multi-graphs G in
F B F p r B F p rΔ , 1 , 1 2X F X F1 1 1( ) [ ( ( ) ( )) ( ( ) ( ) )]∩ ⧹ / ; in this case, the multiplicity of the multi-graph is 3. On the left, one has the
intrinsic representation of the same annulus (shadowed); there is one such annular multi-graph for each boundary compo-
nent of Δi.
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Definition 2.4. Given a (smooth) Riemannian manifold X , a local chart x x, n1( )… defined on an open setU
of X is called harmonic if xΔ 0i = for all i n1,= … .

Following Definition 5 in [6], we make the next definition. Given Q 1> and α 0, 1( )∈ , we define the
C α1, -harmonic radius at a point x X0 ∈ as the largest number r r Q α x, 0( )( )= so that on the geodesic ball
B x r,X 0( ) of center x0 and radius r, there is a harmonic coordinate chart such that the metric tensor g of X is
C α1, -controlled in these coordinates. Namely, if gij, i j n, 1, ,= … , are the components of g in these coordi-
nates, then
(1) Q δ g Qδij ij ij

1
≤ ≤

− as bilinear forms,

(2) r y r Qsup sup 1β y
g
x β

α
y z

y z

d y z1
3

1
3 1

,
ij

β

gij
xβ

gij
xβ

X α∣ ( )∣
( ) ( )

( )
∑ + ∑ ≤ −

=

∂

∂ =

+

≠

−

∂

∂

∂

∂

.

The C α1, -harmonic radius r Q α X,( )( ) of X is now defined by

r Q α X r Q α x, inf , .
x X

0
0

( )( ) ( )( )=

∈

If the absolute sectional curvature of X is bounded by some constant K 00 > and Inj X r 00( ) ≥ > , then
Theorem 6 in [6] implies that given Q 1> and α 0, 1( )∈ , there exists C C Q α r K, , ,0 0( )= (observe that C
does not depend on X) such that r Q α X C,( )( ) ≥ .

Definition 2.5. Let f : Σ 3�↬ be an immersed annulus, P is a plane passing through the origin, and

PΠ : 3� → the orthogonal projection. Given m �∈ , let σ P P P: 0m m { }→ = ⧹

→
∗ be the m-sheeted covering

space of P∗. We say that Σ is an m-valued graph over P if f0 Π Σ( )( )
→

∉ ∘ and f PΠ : Σ∘ →
∗ has a smooth

injective lift f P: Σ m͠
→ through σm; in this case, we say that Σ has degree m as a multi-graph.

Given Q 1> and α 0, 1( )∈ , let X be a Riemannian 3-manifold and x x x, ,1 2 3( ) a harmonic chart for X
defined on B x r,X 0( ), x X0 ∈ , r 0> , where the metric tensor g of X isC α1, -controlled in the sense of Definition
2.4. Let P B x r,X 0( )⊂ be the image by this harmonic chart of the intersection of a plane in 3� passing
through the origin with the domain of the chart. In this setting, the notion of m-valued graph over P
generalizes naturally to an immersed annulus f B x r: Σ ,X 0( )↬ , where the projection Π refers to the har-
monic coordinates. If f B x r: Σ ,X 0( )↬ is an m-valued graph over P and u is the corresponding graphing
function that expresses f Σ( ), we can consider the gradient u∇ with respect to the metric on P induced by the
ambient metric of X . Both u and u∣ ∣∇ depend on the choice of harmonic coordinates around x0 (and they also

depend on Q), but if u τu x
x ∣ ∣

∣ ( ) ∣

∣ ∣
+ ∇ < for some τ π0, 10( ]∈ / and Q 1> sufficiently close to 1, then

u τ2u x
x ∣ ∣

∣ ( ) ∣

∣ ∣
+ ∇ < for any other choice of harmonic chart around x0 with this restriction of Q.

3 The proof of Theorem 1.1

This section is dedicated to the proof of Theorem 1.1. Note the complete surfaces considered in this theorem
have empty boundary. Let F M X: ↬ be an immersion as in the statement of Theorem 1.1.

We will use the notation in Theorem 2.2 and fix τ π 10= / . Notice that as the boundary of M is empty,
then we may consider the H -immersion F M X: ↬ of index I described in Theorem 1.1 to be an element of

I H r KΛ , , , 1,0 0 0( ), where H r K, ,0 0 0 are given in the hypotheses of Theorem 1.1.

3.1 Normalizing the space Λ

After scaling the Riemannian metric of X by the square root of
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λ
r

K Hmax 1, 1 , , ,
0

0 0
⎧

⎨
⎩

⎫

⎬
⎭

= (3.1)

one obtains a new Riemannian manifold X′; note that this scaling of the metric scales arc length in X by the
factor λ 1≥ , and that the metric of M induced by the isometric immersion F creates an associated isometric
immersion F M X:′ ↬ ′ such that F p F p( ) ( )′ = for each p M∈ . After this homothetic change of the metric,
we can consider F M X:′ ↬ ′ to be an immersion satisfying the following properties:
(1) XInj 1( )′ ≥ .
(2) The absolute sectional curvature of X′ is less than or equal to 1.
(3) F′ is an isometric immersion of constant mean curvature H 0, 1[ ]′ ∈ .
(4) F M X I: Λ , 1, 1, 1, 1( ) ( )′ ↬ ′ ∈ .
(5) F λ FArea Area .2( ) ( )= ′

(6) F λ FDiameter Diameter .( ) ( )= ′

Items 5 and 6 allow us to easily convert estimates on the area of subdomains and lengths of curves in
the domain of F to areas and lengths of the corresponding domains and curves in the domain of F′,
and thereby, these conversion formulae reduce the proofs of statements given in Theorem 1.1 for
F I H r KΛ , , , 1,0 0 0( )∈ to the corresponding estimates for F′ in IΛ , 1, 1, 1, 1( ). Thus, for the remainder of
the proof of Theorem 1.1, we will assume F M X: ↬ lies in IΛ , 1, 1, 1, 1( ) and refer to Area M( ) and Dia-
meter M( ) for those with respect to the induced metric by F .

3.2 Proof of item 0 of Theorem 1.1

Consider an element F M X I: Λ , 1, 1, 1, 1( ) ( )↬ ∈ . If M is noncompact, then the last sentence in item E of
Theorem 2.2 states that M has infinite area, which proves that the inequality Area M CA( ) ≥ in item 0 holds
vacuously (for any choice ofC 0A > ). If moreover M is connected, then there exists a geodesic ray in M , i.e.,
an embedded, length-minimizing unit-speed geodesic arc γ M: 0,[ )∞ → ; in particular, the diameter of M
is infinite, and thus, the second statement in item 0 also holds vacuously.

For the remainder of this section, we will assume that M is compact.

Lemma 3.1. Given x M0 ∈ , let M x0( ) be the component of M containing x0. Then, M x0( ) is not contained in the
closed extrinsic ball B x π, 4X 0( )/ (in particular, B x π, 4M 0( )∂ / is not empty).

Remark 3.2. Observe that if the lemma holds, then the extrinsic diameter of M is greater than π 4/ (in
particular, the intrinsic diameter has the same lower bound), which proves the second statement in item 0
of Theorem 1.1.

Proof of Lemma 3.1. Fix a point x M0 ∈ and let r π0, 4( )∈ / . Since the injectivity radius of X is at least 1, all
the distance spheres B x r,X 0( )∂ with r 0, 1( )∈ are geodesic spheres. By comparison results and since the
absolute sectional curvature of X is bounded by 1, the second fundamental form of B x r,X 0( )∂ has normal
curvatures greater than 1. Assume that M x0( ) is contained in B x r,X 0( ). As M x0( ) is compact, then there
exists a largest r r0,1 ( ]∈ such that M x B x r,X0 0 1( ) ( )⊂ , and there exists x M x B x r,X0 0 1( ) ( )∈ ∩ ∂ . This implies
that all the normal curvatures of M at x are greater than 1, which implies that the mean curvature of M is
greater than 1, which contradicts that F M X: ↬ lies in IΛ , 1, 1, 1, 1( ). This contradiction proves that M x0( )

cannot be contained in B x r,X 0( ). Since this holds for every r π0, 4( )∈ / and M is compact, we conclude that
M x0( ) cannot be contained in B x π, 4X 0( )/ . In fact, M x0( ) cannot be contained in B x π, 4X 0( )/ (otherwise the
maximum principle for the mean curvature operator would imply that M x B x r,X0 0( ) ( )= ∂ , which contra-
dicts that x M x0 0( )∈ ). Now the lemma is proved. □

Using [8, Proposition 2.5 and item 3 of Remark 2.5] with R a H 11 0= = = , for each p MInt( )∈ , we have

Geometry of CMC surfaces of finite index  7



B p r E r πr e r πArea , for every 0, 4 .M
r r r2 2 1 cot[ ( )] ( ) ( ]( )

≥ ≔ ∈ /
− − + (3.2)

Therefore, since M B p π, 4X( )⊄ / by Lemma 3.1, the extrinsic diameter of M is greater than π 4/ and
M B p π E πArea Area , 4 4 0.325043M( ) [ ( )] ( )> / = / ≈ . This completes the proof of item 0 of Theorem 1.1.

3.3 Proof of item 1 of Theorem 1.1

Consider an element F M X I: Λ , 1, 1, 1, 1( ) ( )↬ ∈ . If M is noncompact, then the last sentence in item E of
Theorem 2.2 states that M has infinite area, which vacuously implies item 1 of the theorem holds (for any
choice of C I1( )). Henceforth, assume M is compact.

Let M M Mb1= ∪ …∪ , b �∈ , be the decomposition of M in connected components. Assume inequality
(1.1) holds for each Mi with respect to a constant C C I1 1( )= . Since the index of each Mi is at most I , then

M M C g M C g M b C g MArea Area 1 1 ,
i

b

i
i

b

i
1 1

1 1 1( ) ( ) ( ( ) ) ( ( ) ) ( ( ) )∑ ∑= ≥ + = + ≥ +

= =

(3.3)

where g Mi( ) is the genus of Mi. Hence, it suffices to prove that (1.1) holds under the additional assumption
that M is connected, which we will assume henceforth.

The region M M ⊂ defined in item 3 of Theorem 2.2 for the space IΛ , 1, 1, 1, 1( ) produces a uniform

bound A A I 11 1( )= ≥ from above on the norm the second fundamental form of M. Let us define

K K I A1 1
2

.1 1 1
2( )= ≔ − − (3.4)

Since A 11 ≥ , then K1
3
2≤ − . The Gauss equation gives

K K TM Adet ,X M( ) ( )= + (3.5)

where K denotes the Gaussian curvature of M and K TMX( ) is the sectional curvature of X for the tangent
plane to M . Since the absolute sectional curvature of X is bounded by 1, H Adet2 ( )≥ and H 0, 1[ ]∈ , we have
the following upper and lower estimates for K in M:

K A A K A H1 1
2

1 det 1 det 1 2.M M M1
2 2∣ ∣ ( ) ( )≤ − − ≤ − + ≤ ≤ + ≤ + ≤ (3.6)

3.3.1 Item 1 holds when k 0=

We first show that item 1 of Theorem 1.1 holds in the special case that the integer k defined in Theorem 2.2 is

zero. To see this, observe that M M = , and thus, (3.6) ensures that M has Gaussian curvature bounded from

below by K1 and from above by 2. Let M be the orientable cover of M .

Suppose g M 0( ) = (recall that M was assumed to be compact and connected). By applying to M the
Gauss-Bonnet theorem, we have

M K π2 Area 4 .
M




( ) ∫⋅ ≥ =

If M is nonorientable, then M M πArea Area1
2

( ) ( )= ≥ . This inequality also holds in the case M is

orientable (in fact, M M= and so, M M πArea Area 2( ) ( )= ≥ ). Therefore, inequality (1.1) holds with
C I π1( ) = if g M 0( ) = and k 0= .

Suppose now that g M 2( ) ≥ . Hence, Gauss-Bonnet applied to M gives

K M K πχ M π g M π g M π g MArea 2 4 1 4 1 4
3

1 .
M

1   


( ) ( ) ( ( ) ) ( ( ) ) ( ( ) )∫− ⋅ ≥ − = − = − = − ≥ +
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If M is nonorientable, then M M g MArea Area 1π
K

1
2

2
3 1

( ) ( ) ( ( ) )
∣ ∣

= ≥ + . This inequality also holds in the

case M is orientable (in fact, M M= and thus, M M g MArea Area 1π
K

4
3 1

( ) ( ) ( ( ) )
∣ ∣

= ≥ + ). Therefore, inequality

(1.1) holds with C I π
K1

2
3 1

( )
∣ ∣

= if g M 2( ) ≥ and k 0= .

By the already proven item 0 of Theorem 1.1, the area of M is at least CA. In particular, if g M 1( ) = (i.e.,
M is a torus or a Klein bottle), then one can still obtain a lower bound estimate for the area of M by

M C C g MArea
2

1 .A
A

( ) ( ( ) )≥ = +

Therefore, inequality (1.1) holds with C I C
1 2

A( ) = if g M 1( ) = and k 0= .

Finally, we consider the minimum of the constants π, ,π
K

C2
3 2

A

1∣ ∣
obtained in the three cases mentioned

earlier. As observed previously, K1
3
2∣ ∣ ≥ , and so,

C C I π π
K

C π
K

Cmin , 2
3

,
2

min 2
3

,
2

,A A
3 3

1 1
( )

⎧

⎨
⎩

∣ ∣

⎫

⎬
⎭

⎧

⎨
⎩

∣ ∣

⎫

⎬
⎭

= = =

we deduce that (1.1) holds with C3, instead of C1, for connected compact M when k 0= .

3.3.2 Item 1 holds when k 1≥

Assume that k 1≥ (in particular, I 1≥ ), and we will obtain a constant C C I πδ0,4 4 1
2( ) ( )= ∈ that satisfies

M C g MArea 1 ,4( ) ( ( ) )≥ + (3.7)

which will complete the proof of item 1 of Theorem 1.1 after setting C I C I C Imin ,1 3 4( ) { ( ) ( )}= . We will need
the following two claims.

Claim 3.3. If g M I12 3( ) ≥ − , then inequality (3.7) holds with constant C I π
K I4 1

( )
∣ ( ) ∣

′ = .

Claim 3.4. If g M I12 3( ) < − . then inequality (3.7) holds with C I C
I4 12 3

A( )″ =
−

.

Proof of Claim 3.3. We start applying the Gauss-Bonnet formula and (3.6):

K M K K KArea .
M M

1

Δi
k i1




∣ ∣ ( ) ∫ ∫ ∫⋅ ≥ = −

∪
=

(3.8)

On the other hand, calling g g M( )= ,

K K π χ M πχ κ

π g π I S e πS τk

2 2 Δ

2 1 2 6 2 2 ,
M

i
k i g

Δ

1

Δi
k i i

k i1 1

( ) ( )

( ) ( )

( )

∫ ∫ ∫− = − ∪ +

≤ − + − − + +

∪

=

∂ ∪
= =

(3.9)

where in the last inequality, we have used item B d( ) of Theorem 2.2 and (2.2). Since τ π 10≤ / in Theorem 2.2
and S e k4+ ≥ (this last inequality follows since e i 1( ) ≥ andm i 2( ) ≥ , and if e i 1( ) = , thenm i 3( ) ≥ ), and we
can bound (3.9) from above by π g I k2 1 6 4 k

20( )− + − + , which in turn is at most π g I2 6 2( )− + − because
k 1≥ . Therefore,

K K π g I2 12 4 .
M Δi

k i1

( )∫ ∫− ≤ − − +

∪
=

(3.10)

Since g I12 3≥ − by hypothesis, then the right-hand side (RHS) of (3.10) is at most π g 1( )− + , and thus, we
conclude that
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K K π g 1 .
M Δi

k i1

( )∫ ∫− ≤ − +

∪
=

(3.11)

Now, (3.11) and (3.8) give

K M π gArea 1 ,1 ∣ ∣ ( ) ( )⋅ ≥ + (3.12)

from where Claim 3.3 follows. □

Proof of Claim 3.4. By the already proven item 0 of Theorem 1.1, we have M CArea A( ) ≥ , which is

g M 1C
I12 3

A ( ( ) )≥ +
−

because g M I12 3( ) < − . This finishes the proof of Claim 3.4. □

Once Claims 3.3 and 3.4 are proved, we will conclude that inequality (3.7) holds in all cases with k 1≥

with C I C I C Imin ,4 4 4( ) { ( ) ( )}= ′ ″ . This completes the proof of item 1 of Theorem 1.1.

3.4 A preliminary result on area estimates of balls in M and its diameter

We temporarily pause the proof of Theorem 1.1 to state and prove the next auxiliary result, which gives
general upper estimates on the areas of balls of radius r in M and general upper estimates on the diameter
of M in terms of constants described in the hierarchy structure theorem 2.2. The next theorem will be crucial
in the proofs of the remaining items 2 and 3 of Theorem 1.1. The proof of Theorem 3.5 will be given in
Sections 3.5–3.7.

Theorem 3.5. (Area estimates for intrinsic balls and diameter estimates for M) For r 00 > , K H, 00 0 ≥ ,
consider all complete Riemannian 3-manifolds X with injectivity radius X rInj 0( ) ≥ and absolute sectional

curvature bounded from above by K0, and let λ K Hmax 1, , ,r
1

0 0
0{ }= . Let M be a complete immersed H-

surface in X with empty boundary, H H0, 0[ ]∈ , index at most I 0� { }∈ ∪ and genus g M( ), which in the
language of Theorem 2.2 implies M I H r KΛ Λ , , , 1,0 0 0( )∈ = with additional chosen constant τ π 10= / . Then:
(1) Suppose that one of the following two conditions holds:

(i) I 0= , i.e., M is stable.

(ii) I 1≥ and k 0= with the notation of Theorem 2.2 (in particular, M M= ).
Depending on whether condition (i) or (ii) holds, we introduce the following constant K K I1 1( )= . If condi-
tion (i) holds, let C π2s ≥ be the universal curvature estimate for stable H-surfaces described in Theorem

3.6, and let K C1 s1
1
2

2
≔ − − . If condition (ii) holds, let K K I A11 1

1
2 1

2( )= = − − , where A A I 11 1( )= ≥ is the

constant given by Theorem 2.2 for the space IΛ , 1, 1, 1, 1( ).
For all x M∈ and r 0> ,

B x r π
K λ

λ K rArea , 2 cosh 1 ,M
1

2 1( ( )) [ ( ) ]≤

−

− − (3.13)

and if M is connected, then

M
K

K C I
π

g MDiameter 1
λ

arccosh
2

1 1 .
1

1 1
( ) ⎡

⎣

( )
( ( ) ) ⎤

⎦
≥

−
+ + (3.14)

(2) Suppose k 1≥ (in particular, I 1≥ ). Let δ δ I 0, 1
2( ) ( ]= ∈ be the constant described in Theorem 2.2 for the

space IΛ , 1, 1, 1, 1( ), and let Δ , , Δk1 … , k I≤ , be the smooth compact domains associated to M introduced
in item 1 of Theorem 2.2. There exists A I 63( ) ≥ , independent of M r K H, , ,0 0 0, such that for all x M∈ and
all r 0> , the following estimates hold:
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B x r π
λ A I

I λ A I r
λ A I r

A I
Area , Δ 2 6 1 2 cosh 1

sinh
,M

i

k
i

1 2
3

3
3

3
1 2

⎛
⎝

( ) ⎞
⎠

( )

( )

⎡

⎣
⎢ [ ( ( ) ) ]

( ( ) )

( )

⎤

⎦
⎥⧹ ∪ ≤

+
− +

=
/

(3.15)

B x r I
λ

π
A I

λ A I r
λ A I r

A I
πArea , 2 6 1 2 cosh 1

sinh 3
8

,M 2
3

3
3

3
1 2( ( ))

⎡

⎣
⎢

( )

( )

⎛

⎝
⎜ [ ( ( ) ) ]

( ( ) )

( )

⎞

⎠
⎟

⎤

⎦
⎥≤

+
− + +

/
(3.16)

and if M is connected, then

M
λ A I

C I
I

g MDiameter 1 arccosh
20

1 .
3

1
( )

( )
⎡
⎣

( )
( ( ) )⎤

⎦
≥ + (3.17)

3.5 The proof of item 1 of Theorem 3.5

It is worth recalling some aspects related to curvature estimates for complete stable H -surfaces Σ (possibly
with boundary) in complete Riemannian 3-manifolds of absolute sectional curvature at most 1 and injec-
tivity radius at most 1; such curvature estimates are independent on the value of the (constant) mean
curvature. Rosenberg et al. [14, Main Theorem] proved that there exists a universal constant C 0s′ > such
that if Σ is two-sided, then for any point p Σ∈ of distance at least 1 from Σ∂ , then A p CM s∣ ∣( ) ≤ ′. In [9], we
generalized this curvature estimate to include the case where M is not necessarily two-sided. Namely, we
proved the following statement.

Theorem 3.6. (Curvature estimate for stable H -surfaces [9]) There existsC π2s″ ≥ such that given K 00 > and
a complete Riemannian 3-manifold Y g,( ) of bounded sectional curvature K K0∣ ∣ ≤ , then for any immersed one-
sided stable minimal surface M Y↬ and for any p M∈ ,

A p C
p d p Mmin Inj , , ,

.M
s

Y M
π
K2 0

∣ ∣( )
{ ( ) ( ) }

≤

″

∂
(3.18)

LetC C Cmax ,s s s{ }≔ ′ ″ . Given ε 00 > , K 00 ≥ , if X is a complete Riemannian 3-manifold with injectivity radius at
least ε0 and bounded sectional curvature K K0∣ ∣ ≤ , and F M X: ↬ is a stable H-immersion, then

A p C
ε d p Mmin , , ,

.M
s

M
π
K0 2 0

∣ ∣( )
{ ( ) }

≤

∂
(3.19)

Consider an element F M X I: Λ 0, 1, 1, 1, 1( ) ( )↬ ∈ = , in particular, M is stable. Particularizing (3.19)
to the case ε 10 = , M∂ = ∅, K 10 = , we obtain that A CM s∣ ∣ ≤ in M . By the same argument using the Gauss

equation as in (3.4) and (3.6), we deduce that the Gaussian curvature K of M satisfies K K C1 s1
1
2

2
≥ ≔ − − in

M . In this setting, the Bishop-Cheeger-Gromov relative volume comparison theorem [12, Lemma 36] implies
that for every x M∈ and r 0> ,

B x r r π
K

K rArea , Area 2 cosh 1 ,M K
1

11�( ( )) ( ) [ ( ) ]( )≤ =

−

− − (3.20)

where rK1� ( ) denotes the metric ball of radius r in the hyperbolic plane of curvature K 01 < . This finishes the
proof of inequality (3.13) provided that I 0= (i.e., assuming condition 1(i) in Theorem 3.5 holds).

Now suppose F M X I: Λ , 1, 1, 1, 1( ) ( )↬ ∈ , I 1≥ . To prove (3.13) provided that condition 1(ii)
in Theorem 3.5 holds, observe that in this case M M= . By (3.6), K K1≥ , where K A11

1
2 1

2
= − − and

A A I 11 1( )= ≥ is given by Theorem 2.2 for the space IΛ , 1, 1, 1, 1( ). By applying the aforementioned argu-
ments to this new choice of the constant K1, we obtain that (3.20) holds, which proves (3.13) provided that
1(ii) in Theorem 3.5 holds.
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To show (3.14) (regardless of whether condition 1(i) or 1(ii) in Theorem 3.5 holds), assume M is con-
nected. Observe that we can assume that M is compact (otherwise its diameter is infinite by the argument
in the first paragraph of Section 3.2 and (3.14) holds vacuously). Choose a point x M∈ . By taking
r M DDiameter( )= ≔ in (3.20) and using the already proven inequality (1.1), we obtain

C I g M M B x D π
K

K D1 Area Area , 2 cosh 1 ,M1
3.20

1
1( )( ( ) ) ( ) ( ( )) [ ( ) ]

( )

+ ≤ = ≤

−

− −

or equivalently,

D
K

K C I
π

g M1 arccosh
2

1 1 ,
1

1 1⎡
⎣

( )
( ( ) ) ⎤

⎦
≥

−
+ +

which proves inequality (3.14), and so, finishes the proof of item 1 of Theorem 3.5.

3.6 Area growth of collar neighborhoods of M if k 1≥

Definition 3.7. For a complete surface Σ with boundary Σ∂ and for any r 0> , let

r x d x rΣ Σ , ΣΣ( ) { ∣ ( ) }= ∈ ∂ ≤

be the collar neighborhood of Σ∂ in Σ of radius r.

Consider an element F M X I: Λ , 1, 1, 1, 1( ) ( )↬ ∈ . Assume k 1≥ with the notation of Theorem 2.2. Hence,

M is a surface with smooth boundary. For later uses, next we will give an upper estimate for the area growth

of the collar neighborhood M r( ) of M, r 0> .

Proposition 3.8. Let c c, , e1 … be the set of components of M∂ . Choose for each i e1, ,{ }∈ … a parametrization
by arc length γ L c: 0,i i i[ ] → with associated geodesic curvature function κ ti( ) with respect to the inward

pointing unit conormal vector η η t( )= of M along M∂ . Then, for each i e1, ,{ }∈ … :
(1) κ ti( ) is negative in L0, i[ ].
(2) There exists a complete annulus Σi with boundary, with constant Gaussian curvature K1 (this constant is

defined in (3.4)), whose boundary is parameterized by the arc length by γ γ t L: 0, Σi i i i ( ) [ ]= → ∂ , and such

that the geodesic curvature function κi of Σi∂ with respect to the inward pointing unit conormal vector of Σi
along Σi∂ satisfies κ t κ ti i ( ) ( )= for all t L0, i[ ]∈ . Furthermore, Σi is unique up to isometry.

(3) For each r 0> , we have

M r r κ M
K r

K
L

K r
K

Area Area Σ
1 cosh sinh

,
i

e

i
1

1

1

1

1
3 2

 ( ( )) ( ( )) ( )
( ) ( )

( )
∑≤ =

− −

−

+

−

−
=

/
(3.21)

where κ t κ tg i
e

i1( ) ( )= ∑
=

and κ M κ
M g
( ) ∫=

∂

is the total geodesic curvature of M∂ with respect to the inward

pointing unit conormal vector of M along M∂ , and L Li
e

i1= ∑
=

is the length of M∂ .

Proof. Item 1 follows from the proof of the hierarchy structure theorem 2.2 in [9]; specifically, see Lemma
6.4 in [9].

Item 2 follows directly from the following two facts. First, given 0ℓ > and a smooth function
κ : 0, , 0[ ] ( )ℓ → −∞ , standard geometry of curves in the hyperbolic plane K2

1� ( ) with constant Gaussian
curvature K1 ensures that there exists a smooth unit speed curve α K: 0, 2

1�[ ] ( )ℓ → − such that κ t( ) is the
geodesic curvature of α at α t( ), for all t 0,[ ]∈ ℓ ; furthermore, α is unique up to isometries of K2

1� ( ). Second,
if n U K: 0, 2

1�[ ] ( )ℓ → is the unit normal vector to α pointing to its nonconvex side (here U K2
1� ( ) denotes

the unit tangent bundle to K2
1� ( )), then the map ϕ K: 0, 0, 2

1�[ ] [ ) ( )ℓ × ∞ →

ϕ t r rn t t r, exp , , 0, 0,α t( ) ( ( )) ( ) [ ] [ )( )= ∈ ℓ × ∞ (3.22)
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is a submersion, where T K Kexp: 2
1

2
1� �( ) ( )→ is the exponential map. ϕ induces a hyperbolic metric gh on

L0, 0,[ ] [ )× ∞ so that for each t 0,0 [ ]∈ ℓ , the curve of the form r ϕ t r0, ,0[ ) ( )∈ ∞ ↦ is a unitary geodesic
orthogonal to the arc α L0,([ ]) at α t0( ); in particular, after identifying the two geodesic arcs ϕ 0 0,({ } [ ))× ∞

and ϕ 0,({ } [ ))ℓ × ∞ by a hyperbolic isometry, we obtain a quotient hyperbolic annulus gΣ ,α h( ) with the
properties desired in item 2, in the special case that Liℓ = and κ κi= .

To prove item 3 of the proposition, first observe that since K K1≥ − on M r( ) by (3.6), we can use relative
volume comparison arguments [12, Lemma 36] to deduce that

M r rArea Area Σ .
i

e

i
1

( ( )) ( ( ))∑≤

=

It remains to prove that for all i e1, ,= … and r 0> , the following holds

r
K

K r κ s s L
K

K rArea Σ 1 1 cosh d sinh .i

L
i

1
1

0
1

1

i

( ( ))
⎡

⎣

⎢
⎢

( ( )) ( ) ( )
⎤

⎦

⎥
⎥

∫=

−

− − +

−

− (3.23)

Claim 3.9. Let α : 0, 12�[ ] ( )ℓ → − a smooth arc parameterized by arc length, with negative geodesic
curvature function κ κ s( )= . Consider the complete hyperbolic annulus with boundary gΣ ,α h( ) constructed
in (3.22) in terms of α with K 11 = − . Given r 0> , let α : 0, Σr α[ ]ℓ → be the equidistant arc to α at distance r on
the nonconvex side of α. Then:
(1) The geodesic curvature function κr of αr is given by

κ s κ s r
r κ s

stanh
1 tanh

, 0, .r( )
( ) ( )

( ) ( )
[ ]=

−

−

∀ ∈ ℓ (3.24)

(2) Let rΣ Σα α( ) ⊂ be the domain enclosed by αr and the two geodesics of Σα that join the extrema of αr (so
that these geodesics are orthogonal to both αr at their extrema). Then,

r r κ s s rArea Σ 1 cosh d sinh ,α

0

( ( )) ( ( )) ( ) ( )∫= − + ℓ

ℓ

(3.25)

where L α( )ℓ = is the length of α.
(3) If we replace 12� ( )− by K2

1� ( ), then (3.25) becomes

r
K

K r κ s s
K

K rArea Σ 1 1 cosh d sinh .α
1

1

0
1

1( ( ))
⎡

⎣

⎢
⎢

( ( )) ( ) ( )
⎤

⎦

⎥
⎥

∫=

−

− − +
ℓ

−

−

ℓ

(3.26)

Proof of the claim. Recall that Σα submerses into 12� ( )− through the map ϕ given in (3.22). In particular,
Σ Σα α⧹∂ is locally isometric to 12� ( )− . This property clearly allows us to prove the claim assuming that rΣα( )

embeds into 12� ( )− : for item 1 of the claim, this is obvious, while for items 2 and 3, we can divide 0,[ ]ℓ into a
partition s s s0 n0 1= < <…< = ℓ such that if we denote by α αi s s,i i1∣[ ]=

−
, i n1, ,= … and we apply the same

procedure as with Σα to construct n “rectangles” rΣαi( ), then each rΣαi( ) embeds into 12� ( )− . In this way,
both equations (3.25) and (3.26) will follow by adding up the corresponding equalities over the rectangles

r rΣ , , Σα αn1( ) ( )… , which only intersect along geodesics in their boundaries. Therefore, for the remainder of

this proof, we will assume that rΣα( ) is embedded in 12� ( )− .
We will use the model of 12� ( )− as the upper sheet of a hyperboloid in the Lorentz-Minkowski space

x x x, , d d dL
3 3

1
2

2
2

3
2� �( )= ⟨ ⟩ = + − . In this model, x x x x1 , 1, 0L

2 3
3� �( ) { ∣ }− = ∈ ⟨ ⟩ = − > , and the induced

metric by , L⟨ ⟩ on 12� ( )− is positive definite and has constant Gaussian curvature 1− . Given x 12� ( )∈ − ,
the tangent planeTx

3� identifies to x 3�⟨ ⟩ ⊂
⊥ . Given x 12� ( )∈ − and v x∈ ⟨ ⟩

⊥, the unique geodesic in 12� ( )−

with initial conditions γ x0( ) = , γ v0( )′ = is

γ t γ t x v v t x v t
v

v, , cosh sinh ,( ) ( ) (∣ ∣ )
(∣ ∣ )

∣ ∣
= = + (3.27)
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and the parallel transport along γ x v, ,( )⋅ from 0 to t is given by

τ T x T γ t τ w w v w
v

γ t v: 1 , , ˙ ,t
x γ t

t L
0

2 2
0 2� �( ) ( ) ( )

∣ ∣
( ( ) )( )− = ⟨ ⟩ → = ⟨ ⟩ = +

⟨ ⟩
−

⊥ ⊥ (3.28)

where γ t˙ γ
t

d
d( ) = .

Given s 0,[ ]∈ ℓ , the equidistant curve αr is

α s r α s γ r α s α s r α s r α sexp , , cosh sinh ,r α s � � �( ) ( ( )) ( ( ) ( )) ( ) ( ) ( ) ( )( )= ′ = ′ = + ′

where � is the rotation of angle π 2/ in each tangent plane to 12� ( )− so that α� ′ points to the nonconvex
side of α. α s J rr s( ) ( )′ = is the value at t r= of the unique Jacobi field J J ts s( )= along the geodesic
t γ t α s Jα s, ,( ( ) ( ))↦ ′ with initial conditions

J α s DJ
t

D α
s

s κ s α s0 ,
d

0
d

,s
s �

( ) ( ) ( )
( )

( ) ( ) ( )= ′ =

′

= − ′ (3.29)

where α n α, α �{ }′ = ′ is the Frenet dihedron for α. Since both J 0s( ) and 0DJ
td
s ( ) are orthogonal to γ̇ 0( ), we

deduce that J ts( ) is everywhere orthogonal to γ t˙ ( ). In particular, J t f t τ α ss s
t
0( ) ( ) ( ( ))= ′ , where f ts( ) is a solu-

tion of the ordinary differential equation f f¨ 0− = . Imposing (3.29), we have f 0 1s( ) = , f κ s˙ 0s( ) ( )= − , and
thus,

f t t κ s tcosh sinh .s( ) ( ) ( ) ( )= − (3.30)

Therefore, an orthogonal basis of the tangent and normal line to αr is

α s J r f r τ α s f r α s

n s τ n s n s γ r r α s r α s

, not necessarily unitary

˙ sinh cosh , unitary
r s s

r
s

α
r

α α

0
3.28

0
3.28

r � �

( ) ( ) ( ) ( ( )) ( ) ( )

( ) ( ( )) ( ) ( ) ( ) ( ) ( ) ( )

( )

( )

′ = = ′ = ′ ( )

= = = = + ′ ( )

Hence, by the Frenet equations for αr, we will obtain the negative of the geodesic curvature κ sr( ) of αr by
taking the derivative with respect to s to n sαr( ) and dividing by α s f rr s∣ ( )∣ ( )′ = :

κ s
n s
f r

r r κ s
r κ s r

sinh cosh
cosh sinh

,r
s α

s

d
d r

( )
( )

( )

( ) ( ) ( )

( ) ( ) ( )

( )

− = =
−

−

which proves the first item of the claim.
As for item 2, observe that the interior of rΣα( ) is topologically a disk, and that rΣα( )∂ contains four

cusps, in each of which the exterior angle to rΣα( ) along its boundary is π 2/ . By applying the Gauss-Bonnet
theorem to rΣα( ), we obtain

r κ κ r κ s s κ s s0 Area Σ Area Σ d d .α

α α

r α r

0 0r

( ( )) ( ( )) ( ) ( )∫ ∫ ∫ ∫= − + + = − + −

ℓ ℓ

(3.31)

Using (3.24),

κ s s κ s r
r κ s

α s s

r κ s r s

r κ s s r

d tanh
1 tanh

d

cosh sinh d

cosh d sinh .

r r

0 0

3.30

0

0

( )
( ) ( )

( ) ( )
∣ ( )∣

( ( ) ( ) ( ))

( ) ( ) ( )

( )

∫ ∫

∫

∫

=
−

−

′

= −

= − ℓ

ℓ ℓ

ℓ

ℓ

(3.32)

(3.31) and (3.32) give (3.25), which finishes the proof of item 2 of the claim. Item 3 follows from (3.25) after an
elementary rescaling argument. □

Equation (3.23) follows directly from (3.26) with the obvious change of notation r rΣ Σi α( ) ( )= , Li = ℓ.
This finishes the proof of Proposition 3.8. □
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3.7 Proof of item 2 of Theorem 3.5

Consider an element F M X I: Λ , 1, 1, 1, 1( ) ( )↬ ∈ . Assume k 1≥ (hence I 1≥ ) with the notation of Theorem
2.2. By (3.21), we have for each r 0>

M r f rArea ,( ( )) ( )≤ (3.33)

where f is the increasing function

f r κ M
K

K r L
K r

K
cosh 1

sinh
.

1
1

1

1
3 2


( )

( )
[ ( ) ]

( )

( )
= − − +

−

−
/

Lemma 3.10. Given x M∈ and r 0> , we have

B x r f rArea , Δ 2 .M
i

k
i

1
⎡

⎣⎢
( ) ⎛

⎝
⎞
⎠

⎤

⎦⎥
( )⧹ ∪ ≤

=

Proof. Suppose first that x Δi
k i1∈ ∪
=

. Then, B x r M r, ΔM i
k i1

( ) ( ) ( )⊂ ∪ ∪
=

, and thus, B x r M r, ΔM i
k i1

( ) ( ) ( )⧹ ∪ ⊂
=

.
Hence,

B x r M r f r f rArea , Δ Area 2 .M i
k i1

3.33[ ( ) ( )] ( ( )) ( ) ( )
( )

⧹ ∪ ≤ ≤ <
=

Now suppose x MInt ( )∈ and letd 0> be the distance from x to Δi
k i1∪
=

. We distinguish two cases, depending
on whether r d≤ .

If r d≤ , then since K K1≥ in M and B x r M,M ( ) ⊂ , the Bishop-Cheeger-Gromov relative volume com-
parison theorem implies

B x r r π
K

K r f r f rArea , Area 2 cosh 1 2 ,M K
1

11�( ( )) ( ) [ ( ) ] ( ) ( )
( )

( )≤ =

−

− − < <

⋆

where rK1� ( ) denotes the metric ball of radius r in the hyperbolic plane of curvature K1, and in ( )⋆ we have
used that κ M π2∣ ( )∣ > .

If r d> , then the triangle inequality ensures that B x r M r, Δ 2M i
k i1

( ) ( ) ( )⧹ ∪ ⊂
=

, and thus,

B x r M r f rArea , Δ Area 2 2 ,M
i

k
i

1

3.33⎡

⎣⎢
( ) ⎛

⎝
⎞
⎠

⎤

⎦⎥
( ( )) ( )

( )

⧹ ∪ ≤ ≤

=

which finishes the proof of the lemma. □

Now we are ready to prove inequality (3.15). First, observe that (2.2) implies that

πS τI κ M πS τI2 2 ,( )− − ≤ ≤ − +

and so,

κ M
K

πS τI
K

π τ
K

I π
K

I0 2 6 6 1 ,
1 1 1 1

( ) ( )

< ≤
+

−

≤
+

−

≤
+

−

⋆

(3.34)

where in ( )⋆ we have used that S I3≤ (this follows from item B of Theorem 2.2).
Second, we can estimate from above the length L of M∂ as follows: each component cj of M∂ is

contained in the boundary of a certain compact set Δi, and the length L Δi( )∂ of Δi∂ can be estimated
from above using [9, item (C1) of Lemma 6.1] (also see [9, Remark 6.2]) as follows:

L πm i r i πm i δΔ 2 1 2 1
2

,i F( ) ( ( ) ) ( )
( )

∂ ≤ + ≤
+ (3.35)

where m i( ) is the total spinning of the boundary of Δi (m i( ) was introduced in item B of Theorem 2.2) and
δ ε 2 1 20≤ / = / , δ δ

1 2≤ , and r i δ δ, 2F 1( ) [ ]∈ / were introduced in the main statement of Theorem 2.2. By
adding up (3.35) in the set Δ , ,Δk1{ }… , we obtain
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L πS k δ πI I δ π δ I π I2
2

6
2

6 1
2

6 1
4

.( )
≤

+
≤

+
=

+
≤

+ (3.36)

Finally, Lemma 3.10, (3.34), and (3.36) give

B x r f r κ M
K

K r L
K r

K
π

K
I K r π I

K r
K

π
A I

I A I r
A I r

A I

Area , Δ 2 cosh 2 1
sinh 2

6 1 cosh 2 1 6 1
4

sinh 2

2 6 1 2 cosh 1
sinh

,

M i
k i1

Lemma 3.10

1
1

1

1
3 2

3.34 , 3.36

1
1

1

1
3 2

3
3

3

3
1 2


[ ( ) ( )] ( )

( )
[ ( ) ]

( )

( )

[ ( ) ]
( )

( )

( )

( )

⎡

⎣
⎢ [ ( ( ) ) ]

( ( ) )

( )

⎤

⎦
⎥

( ) ( )

⧹ ∪ ≤ = − − +

−

−

≤
+

−

− − +
+ −

−

=
+

− +

=

( )

/

/

/

where we have defined A I K I4 63 1( ) ( )= − ≥ . This proves (3.15).
To see that inequality (3.16) holds, just observe that by item D of Theorem 2.2,

π m i r i πS δ πS π IArea Δ 2 2
4 8

3
8

,
i

k
i

i

k

F
1 1

2
2

⎛
⎝

⎞
⎠

( ) ( )∑∪ ≤ ≤ ≤ ≤

=
=

(3.37)

and hence,

B x r B x r

π
A I

I A I r
A I r

A I
π I

I π
A I

A I r
A I r

A I
π

Area , Area , Δ Area Δ

2 6 1 2 cosh 1
sinh 3

8

2 6 1 2 cosh 1
sinh 3

8
,

M M i
k i i

k i1 1

3
3

3

3
1 2

3
3

3

3
1 2

[ ( )] [ ( ) ( )] ( )

( )

( )

⎡

⎣
⎢ [ ( ( ) ) ]

( ( ) )

( )

⎤

⎦
⎥

⎡

⎣
⎢

( )

( )

⎛

⎝
⎜ [ ( ( ) ) ]

( ( ) )

( )

⎞

⎠
⎟

⎤

⎦
⎥

≤ ⧹ ∪ + ∪

≤
+

− + +

=
+

− + +

= =

/

/

(3.38)

from where one deduces (3.16).
To finish this section, we prove (3.17). Let us denote by h r( ) the RHS of (3.38). Then, taking

r D MDiameter( )= ≔ we have B x D M,M( ) = for any x M∈ , and so,

C I g M B x D h D1 Area Area , .M1
1.1

( )( ) ( ) [ ( )] ( )
( )

+ ≤ = ≤
(3.39)

Since t tsinh cosh( ) ( )≤ ,

h D I π
A I

A I D
A I D

A I
π

I π A I D
A I D π

I π A I D π

I π A I D

2 6 1 2 cosh 1
cosh 3

8

6 1
3

2 cosh 1
cosh

6
3
8

6 1
3

2 1
6

cosh 2 3
8

6 1
3

2 1
6

cosh .

A I

3
3

3

3
1 2

6
3

3

3

3

3

⎜ ⎟⎜ ⎟

⎜ ⎟

( )
⎡

⎣
⎢

( )

( )

⎛

⎝
⎜ [ ( ( ) ) ]

( ( ) )

( )

⎞

⎠
⎟

⎤

⎦
⎥

⎡

⎣
⎢

⎛

⎝
⎜ [ ( ( ) ) ]

( ( ) ) ⎞

⎠
⎟

⎤

⎦
⎥

⎡

⎣
⎢

⎛

⎝

⎛

⎝

⎞

⎠
( ( ) ) ⎞

⎠

⎤

⎦
⎥

⎛

⎝

⎞

⎠
( ( ) )

( ( ) )

≤
+

− + +

≤
+

− + +

=
+

+ − +

<
+

+

/

≥

(3.40)

(3.39) and (3.40) give

C I g I π A I D1 6 1
3

2 1
6

cosh ,1 3⎜ ⎟( )( ) ⎛

⎝

⎞

⎠
( ( ) )+ ≤

+
+

from where inequality (3.17) follows directly. This completes the proof of Theorem 3.5.
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3.8 Proof of item 2 of the Theorem 1.1

Consider an element F M X I: Λ , 1, 1, 1, 1( ) ( )↬ ∈ . As in previous sections, we may assume that M is
compact and connected, and let g g M( )= be the genus of M .

Claim 3.11. If I 0= , then (1.2) holds with G 0 0( ) = .

Proof. Since M is stable, we have A CM s∣ ∣ ≤ in M by (3.19). Thus, the Gauss equation implies that the

Gaussian curvature K of M satisfies K C1 s
1
2

2
≥ − − . By using the Gauss-Bonnet theorem, we obtain

C M K πχ M π g1 1
2

Area 2 2 1 .s

M

2⎛
⎝

⎞
⎠

( ) ( ) ( )∫+ ≥ − = − ≥ −

Hence,

M π
C

gArea 2
1

1 ,
s

1
2

2
( ) ( )≥

+

−

which is strictly bigger than g 1π
C C3 4 4s 2

2 ( )+
+ +

when g 2≥ . Consequently, (1.2) holds whenever g 2≥ . To
finish the proof of the claim, it remains to check that (1.2) holds for g 0, 1= , which we do next.

M C π
C C

π
C C

gArea 2
3 4 4

2
3 4 4

1A
s s

item 0 a

2
2

b

2
2( ) ( )≥ >

+ +

≥

+ +

+

( ) ( ) ( )

where in (a) we have used that C π2s ≥ , and in (b) that g 1≤ . Now the claim is proved. □

By Claim 3.11, it remains to prove item 2 of Theorem 1.1 assuming I 1≥ . The additional assumption
g I12 3≥ − guarantees, by (3.11), that

K K K π g 1 .
M M Δi

k i1


( )∫ ∫ ∫= − ≤ − +

∪
=

(3.41)

By Lemma 7.1 in [9], there exists a positive constant C 1s ( ), which in our setting is C1 2 s+ , such that if

A Csup 1M s∣ ∣ ( )> , then there exists a nonempty finite subset q q M, , n1{ }… ⊂ with n I1 ≤ ≤ , such that
(1) AM∣ ∣ achieves its maximum in M at q1, and for i n2, ,= … , AM∣ ∣ achieves its maximum in

M B q B q, 1 , 1M M i1 1[ ( ) ( )]⧹ ∪ …∪ − at qi.

(2) For each i n1, ,= … , A q C 1M i s∣ ∣( ) ( )> and the intrinsic balls B q , 1 2M i( )/ are pairwise disjoint and
unstable.

(3) A C 1M s∣ ∣ ( )≤ in M B q B q, 1 , 1M M n1[ ( ) ( )]⧹ ∪ …∪ .

We next define a partition of the surface M that appears in item 3 of Theorem 2.2.

• If A Csup 1M s∣ ∣ ( )≤ , let M1 = ∅ and M M2 = .

• Otherwise, let M M B q , 1i
n M i1 1

  [ ( )]= ∩ ∪
=

and M M B q , 1i
n M i2 1

  [ ( )]= ⧹ ∪
=

.

In particular, the second fundamental form of the surface M2 satisfies A C 1M s2
∣ ∣ ( )≤ .

By the discussion around inequality (3.6), the Gaussian curvature function of M1 satisfies K KM 11 ≥

(where K K I 3 21 1( )= ≤ − / is defined in (3.4)), and the Gaussian curvature function of M2 satisfies KM2 ≥

C1 1s
1
2

2 ( )− − . Also, by inequalities (3.13) and (3.16), there exists an explicit function h : 0,� ( )→ ∞ such

that

M B q B q h IArea , 1 Area , 1 .i
n M i

i

n

M i1
1

[ [ ( )]] ( ) ( )∑∩ ∪ ≤ ≤
=

=

(3.42)
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Therefore,

K I h I C M K K K π g1 1
2

1 Area 1 .s

M

M

M

M

M

1
2

2
3.42 3.41

1

1

2

2












( ) ( ) ⎡
⎣

( ) ⎤
⎦

( ) ( )
( ) ( )

∫ ∫ ∫− + ≤ + = ≤ − + (3.43)

Solving for the area of M2 , we have

M π g K I h I
C

Area 1
1 1

.
s

2
1

1
2

2


( )
( ) ( ) ( )

( )
≥

+ +

+

(3.44)

After setting C π
C

π
C C

2
1 1 3 4 4s s s

1
2

2 2 ( )
≔ =

/

+ + +

, we obtain the estimate

M M M C g
g K I h I

C
Area Area Area 1

1

1 1
.

π

s
2

2 1
1
2

2
 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )
≥ ≥ ≥ + +

+ +

+

(3.45)

Define

G I I K I h I
π

max 12 3, 2 1 ,1
�( )

⎧

⎨
⎩

⎡

⎢⎢

( ) ( ) ⎤

⎥⎥

⎫

⎬
⎭

≔ −
−

− ∈

where for a real number x, we denote by x⌈ ⌉ the smallest integer that is not smaller than x (also known as
the ceiling function at x). Then, whenever g M G I( ) ( )≥ , we have that the second term in the RHS of (3.45) is
nonnegative, which completes the proof of item 2 of Theorem 1.1.

3.9 Proof of item 3 of Theorem 1.1

Recall that in Section 3.1, we normalized the space Λ, passing from an H -immersion F M X:( )↬ ∈

I H r KΛ , , , 1,0 0 0( ) to the immersion F M X I: Λ , 1, 1, 1, 1( ) ( )′ ↬ ′ ∈ , where λ is given by (3.1) and X′ is the

Riemannian manifold obtained after scaling the original metric of X by λ . Observe that F′ has mean
curvature H H λ′ = / and X′ has scalar curvature ρ ρ λ2

′ = / .

Suppose that the scalar curvature ρ of X satisfies H ρ c3 2 1
2+ ≥ in X for some c 0> , where H is the mean

curvature of an immersion F M X I H r K: Λ , , , 1,0 0 0( ) ( )↬ ∈ . In this setting, Rosenberg [13], see also [10,
Theorem 2.12] proved that every stable, two-sided subdomain MΩ ⊂ satisfies

d x π
c

R, Ω 2
3

,M c( )∂ ≤ ≔ (3.46)

for all x Ω∈ . Since H ρ c c λ3 2 1
2

2( )′ + ′ ≥ ′ ≔ / , the estimate (3.46) applied to the same stable subdomain Ω
viewed inside the domain of F′ gives that the intrinsic distance in the metric induced by F′ from any x Ω∈ to
Ω∂ is at most π

c
π

c
2
3

2 λ
3

=
′

. This linear scaling on the upper bound for the intrinsic radius of stable subdo-
mains allows us to reduce item 3 of Theorem 1.1 to the following statement.

Proposition 3.12. Let F M X: ↬ be an H-immersion in IΛ , 1, 1, 1, 1( ), where M is connected and two-sided.
Let C I1( ) be the constant described in item 1 of Theorem 1.1 and Rc be as defined in (3.46). If the scalar

curvature ρ of X satisfies H ρ c3 2 1
2+ ≥ in X for some c 0> , then M is compact, and there exists A I c, 02( ) >

such that

M A I c M I R g M A I c
C I

Area , Diameter 2 1 , , 1.c2
2

1
( ) ( ) ( ) ( ) ( )

( )

( )
≤ ≤ + ≤ − (3.47)

Proof. We first show that M is compact. Arguing by contradiction, suppose M is noncompact. Since M is
complete, there is a geodesic ray in M , i.e., an embedded, length-minimizing unit-speed geodesic arc
γ M: 0,[ )∞ → . Consider the infinite collection
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n B γ jn n j2 , 0M ��( ) { ( ( ) )∣ { }}= ∈ ∪

of pairwise disjoint open intrinsic balls in M . Since the index of M is at most I , then the subcollection of
unstable balls in n�( ) is finite. This implies that M contains stable balls of arbitrarily large radius, a property
which contradicts that for r Rc> , B x r,M( ) cannot be stable as follows from (3.46). Therefore, M is compact.

We will divide the proof of (3.47) into two claims.

Claim 3.13. Diameter M I R2 1 c( ) ( )≤ + (i.e., the second inequality in (3.47) holds). □

Proof of Claim 3.13. Arguing by contradiction, suppose that there exist points p q M, ∈ at intrinsic distance
L d p q I R, 2 1M c( ) ( )≔ > + . Let L MΓ : 0,[ ] → be a geodesic arc parameterized by arc length, such that

pΓ 0( ) = and L qΓ( ) = . Choose R Rc> such that I R L2 1( )+ ≤ . Consider the following collection of I 1+

pairwise disjoint open intrinsic balls in M (Figure 3).

n B j R R j IΓ 2 1 , 1, , 1 .M� ( ) { ( (( ) ) ) ∣ }′ = − = … +

Since the index of M is at most I and the I 1+ balls in n� ( )′ are pairwise disjoint, we deduce that at least one
of these balls is stable. This contradicts that R Rc> and (3.46). This contradiction proves the claim. □

Claim 3.14. Let h h I r, : 0 0, 0,�( ) ( { }) ( ) ( )= ∪ × ∞ → ∞
∼ ∼

be the maximum of the right-hand sides of (3.13)
and (3.16). Then, the first and third inequalities in (3.47) hold for A I c h I I R, , 2 1 c2( ) ( ( ) )= +

∼
.

Proof of Claim 3.14. Observe that r h I r,( )↦
∼

is increasing. Take x M∈ . By the already proven inequalities

(3.13) and (3.16), we have B x r h I rArea , ,M( ( )) ( )≤
∼

for all r 0> . By applying this estimate to the choice

r D MDiameter( )= ≔ < ∞ (observe that M B x D,M( )= ) and using that h I r,( )
∼

is increasing in r, we obtain

M h I D h I I R A I cArea , , 2 1 , .c
Claim 3.3

2( ) ( ) ( ( ) ) ( )
( )

≤ ≤ + =
∼ ∼ (3.48)

and thus, the first inequality in (3.47) holds. As for the third one, it is clearly equivalent to proving that
C I g M A I c1 ,1 2( )( ( ) ) ( )+ ≤ . By applying (1.1), we have

C I g M M A I c1 Area , ,1
3.48

2( )( ( ) ) ( ) ( )
( )

+ ≤ ≤

and the proof of the claim is complete. □

Claims 3.13 and 3.14 prove (3.47), which finishes the proof of Proposition 3.12, and consequently, item 3
of Theorem 1.1 is also proved.

Remark 3.15. Since the function h h I r,( )=
∼ ∼

appearing in the proof of Claim 3.14 is increasing in r, and Rc is

decreasing in c, we deduce that A I c h I I R, , 2 1 c2( ) ( ( ) )= +
∼

is decreasing in c. This indicates that if we relax

the hypothesis H ρ c3 2 1
2+ ≥ in Proposition 3.12 by taking c 0→

+, then the estimates for the area, diameter,

and genus of M in Proposition 3.12 get worse (in fact, A I c Rlim , limc c c0 2 0( ) = = ∞→ →
+ + ).

Figure 3: The pairwise disjoint collection of metric balls in n′� ( ). Observe that the boundary of the last ball in the chain,
B I R R∂ Γ 2 1 ,M( ( ) )+ , intersects the image of Γ at the points IRΓ 2( ), I RΓ 2 1( ( ) )+ , and that I R L2 1( )+ ≤ by construction.
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