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Abstract. This article explains a program to study complete and properly embedded minimal surfaces in
R3 developed jointly with W.H. Meeks and A. Ros in the last three decades. It follows closely the structure
of my invited ICM talk with the same title and supplies details and references to the original papers. After
recalling the role of the classical Riemann minimal examples in minimal surface theory, we explain our four-step
classi�cation of properly embedded minimal surfaces of genus zero and in�nite topology in R3: the periodic
case, the quasi-periodicity of the two-limit-ended case, the non-existence of one-limit-ended examples, and the
�nal classi�cation. We then review the lamination techniques (limit-leaf stability, local removable singularity,
and singular structure theorems), the dynamics theorem, bounds on topology and index for complete embedded
minimal surfaces of �nite total curvature, and the resolution of the embedded Calabi-Yau problem for �nite genus
and countably many ends. Throughout we emphasize the interaction between topology, �ux, curvature estimates,
and the structure of related moduli spaces. We end this article with a list of some open problems.

Mathematics Subject Classi�cation: Primary 53A10, Secondary 49Q05, 53C42

1 Introduction and background. Minimal surfaces stand at a remarkable crossroads of mathematics
and physics, where methods from analysis, geometry, and topology come together with physical models. From
their origins in the calculus of variations, these surfaces appear as critical points of the area functional. This
variational framework naturally leads to the study of the second derivative of area, which lead to stability and
index theory, as appear in the classical works of Fischer-Colbrie and Schoen [15, 16], and to bounds on topology
and index of properly embedded examples (Meeks, Pérez, Ros [44]).

The conformal viewpoint is equally fundamental. Thanks to the Weierstrass-Enneper representation, every
minimal surface can be expressed in terms of holomorphic data on a Riemann surface; these data consist of the
stereographic projection of the Gauss map (being a meromorphic function) and the third coordinate function
(which is harmonic). This intertwines minimal surface theory with complex analysis in a profound way: questions
of classi�cation often reduce to meromorphic data on compact Riemann surfaces with punctures, at least under
some �niteness assumptions on the total curvature. The uniqueness of the catenoid (López-Ros [30]) is a nice
illustration of the power of this complex analytic perspective as well as the recent works of Alarcón, Forstneri£ [1]
among others.

From the point of view of partial di�erential equations, minimal surfaces provide a natural model of a
quasilinear elliptic equation of second order in divergence form, called the minimal surface equation. Every
surface in space is locally the graph of a function u over a domain in its tangent plane; in the case the surface is
minimal, u satis�es

(1.1) div

(
∇u√

1 + |∇u|2

)
= 0.

PDE techniques such as the maximum principle, moving plane methods, and blow-up analysis have been decisive
in understanding minimal surfaces. Reciprocally, minimal surface techniques have given new insight for classical
and new problems of PDEs.

Geometric measure theory brings a broader variational perspective, where minimal surfaces are generalized by
stationary integral currents. This setting allows one to prove strong existence results for minimal surfaces via min-
max methods, a direction that has been specially fruitful in recent years with the works of Marques-Neves [32, 31],
Song [60] and others.
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Another important aspect of the study has been the analysis of regularity and singularities of objects that
generalize minimal surfaces, such as minimal laminations. The local removable singularity theorems [42] and the
structure results for singular laminations [44, 45] highlight how singularity theory interacts to control the �ne
structure of minimal objects.

Minimal surfaces are not only a purely mathematical pursuit. Their role as idealized soap �lms has long made
them models for physical interfaces. In general relativity, they arise as event horizons and have played a central
role in geometric approaches to the Positive Mass and Penrose conjectures.

Finally, minimal surface theory has been crucial in resolving some of the deepest conjectures in geometry and
topology. The proofs of the Positive Mass Conjecture (Schoen, Yau), the Penrose Conjecture (Bray), the Smith
Conjecture (Meeks, Yau) and the Poincaré-Thurston Geometrization Conjecture (Perelman) relied on minimal
surface techniques. In the last decades, uniqueness results such as those for the helicoid (Meeks, Rosenberg [50]),
the Lawson conjecture on embedded minimal tori in S3 (Brendle [3]), the Willmore conjecture (Marques,
Neves [31]), the Yau problem on existence of minimal surfaces in arbitrary Riemannian manifolds (Song [60])
and the classi�cation of minimal planar domains (Meeks, Pérez, Ros [41]) have reshaped our understanding of
the theory. In this sense, minimal surface theory not only uni�es diverse areas of mathematics but also provides
decisive tools for solving central problems across mathematics and physics.

Scope and �rst examples. We will study complete embedded minimal surfaces (CEMS) and, more
speci�cally, properly embedded minimal surfaces (PEMS) in R3, with emphasis on surfaces of �nite genus.
Canonical examples are the plane, catenoid and helicoid. More relevant for our interests are one-parameter
family {Rt}t>0 of minimal planar domains discovered by Riemann. Each Rt is foliated by circles and straight
lines in parallel planes (in fact, Riemann characterized the Rt by this property). In the last two decades of
the twentieth century, a wealth of new PEMS in R3 was discovered, starting with the Costa torus [14, 21], the
Ho�man-Meeks examples [22], and many others. This abundance of examples has stimulated interest in obtaining
structure results for moduli spaces and in classi�cation theorems for minimal surfaces under general assumptions,
such as prescribed topology or asymptotic behavior.

A joint research program. During the last 25 years, we developed a research program on embedded
minimal surfaces of �nite genus in R3 in collaboration with W.H. Meeks and A. Ros. This long-term project is
guided by several central motivations:

1. Understand the interplay between topology, geometry (curvature properties), and asymptotic behavior of
PEMS and CEMS.

2. Study the structure of moduli spaces of embedded minimal surfaces with prescribed topology and asymptotic
behavior.

3. Analyze possible limiting objects of a sequence of CEMS, which may include non-trivial minimal laminations,
possibly with singularities.

4. Classify the PEMS in R3 under certain topological assumptions.

Throughout the paper, we will outline some of the main achievements of this program. We will emphasize
structure theorems, dynamical and classi�cation results, obtained through a long series of joint works with Meeks
and Ros from 1998 to the present day. Along the way, we will also highlight side results and present some open
questions.

Previous results. As Sir Isaac Newton once wrote, �If we have seen further it is by standing on the
shoulders of giants�. In our program we relied on a wealth of prior knowledge on minimal surfaces, ranging from
the pioneering work of Courant, Douglas, Osserman, Shi�man and others, to more speci�c milestones, among
which we highlight the following ones for their usefulness in what follows.

Theorem 1.1 (Collin [12]). Every PEMS M ⊂ R3 of �nite topology with at least two ends has �nite total
curvature.

This result reduces the study of PEMS of �nite topology and at least two ends to compact algebraic data,
extending the foundational works of Huber [24] and Osserman [54].
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Theorem 1.2 (López, Ros [30]). The only CEMS in R3 with genus zero and �nite total curvature are the
plane and the catenoid.

Theorem 1.3 (Meeks, Rosenberg [50]). The only simply-connected PEMS in R3 are the plane and the
helicoid.

Another crucial tool in our program (and in the proof of Theorem 1.3 above) is the so-called Colding-Minicozzi
theory [6, 7, 8, 9, 11], which describes the structure of locally simply-connected sequences of embedded minimal
surfaces in R3 without uniform local curvature or area bounds, providing the crucial lamination theory framework.
We will give more details on this later.

Ends and limit ends. For a non-compact connected manifold M , we can de�ne an equivalence relation in
the set A of proper arcs α : [0,∞) → M , by setting α1 ∼ α2 if for every compact set C ⊂ M , α1, α2 lie eventually

1

in the same component of M \ C. Each equivalence class in E(M) = A/∼ is called an end of M . If e ∈ E(M),
α ∈ e is a representative proper arc and Ω ⊂ M is a proper subdomain with compact boundary such that α ⊂ Ω,
then we say that the domain Ω represents the end e. The space E(M) has a natural Hausdor� topology which
makes it into a compact, totally disconnected topological space; limit ends are accumulation points in E(M), and
non-limit ends are called simple ends.

One of the fundamental problems in classical minimal surface theory is to describe the behavior of a PEMS
M ⊂ R3 outside a large compact set in space. This problem is well-understood when M has �nite total curvature,
because in this case, each of the ends of M is asymptotic to an end of a plane or a catenoid. The asymptotic
geometry of one-ended PEMS is also understood: Meeks and Rosenberg [50] (see also Bernstein and Breiner [2]
and Meeks and Pérez [36]) proved that if a PEMS M ⊂ R3 has �nite topology and in�nite total curvature (thus M
has exactly one end by Theorem 1.1), then M is asymptotic to a helicoid. More complicated asymptotic behaviors
can be found in periodic PEMS, although this asymptotic behavior is completely understood when such a surface
M ⊂ R3 has �nite topology in the corresponding quotient ambient space (in this case, the quotient surface has
�nite total curvature by work of Meeks and Rosenberg [47, 48, 49, 51]; in this setting, only planar, helicoidal or
Scherk-type ends can occur. More about this in Section 3.

The study of the ends of a PEMS M ⊂ R3 with more than one end has been extensively developed. Callahan,
Ho�man and Meeks [4] showed that in one of the closed complements of M in R3, there exists a non-compact
PEMS Σ with compact boundary and �nite total curvature. By the discussion in the last paragraph, the ends
of Σ are of catenoidal or planar type, and the embeddedness of Σ forces its ends to have parallel normal vectors
at in�nity. In this setting, the limit tangent plane at in�nity of M is the plane in R3 passing through the origin,
whose normal vector equals (up to sign) the limiting normal vector at the ends of Σ. Such a plane does not
depend on the �nite total curvature minimal surface Σ ⊂ R3 \M . In the sequel, we will assume that the limit
tangent plane of every PEMS M ⊂ R3 with more than one end is the (x1, x2)-plane.

The following two results concerning E(M) are central for our later discussions.

Theorem 1.4 (Frohman, Meeks [17]). Let M ⊂ R3 be a PEMS with more than one end. Then, the ends of
M are naturally linearly ordered by their relative heights over the (x1, x2)-plane.

Theorem 1.5 (Collin, Kusner, Meeks, Rosenberg [13]). Let M ⊂ R3 be a PEMS with more than one end.
Then, every limit end of M is a top or bottom end with respect to the ordering given in Theorem 1.4. Hence, M
has at most two limit ends and the set of ends E(M) is countable.

2 Riemann's examples and their uniqueness program. Each Riemann minimal example Rt has genus
zero and two limit ends. Topologically, each Rt is a sphere from which we have removed a countable set that
accumulates at the north and south poles (these are the limit ends), and all remaining ends are asymptotic to
horizontal planes (hence, called planar ends). The family {Rt}t>0, after suitable normalizations, converges to a
catenoid (as t → 0) or a helicoid (as t → ∞). The �ux vector of each Rt, de�ned as

Flux(Rt) =

∫
Rt∩{x3=c}

η,

where η is the unit conormal vector to Rt along any horizontal section, does not depend on the height c of the
section and provides a convenient parameterization of the family: Flux(Rt) = (t, 0, 2π), t > 0.

1Eventually for proper arcs means outside a compact subset of the parameter domain [0,∞).
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Inside our program for PEMS of �nite genus, the Riemann minimal examples play a crucial role. Two natural
questions in this line are the following ones (both will be answered in the a�rmative along our program):

� Are the Rt the unique possible examples of planar domains which can be properly embedded into R3 besides
the plane, helicoid and catenoid?

� Can the Rt serve as models for the asymptotic behavior of every PEMS of �nite genus and in�nitely many
ends?

2.1 The uniqueness program of the Rt in four steps. We will divide the desired uniqueness of
{Rt}t>0 among properly embedded minimal domains of in�nite topology in R3 into four parts, each contained in
a publication in the period from 1998 to 2015. Along this period, side results were obtained that turned out to
be useful in our journey, but we will postpone them for later.

� Step 1 (singly periodic case [37]). Every properly embedded, singly periodic minimal planar domain
with genus zero is a Riemann minimal example.

� Step 2 (two limit ends are quasiperiodic [38]). Every PEMS in R3 with �nite genus and two limit
ends admits a divergent sequence of translations under which it subconverges to a PEMS of genus-zero,
two-limit-ends with the same �ux vector as the original surface.

� Step 3 (nonexistence of one-limit-end examples [39]). There are no PEMS in R3 with �nite genus
and exactly one limit end; hence the only possible con�guration for in�nitely many ends is exactly two limit
ends (top and bottom by Theorems 1.4 and 1.5).

� Step 4 (�nal classi�cation [41]). Every PEMS in R3 with genus zero and in�nite topology is a Riemann
minimal example.

2.2 Step 1: The singly periodic case. Let M ⊂ R3 be a PEMS with genus zero, invariant by a non-
trivial translation T . It can be proved that the simple ends of M are planar (horizontal), and that the quotient
surface M/⟨T ⟩ ⊂ R3/⟨T ⟩ has genus one. Consider the moduli space M of properly embedded, genus-one minimal
surfaces with 2r horizontal planar ends in quotients of R3 over cyclic groups generated by translations. Via
Weierstrass data, M carries a natural analytic structure (as an analytic subset) inside a complex 2r-dimensional
manifold.

Given a surface M ∈ M, every compact horizontal section M ∩ {x3 = t} is a Jordan curve with well-de�ned
�ux vector (independent of t) whose third component can be normalized to be 2π after a homothety:

Flux(M) = (Fh, 2π) =

∫
M∩{x3=t}

η ∈ C× R ≡ R3,

where η is the unit conormal vector of M along M ∩ {x3 = t}. Hence we can see Fh as a map Fh : M → R2. Key
properties of Fh are the following ones:

1. Fh does not take the value zero (by an application of the so-called López-Ros deformation, based on the
maximum principle and the Weierstrass representation).

2. Fh : M → R2 \ {0} is a proper map (via curvature estimates derived from blow-up analysis).

3. Fh : M → R2 \ {0} is an open map (based on openness of holomorphic maps f : U ⊂ Cn → Cn with
f−1(0) = {0}).

4. Description of the boundary ∂M of M as consisting only of vertical catenoids and helicoids (by an analysis
of divergent sequences in M).

With these properties at hand, every M ∈ M can be smoothly deformed within M (in fact, within M\{Rt}t>0 if
M /∈ {Rt}t>0) to a catenoidal limit M∞ ∈ ∂M; at this point, an Inverse Function Theorem argument shows that
there is only one way of approaching M∞, which is achieved by Riemann minimal examples. Then, the original
surface M is itself a Riemann minimal example.
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2.3 Step 2: Quasiperiodicity in the two-limit-end case. Let M ⊂ R3 be a PEMS of �nite genus with
two limit ends, and let KM be its Gaussian curvature function. Then, one can prove the following properties that
generalize those in the singly periodic case:

1. The middle ends of M are planar (horizontal). The �ux vector Flux(M) = (Fh, 2π) ∈ R2 × R along a
compact horizontal section is well-de�ned and Fh ̸= 0.

2. Global curvature estimates hold, depending only on the horizontal component of the �ux: |KM | ≤ C(|Fh|).
This is proved by blowing up sequences of PEMS Mn with the same �nite genus and two limit ends around
points of large curvature, which only yields vertical catenoidal and vertical helicoidal limiting models; then
rule out the �rst limit model by consideration of the normalization on the vertical component of Flux(Mn),
and prove that the second limit model leads to Fh(Mn) → ∞ as n → ∞.

3. Middle ends do not accumulate: there is a uniform tubular neighborhood of M whose radius depends only
on an upper bound for |Fh|.

With these ingredients, it can be deduced that for every divergent sequence {pn}n ⊂ M with |KM |(pn) bounded
away from zero, the sequence of translated surfaces M − pn subconverges to a genus-zero, two-limit-end PEMS
with the same �ux as M and genus zero (we call this the quasiperiodicity of M).

As an non-trivial application of this step, to be used later, we highlight:

Corollary 2.1. If M ⊂ R3 is a CEMS with �nite genus and locally bounded Gaussian curvature, then M
is proper.

2.4 Step 3: Nonexistence of one-limit-end PEMS. Assume by contradiction that a PEMS M ⊂ R3

has �nite genus and exactly one limit end. Normalize so that the limit tangent plane at in�nity for M is
horizontal, and that the limit end of M is the top end. The �rst step in our analysis consists of proving that
M as the appearance at in�nity of a Christmas tree: more precisely, every simple end of M is asymptotic to a
graphical annular end of a vertical catenoid with nonpositive logarithmic growth, ordered by the linear ordering
theorem by a1 ≤ a2 ≤ a3 ≤ . . . < 0.

The next step consists of a detailed analysis of the limits (after passing to a subsequence) of homothetic
shrinkings {λnM}n, where {λn}n ⊂ R+ is any sequence of numbers decaying to zero; one �rst shows that
{λnM}n is locally simply-connected in R3 \ {⃗0} (see De�nition 4.7 for this concept). This is a di�cult technical
part of the proof, where the Christmas tree picture, a rescaling of λnM by extrinsic topology (capturing non-
simply-connected components in extrinsic balls of radius 1) and some results of Colding-Minicozzi theory play
a crucial role. With this knowledge at hand, one proves that the Gaussian curvature of the sequence {λnM}n
is uniformly locally bounded in R3 \ {⃗0}, which leads to understand the possible subsequential limits of the
{λnM}n, which are minimal laminations of H(∗) = {x3 ≥ 0} \ {⃗0} ⊂ R3 containing ∂H(∗) as a leaf. Now, one
can proceed in two ways in order to �nd the desired contradiction: either construct an explicit sequence λn → 0
by taking λn = ∥pn∥−1 for a divergent sequence of points pn ∈ M with tangent plane TpnM vertical and then
apply Colding-Minicozzi theory to λnM to �nd a contradiction (this was the original argument in [39]), or else
observe that the uniformly locally bounded property for the Gaussian curvature of {λnM}n in R3 \ {⃗0} for every
sequence λn → 0 implies that the Gaussian curvature of M decays at least quadratically in terms of the extrinsic
distance function to the origin (in short, M has quadratic decay of curvature). This is impossible by the following
result.

Theorem 2.2 (Quadratic Curvature Decay Theorem, Meeks, Pérez, Ros [42]). Let M ⊂ R3 \ {⃗0} be an
embedded minimal surface with compact boundary (possibly empty), which is complete outside the origin 0⃗; i.e.
all divergent paths of �nite length on M limit to 0⃗. Then, M has quadratic decay of curvature if and only if its
closure in R3 has �nite total curvature.

2.5 Step 4: The classi�cation of properly embedded minimal planar domains. Let M ⊂ R3 be
a PEMS with genus zero and let E(M) be the set of its ends. If E(M) has just one element, then M is simply-
connected, hence it is a plane or a helicoid by Theorem 1.3. If the number of ends of M is 2 ≤ r < ∞, then M
has �nite total curvature by Theorem 1.1; in this case, Theorem 1.2 ensures that M is a catenoid. Hence, we
can assume that M has in�nitely many ends, in which case Step 3 above implies that M has two limit ends. By
Step 2, M is quasiperiodic and its simple ends are planar (and horizontal, after a rotation). Elementary Morse
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theory implies that every horizontal plane in R3 intersects M in either a simple closed curve or in a Jordan arc,
this last case occurring precisely when the height of the plane coincides with that of a simple end of M . Hence,
M can be conformally parameterized by the cylinder S1×R punctured in a discrete set of points (the simple ends
of M) whose third coordinates diverge to ±∞, and the third coordinate function of M is the natural projection
π2 : S1×R → R. Rephrasing this information, M admits a global Weierstrass description on the cylinder C/⟨2πi⟩
with data (g = g(z), dz) (g is the Gauss map of M , a meromorphic function with double zeros and double poles at
the simple ends of M , and dz is the height di�erential of M , i.e., its third coordinate function is x3 = ℜ(z)). The
�ux vector of M is of the form Flux(M) = (Fh, 0) = (a, 0, 2π) with a > 0. The quasiperiodicity of M implies that
its Gaussian curvature of M is bounded, and that g is quasiperiodic, in the sense that one can take subsequential
limits of every sequence of meromorphic functions of the form {g(z − zn)}n, being {zn}n ⊂ C/⟨2πi⟩ a divergent
sequence.

The key analytic tool for this step is the Shi�man function SM = Λ∂κ
∂y , which is the product of the conformal

factor Λ between the induced metric on M by the inner product in R3 and the �at metric |dz|2, with the derivative
∂κ
∂y of the curvature κ of any horizontal section with respect to y = ℑ(z) (which is a natural parameter for such

a section; y is not the arclength of the section). Thus, the condition of SM vanishing identically on M means
that M is foliated my planar curves of constant curvature, i.e., lines or circles, which in fact characterizes the
Riemann minimal examples as Riemann himself demonstrated. Instead of proving directly that SM = 0, we will
exploit a fundamental property proved by Shi�man [59]: SM is a Jacobi function on M , i.e., it lies in the kernel
of the Jacobi operator of M , which is the linear self-adjoint operator appearing in the second derivative of the
area functional. This implies that SM can be thought, at least in�nitesimally to �rst order, as the normal part
of a variation of M by minimal surfaces. We will see that, in fact, this is true at a much stronger level than the
in�nitesimal one.

Other outstanding properties of SM are the following ones:

� If SM is linear (meaning that SM = ⟨N, v⟩ for some v ∈ R3, where N : M → S2 is the unit normal vector of
M), then M is singly periodic, hence Step 1 applies and �nishes our classi�cation.

� SM can be complexi�ed by adding i times its Jacobi conjugate function2 SM + i S∗
M can be written in terms

of the Gauss map g of M as follows:

(2.1) SM + i S∗
M =

3

2

(
g′

g

)2

− g′′

g
− 1

1 + |g|2

(
g′

g

)2

.

This formula and the quasiperiodicity of g lead to the fact that SM + i S∗
M is globally bounded on M .

� Both SM , S∗
M lie in the kernel of the di�erential of the �ux map; in fact, they lie in the kernel of the

di�erential of the complex period map associated to any closed curve in C/⟨2πi⟩.

SM+i S∗
M can be thought locally as an in�nitesimal (at least to order one) deformation ofM and its conjugate

minimal surface by pairs of minimal surfaces and their conjugates, all with the same Gauss map g as M but varying
height di�erentials. An integration-by-parts trick allows to see this in�nitesimal deformation as having t 7→ gt
varying (here t is a complex parameter) and �xed height di�erential dz. In this language, SM + i S∗

M can be
identi�ed with the tangent vector ġS to the curve t 7→ gt. The expression of ġS in terms of g and its derivatives
can be explicitly computed from equation (2.1) and gives

(2.2) ġS =
i

2

(
g′′′ − 3

g′g′′

g
+

3

2

(g′)3

g2

)
.

Therefore, to integrate SM (not at the in�nitesimal level, but in the stronger sense of integrating a vector �eld
by an integral curve) one needs to �nd a holomorphic curve t 7→ gt of meromorphic functions on C/⟨2πi⟩ so that
g0 = g, for every t close to zero, (gt(z), dz) is the Weierstrass pair of a globally de�ned PEMS Mt ⊂ R3 with genus
zero and in�nitely many planar (horizontal) ends, such that the normal part of the derivative of Mt with respect
to t equals the Shi�man function SMt ofMt. Viewing (2.2) as an evolution equation (in complex time t), one could

2This is a similar notion to harmonic conjugate functions, that uses the fact the locally, every minimal immersion f : Σ → R3

admits a conjugate minimal immersion f∗ : Σ → R3 such that f + i f∗ : Σ → C3 is holomorphic.
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apply general techniques to �nd solutions gt = gt(z) de�ned locally around a point z0 ∈ (C/⟨2πi⟩)− g−1({0,∞})
with the initial condition g0 = g, but such solutions are not necessarily de�ned on the whole cylinder, they can
develop essential singularities, and even if they were meromorphic on C/⟨2πi⟩, it is not clear a priori that they
would have only double zeros and poles and other properties necessary to give rise to minimal surfaces Mt. All
these problems are solved by arguments related to the theory of the (meromorphic) Korteweg de Vries (KdV)
equation, as we will next explain.

After the change of variables x = g′/g, (2.2) leads to the following simpler evolution equation:

(2.3) ẋ =
i

2

(
x′′′ − 3

2
x2x′

)
,

that can be recognized as a modi�ed KdV equation. It is well-known that modi�ed KdV equations can be
transformed into more standard KdV equations in u like

(2.4) u̇ =
∂u

∂t
= −u′′′ − 6uu′,

through the so called Miura transformations, x 7→ u = ax′ + bx2 with a, b suitable constants, see for example [18,
page 273]. A composition of the change x = g′/g with an appropriate Miura tranformation x 7→ u transforms
(2.2) in terms of g into (2.4) in terms of u. Speci�cally, this composition is

(2.5) u = −3(g′)2

4g2
+

g′′

2g
.

The holomorphic integration of the Shi�man function SM mentioned above could be performed just in terms
of the theory of the modi�ed KdV equation (2.3), but we will instead use the more standard KdV theory on (2.4).

It is a well-known fact in KdV theory (see e.g. Gesztesy and Weikard [18] and also Segal and Wilson [58]) that
such a Cauchy problem for (2.4) can be solved globally producing a holomorphic curve t 7→ ut of meromorphic
functions u(z, t) = ut(z) on C/⟨2πi⟩ (with controlled Laurent expansions in the poles of ut) provided that the
initial condition u(z) is an algebro-geometric potential for the KdV equation. To understand this concept, one
must view (2.4) as the case n = 1 of a sequence of evolution equations in u called the KdV hierarchy,

(2.6)

{
∂u

∂tn
= −∂zPn+1(u)

}
n≥0

,

where Pn+1(u) is a di�erential operator given by a polynomial expression of u and its derivatives with respect to
z up to order 2n. These operators, which are closely related to Lax Pairs (see Section 2.3 in [18]) are de�ned by
the recurrence law {

∂zPn+1(u) = (∂zzz + 4u ∂z + 2u′)Pn(u),

P0(u) =
1
2 .

(2.7)

In particular, P1(u) = u and P2(u) = u′′ + 3u2 (plugging P2(u) in (2.6) one obtains the KdV equation). Hence,
for each n ∈ N∪{0} one must consider the right-hand-side of the n-th equation in (2.6) as a polynomial expression
of u = u(z) and its derivatives with respect to z up to order 2n+ 1. We will call this expression a �ow, denoted
by ∂u

∂tn
. A function u(z) is said to be an algebro-geometric potential of the KdV equation if there exists a �ow ∂u

∂tn
which is a linear combination of the lower order �ows in the KdV hierarchy.

With all these ingredients, one needs to check that for our original minimal surface M ⊂ R3, the function
u = u(z) de�ned by equation (2.5) in terms of the Gauss map g of M , is an algebro-geometric potential of the
KdV equation. This follows from two facts:

1. Each �ow ∂u
∂tn

in the KdV hierarchy produces a bounded, complex valued Jacobi function vn on C/⟨2πi⟩ in
a similar manner as ∂u

∂t1
produces SM + iS∗

M .

2. Since the Jacobi functions vn produced in item 1 are bounded on C/⟨2πi⟩, they can be considered to lie in
the kernel of a Schrödinger operator LM on C/⟨2πi⟩ with bounded potential; namely, LM is obtained after
compactifying the Jacobi operator of M across its planar ends (the property that the potential of LM is
bounded comes from the boundedness of the Gaussian curvature of M). Finally, the �nite dimensionality
of the kernel of LM was proved following arguments by Pacard and inspired in Lockhart and McOwen [29].
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Now that we have produced a curve t 7→ ut that integrates (2.4) for every t, the control mentioned above on the
Laurent expansions in poles of ut is enough to prove that the corresponding meromorphic function gt associated
to ut by (2.5) has the correct behavior in poles and zeros; this property together with the fact that both SM , S∗

M

preserve in�nitesimally the complex periods along any closed curve in C/⟨2πi⟩, su�ce to show that the Weierstrass
data (gt, dz) solves the period problem and de�nes Mt ∈ M with the desired properties.

Finally, the fact that SM lies in the kernel of the di�erential of the �ux map implies that every Mt in the
curve t 7→ Mt has the same �ux vector as M . Now, maximize (or minimize) the spacing between planar ends
inside the compact space of minimal surfaces with the same properties as M and the same �ux as M ; at such an
extremizer M0, the holomorphic integration produced above yields a one-parameter family of surfaces Mt, and
the harmonic dependence of the spacing with respect to t forces this spacing to be constant in t. This turns out to
imply that the Shi�man function SM0 of M0 is linear, and hence, M0 is the (unique) Riemann minimal example
Rt with the same �ux vector as M . It then follows that every minimal surface with the same �ux as M is an
extremizer, and so, it coincides with Rt. This applies to our original M and �nishes our sketch of proof.

3 Moduli spaces of periodic minimal surfaces: additional classi�cations. A PEMS M ⊂ R3 is
called singly, doubly or triply-periodic if M is invariant by an in�nite, free abelian group G of isometries of R3 of
rank 1, 2, 3 (respectively) that acts properly and discontinuously.

It is useful to study such an M as a minimal surface in the complete, �at three-manifold R3/G. Up to �nite
coverings and after composing with a rotation and homothety in R3, we can view M inside R2 × S1, R3/⟨Sθ⟩,
T2 × R or T3, where Sθ is the screw motion symmetry resulting from the composition of a rotation of angle θ
around the x3-axis with a translation by vector (0, 0, 1), and T2, T3 are �at tori obtained as quotients of R2, R3

by 2 or 3 linearly independent translations, respectively.
Although the Gauss map g of a minimal surface in R3/G is not necessarily well-de�ned (g does not descend

to the quotient for surfaces in R3/⟨Sθ⟩, θ ∈ (0, 2π)), we still dispose of a Weierstrass representation exchanging
the role of g by the well-de�ned meromorphic di�erential form dg/g. An important fact, due to Meeks and
Rosenberg, is that for PEMS in R3/G, G ̸= {identity}, the conditions of �nite total curvature and �nite topology
are equivalent.

Theorem 3.1 (Meeks, Rosenberg [47, 48, 49, 51]). A PEMS in a non-simply-connected, complete, �at
three-manifold has �nite topology if and only if it has �nite total curvature.

Also, it is important to mention that Meeks [33, 34] showed that if M is a PEMS in T2 × R or in R3/Sθ,
where the rotational part of Sθ is not of order two, then M has �nitely many ends. Hence, for these spaces, �nite
topology for a PEMS can replaced by �nite genus.

Besides the Riemann minimal examples Rt , t > 0, other classical examples of periodic minimal surfaces with
�nite topology quotients are:

1. The Scherk singly periodic surfaces, denoted by Mθ, θ ∈ (0, π/2], form a one-parameter family of PEMS of
genus-zero in R2 × S1, each one having four annular ends. Viewed in R3, each surface Mθ is invariant by
re�ection in the (x1, x3) and (x2, x3)-planes and in horizontal planes at integer heights. Mθ can be thought
of as a desingularization of two vertical planes forming an angle of θ. The special case Mθ=π/2 also contains
pairs of orthogonal lines at planes of half-integer heights, and has implicit equation sin z = sinhx sinh y.

2. The Scherk doubly periodic surfaces are the conjugate minimal surfaces M∗
θ of the Scherk singly-periodic

surfaces. They have genus zero in their corresponding quotient R3/G = T2 × R, and can be thought
of geometrically as the desingularization of two families of equally spaced vertical parallel half-planes in
opposite half-spaces, with the half-planes in the upper family making an angle of θ with the half-planes in
the lower family.

3. The Karcher saddle towers, which are singly periodic surfaces with genus-zero quotients in R2 × S1 and 2r
annular ends, r ≥ 3. They generalize the Scherk singly periodic surfaces for any even number of ends.

4. The KMR examples, that form a three-parameter, self-conjugate family of doubly periodic PEMS with
genus one in R3/G = T2 × R and four parallel ends. The �rst KMR surfaces were found by Karcher [27]
(he found three one-parameter subfamilies, and named them toroidal half-plane layers). Later, Meeks and
Rosenberg [47] found examples of the same type as Karcher's, although the di�erent nature of their approach
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made it unclear what the relationship was between their examples and those by Karcher. The name KMR
examples was given later in honor of these three mathematicians when the family was understood completely
in the classi�cation result given by Theorem 3.4 below.

Meeks and Rosenberg also studied the asymptotic behavior of complete, embedded minimal surfaces M with
�nite total curvature in R3/G. Under this condition, there are three possibilities for the ends of M :

1. All ends of M are simultaneously asymptotic to planes, as in the Riemann minimal examples.

2. All ends of M are asymptotic to ends of quotient helicoids (called helicoidal ends). Cases 1 and 2 only
happen when R3/G = R2 × S1 or R3/⟨Sθ⟩.

3. All ends of M are asymptotic to �at annuli. This case may occur in R3/G = R2 × S1 or R3/⟨Sθ⟩ (as in the
classical singly periodic Scherk minimal surfaces) and in T2 × R (as in the classical doubly periodic Scherk
minimal surfaces). For this reason, such ends are called Scherk-type ends. In the case R3/G = T2 × R,
Scherk-type ends are grouped into two families of mutually parallel ends: the top and the bottom ends.

The arguments for the uniqueness of {Rt}t>0 in Step 1 above have been adapted to other situations,
exchanging the classifying map Fh of this case to other appropriate maps. Next we will brie�y mention three
applications by di�erent authors to understand certain moduli spaces of singly and doubly periodic minimal
surfaces.

3.1 Singly periodic, genus zero, Scherk-type ends.

Theorem 3.2 (Pérez, Traizet [56]). Every PEMS in R2 × S1 with genus zero and 2r Scherk-type ends is
either a Scherk singly periodic surface or a Karcher saddle tower. The moduli space of such surfaces is naturally
identi�ed with the set of convex unit 2r-gons (with real dimension 2r − 3).

3.2 Doubly periodic, genus zero, Scherk-type ends.

Theorem 3.3 (Lazard-Holly, Meeks [28]). If the quotient surface of a doubly periodic PEMS in R3 has genus
zero in its quotient T2 × R, then the surface is one of the classical Scherk doubly periodic examples.

3.3 Doubly periodic, genus one, Scherk-type parallel ends. In 2005, Pérez, Rodríguez and
Traizet [55] gave a general construction that produces all possible complete, embedded minimal tori with parallel
ends in any T2×R, and proved that this moduli space is a three-dimensional real analytic manifold that contains
all the KMR examples known until then (by extension, every surface in this three-parameter family is called a
KMR example).

Theorem 3.4 ([55]). If the quotient surface of a doubly periodic PEMS in R3 has genus one and parallel
ends in T2 × R, then the surface is a KMR example.

4 Minimal laminations and local pictures. We have seen how understanding limits of a sequence
{Mn ⊂ R3}n of PEMS or CEMS can be useful to prove deep results. When the sequence has uniform local
area and curvature bounds, one can reduce the problem to taking limits of solutions of the minimal surface
equation (1.1): use the local curvature bound to express the surfaces as local graphs of uniform size, and the local
area bound to constrain locally the number of such graphs to a �xed �nite number, and then apply the classical
Arzelà-Ascoli theorem to get a limit solution of (1.1), which by analytic continuation can be extended to produce
a complete limit surface. In the sequel, we will focus on the case where we do not have at least one of these local
uniform estimates.

First suppose {Mn}n is a sequence of CEMS in R3 such that the sequence {KMn
}n of their Gaussian curvatures

is locally bounded. Meeks and Rosenberg adapted the arguments sketched in the last paragraph to prove that
the accumulation set of {Mn}n has the structure of a minimal lamination. It then arises the natural question of
describing the structure of minimal laminations of R3; in this line, an important result is the following one.

Theorem 4.1 (Meeks, Pérez, Ros [40]). Any limit leaf of a codimension-one minimal lamination of a
Riemannian manifold is stable3.

3A two-sided minimal surface M in a Riemannian three-manifold is called stable if the second variation of area is nonnegative for
each variation of M with compact support.

Copyright © 20XX by SIAM
Unauthorized reproduction of this article is prohibited



Let L be a minimal lamination of R3 containing a leaf L which is not properly embedded in R3. Then, L has
nonempty accumulation set. Through every accumulation point of L there passes a limit leaf of L′ of L, which is
stable by Theorem 4.1, and since L′ is complete, L′ is a plane. This implies that L is properly embedded in an
open set U of R3 which is either an open half space or an open slab. In fact, it can be proved that L∩U = {L}, and
that every non-proper leaf of L has in�nite topology and unbounded Gaussian curvature (Meeks, Rosenberg [50])
and even in�nite genus (Meeks, Pérez, Ros [38]). This describes the known structure of minimal laminations of
R3. The question of whether there exists a CEMS L ⊂ R3 of in�nite genus, unbounded but locally bounded
Gaussian curvature and which is properly embedded in a open slab or halfspace, still remains open.

To understand more about the case of Gaussian curvature not locally bounded, it is worth to comment on
two paradigmatic examples:

Example 4.2. 1. Consider the sequence of shrinkings 1
nC where C ⊂ R3 is the standard catenoid with

axis the x3-axis and neck the unit circle in the (x1, x2)-plane. {Mn := 1
nC}n converges with multiplicity

two outside the origin 0⃗ to the lamination L of R3 whose unique leaf is the (x1, x2)-plane. Observe that L
has no singularity at 0⃗, but the convergence of the Mn to L fails to hold at this point. Hence, S(L) := {⃗0}
is called the singular set of convergence of the Mn to L in this case.

2. Consider the sequence of shrinkings 1
nH where H ⊂ R3 is the standard helicoid with axis the x3-axis and

absolute Gaussian curvature 1 at 0⃗. {Mn := 1
nH}n converges away from the x3-axis to the foliation L

of R3 by horizontal planes. Again, L has no singularity at any point of the x3-axis, but the convergence
of the Mn to L fails at every such point. Thus, the singular set of convergence of the Mn to L is now
S(L) := {x1 = x2 = 0}.

Colding and Minicozzi were able to prove that the behavior of example 2 is mimicked by every sequence of
embedded minimal disks Mn which are properly embedded in Euclidean balls B(Rn) = {x ∈ R3 | ∥x∥ ≤ Rn}
whose radii diverge, provided that the Gaussian curvature KMn

of the Mn blows up inside some �xed compact
set of R3. More precisely:

Theorem 4.3 (Limit Lamination Theorem for Disks, Colding, Minicozzi [9]). Let Mn ⊂ B(Rn) be a
sequence of embedded minimal disks with ∂Mn ⊂ ∂B(Rn) and Rn → ∞. If sup |KMn∩B(1)| → ∞, then there exists
a subsequence of the Mn (denoted in the same way) and a Lipschitz curve S : R → R3 such that up to a rotation
of R3,

1. x3(S(t)) = t for all t ∈ R.

2. Each Mn consists of exactly two multi-valued graphs away from S(R) which spiral together.

3. For each α ∈ (0, 1), the surfaces Mn \ S(R) converge in the Cα-topology to the foliation L = {x3 = t}t∈R by
horizontal planes.

4. For any t ∈ R and r > 0, sup
Mn∩B(S(t),r)

|KMn
| → ∞ as n → ∞.

Remark 4.4. 1. The singular set S(R) in Theorem 4.3 was later proved to be a vertical line (Meeks [35]).

2. The hypothesis Rn → ∞ in Theorem 4.3 is necessary in order for the convergence to a �at lamination to
hold. Colding-Minicozzi [5] constructed a sequence of compact minimal disks Mn properly embedded in the
unit ball B(1), consisting of two multi-valued graphs joined by the intersection of the x3-axis with B(1). As
n increases, Mn spirals faster and faster to D := {x3 = 0}∩B(1) on opposite sides; the limit lamination L of
the Mn has three leaves, one is the �at disk D (⃗0 is a removable singularity for this leaf) and two non-proper
leaves Σ+ ⊂ {x3 > 0} ∩ B(1), Σ− ⊂ {x3 < 0} ∩ B(1), each of which accumulates to D \ {⃗0} on one of its
sides. In this case, L fails to have a lamination structure at 0⃗, and the surfaces Mn converge to L outside 0⃗.

The second item of the last remark motivates studying under what conditions a minimal lamination of a
punctured ball can be smoothly extended across the puncture. This question was completely solved in the
following result.

Theorem 4.5 (Meeks, Pérez, Ros [42]). A minimal lamination L of a punctured ball B(r) \ {⃗0} extends
across 0⃗ to a minimal lamination of B(r) if and only if there exists C > 0 such that |KL|R2 < C in some subball.
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Here, KL is the function that associates to each point p of L the Gaussian curvature of the unique leaf of L that
passes through p, and R(p) = ∥p∥.

In fact, Theorem 4.5 remains valid if we replace B(r)\{⃗0} by a punctured ball of a Riemannian three-manifold,
|KL| by the square of the function |AL| that associates to each point p of L the norm of the second fundamental
form of the unique leaf of L that passes through p, and R(p) by the ambient distance function to the center of
the ball.

Next we will comment on a generalization of Theorem 4.3 to a locally simply-connected sequence of non-
simply-connected planar domains, which is another one of the ingredients of the classi�cation of properly embedded
minimal planar domains. To understand this generalization, it is worth having in mind a third example of minimal
lamination obtained as a limit of a sequence of PEMS:

Example 4.6. Recall that we normalized the Riemann minimal examples Rt, t > 0, so that the �ux vector
Flux(Rt) equals (t, 0, 2π). Shrink each Rt by factor 4/t. When t → ∞, 4

tRt converges to the foliation of R3 by
horizontal planes, outside of the two vertical lines {(0,±1)} × R, along which the surface 4

tRt approximates two
oppositely handed, highly sheeted, scaled-down vertical helicoids.

Definition 4.7. Let {Mn}n be a sequence of embedded minimal surfaces (possibly with boundary) in an
open set U of R3. We say that {Mn}n is locally simply-connected in U if for any p ∈ U there exists a number
r(p) > 0 such that B(p, r(p)) ⊂ U and for n su�ciently large, Mn intersects B(p, r(p)) in compact disks whose
boundaries lie on ∂B(p, r(p)). If furthermore U = R3 and the positive number r(p) can be chosen independently
of p ∈ R3, we say that {Mn}n is uniformly locally simply-connected.

The sequence { 1
nC}n appearing in Example 4.2.1 is locally simply-connected in R3 \ {⃗0}, but fails to be locally

simply-connected around 0⃗. The sequence { 1
nH}n in Example 4.2.2 is uniformly locally simply-connected in R3.

Given any sequence tn ↗ ∞, the sequence of surfaces 4
tn
Rtn given by Example 4.6 is also uniformly locally

simply-connected.
With these basic examples and de�nition at hand, we state the following result by Colding and Minicozzi.

Theorem 4.8 (Limit Lamination Theorem for Planar Domains [11], [35]). Let Mn ⊂ B(Rn) be a locally
simply-connected sequence of embedded minimal planar domains with ∂Mn ⊂ ∂B(Rn), Rn → ∞, such that
Mn ∩ B(2) contains a component which is not a disk for any n. If sup |KMn∩B(1)| → ∞ , then there exists a
subsequence of the Mn (denoted in the same way) and two vertical lines S1, S2 (called columns), such that, after
a rotation,

(a) Mn converges away from S1 ∪ S2 to the foliation F of R3 by horizontal planes.

(b) Away from S1 ∪ S2, each Mn consists of exactly two multi-valued graphs spiraling together. Near S1 and S2,
the pair of multi-valued graphs form double spiral staircases with opposite handedness at S1 and S2.

4.1 Rescalings by curvature and topology, dynamics in the set of limits. We consider again a
sequence {Mn}n of CEMS in R3, such that the Gaussian curvature functions KMn

is not uniformly bounded.
How can we understand the possible blow-up limits of the Mn?

A �rst scale to blow-up the Mn is by their curvatures, as explained in the next statement.

Theorem 4.9 (Meeks, Pérez, Ros [42]). Suppose {Mn}n is a sequence of CEMS in R3 such that
lim supn→∞ ∥KMn

∥∞ = ∞. Then, there exists a sequence of points pn ∈ Mn, called blow-up points on the scale
of curvature, and positive numbers εn → 0 such that the following statements hold after passing to a subsequence:

1. For all n, the closure of the component Σ(pn, εn) of M∩B(pn, εn) that contains pn is compact, with boundary
∂Σ(pn, εn) ⊂ ∂B(pn, εn).

2. Let λn =
√
|KMn

|(pn) (here KMn
denotes the Gaussian curvature function of Mn). Then,

√
|KMn |
λn

≤ 1+ 1
n

on Σ(pn, εn), and limn→∞ εnλn = ∞.

3. The balls λnB(pn, εn) of radius λnεn converge uniformly to R3 (so that we identify pn with 0⃗ for all n), and
there exists a connected PEMS M∞ ⊂ R3 passing through 0⃗, such that |KM∞ | ≤ 1 on M∞ and |KM∞ |(⃗0) = 1,
and for any k ∈ N, the surfaces λnΣ(pn, εn) converge Ck on compact subsets of R3 to M∞ with multiplicity
one as n → ∞.
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An important application of Theorem 4.9 is the characterization of CEMS in R3 with �nite total curvature
given in Theorem 2.2, that was used in Step 3 of our classi�cation of properly embedded minimal planar domains
in R3.

Let M ⊂ R3 be a non�at PEMS, and let D(M) be the set of non-�at PEMS Σ ⊂ R3 which are obtained as
C2-limits (with multiplicity one since Σ is not stable as it is not �at) of a divergent sequence of dilations4 of M .
If M has �nite total curvature then not only |KM |R2 is bounded of M by Theorem 2.2, but in fact |KM |R4 is
bounded, and thus, D(M) = ∅. In the sequel, we will assume M is in�nite total curvature and study dynamics
in the set D(M), which will allow us to discover a surprising amount of inner quasi-periodicity in every such M
(see Remark 4.12 below). To do so, we need some de�nitions.

Definition 4.10. Let M ⊂ R3 be a PEMS with in�nite total curvature. A subset ∆ ⊂ D(M) is called
D-invariant if D(Σ) ⊂ ∆, for every Σ ∈ ∆. A D-invariant subset ∆ ⊂ D(M) is called a minimal D-invariant set
if it contains no proper non-empty D-invariant subsets. A surface Σ ∈ D(M) is called a minimal element if Σ is
an element of a minimal D-invariant subset of D(M).

Theorem 4.11 (Dynamics Theorem, Meeks, Pérez, Ros [42]). Let M ⊂ R3 be a PEMS with in�nite total
curvature, and consider D(M) endowed with the topology of Ck-convergence on compact sets of R3 for all k.
Then:

1. D1(M) := {Σ ∈ D(M) | 0⃗ ∈ Σ, |KΣ| ≤ 1, |KΣ|(⃗0) = 1} is a non-empty compact subspace of D(M).

2. For any Σ ∈ D(M), D(Σ) is a closed D-invariant set of D(M). If ∆ ⊂ D(M) is a D-invariant set, then
its closure ∆ in D(M) is also D-invariant.

3. Any non-empty D-invariant subset of D(M) contains minimal elements.

4. Let ∆ ⊂ D(M) be a D-invariant subset. If no Σ ∈ ∆ has �nite total curvature, then ∆1 = {Σ ∈ ∆ | 0⃗ ∈
Σ, |KΣ| ≤ 1, |KΣ|(⃗0) = 1} contains a minimal element Σ′ with Σ′ ∈ D(Σ′). In particular, there exists a
sequence of homotheties {hn}n and a divergent sequence {pn}n ⊂ R3 such that {hn(Σ− pn)}n converges in
the C2-topology on compact subsets of R3 with multiplicity one to Σ.

Remark 4.12. In the hypotheses of Theorem 4.11, D1(M) itself is D-invariant. Therefore, item 3 of
Theorem 4.11 implies that D1(M) contains minimal elements. In fact, by item 4 we can �nd such a minimal
element Σ1 ∈ D1(M) which either has �nite total curvature, or it is a limit of itself under a sequence of
homotheties with divergent translational part. In particular, each compact subdomain of Σ1 can be approximated
with arbitrarily high precision (under dilation) by elements of an in�nite collection of pairwise disjoint compact
subdomains of Σ1 (and of M).

For a complete Riemannian manifold M , InjM : M → (0,∞) will denote the injectivity radius function, and
InjM is in�mum (the injectivity radius of M). The arguments in the paragraph before Theorem 4.1 imply that if
M is a CEMS in R3 with locally bounded Gaussian curvature, then the closure of M in R3 has the structure of
a minimal lamination of R3. In fact, the the role of the Gaussian curvature function KM can be replaced by the
inverse of the square of the injectivity radius function InjM , as explained in the following statement.

Theorem 4.13 (Minimal lamination closure theorem, Meeks and Rosenberg [51]). Let M be a CEMS of
positive injectivity radius in a Riemannian three-manifold N (not necessarily complete). Then, the closure M of
M in N has the structure of a C1,α-minimal lamination L, some of whose leaves are the connected components
of M .

Let us come back to our sequence {Mn}n of CEMS in R3, and assume that InjMn
→ 0 as n → ∞. There is a

second blow-up scale for theMn which gives interesting limits, based on the same replacement ofKMn by 1/Inj2Mn
.

The blow-up speed of this new rescaling (i.e., the speed of the scaling factors going to in�nity) is in general slower
than the one by curvature, and has the important feature than it rules out obtaining simply-connected limits (in
particular, limit objects are never planes or helicoids), although the price we must pay is that the limit object
might not be a minimal surface, but merely a minimal lamination, possibly with singularities.

4This means that the translational part of the dilations diverges.
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Theorem 4.14 (Meeks, Pérez, Ros [43]). Suppose {Mn}n is a sequence of CEMS in R3 such that InjMn
→ 0.

Then, there exists a sequence of points pn ∈ Mn and positive numbers εn → 0 such that the following statements
hold.

1. For all n, the closure of the component Σn = Σ(pn, εn) of M ∩ B(pn, εn) that contains pn is compact, with
boundary ∂Σ(pn, εn) ⊂ ∂B(pn, εn).

2. Let λn = 1/IΣn
(pn), where IΣn

:= (InjMn
)|Σn

. Then, λnIΣn
≥ 1− 1

n+1 on Σn, and limn→∞ εnλn = ∞.

3. The balls λnB(pn, εn) of radius λnεn converge uniformly to R3 (so that we identify pn with 0⃗ for all n).

Furthermore, one of the following three possibilities occurs.

4. The surfaces λnΣn have uniformly bounded Gaussian curvature on compact subsets of R3. In this case, there
exists a connected PEMS M∞ ⊂ R3 with 0⃗ ∈ M∞, IM∞ ≥ 1 and IM∞ (⃗0) = 1, such that for any k ∈ N, the
surfaces λnΣn converge Ck on compact subsets of R3 to M∞ with multiplicity one as n → ∞.

5. The surfaces λnΣn converge5 to a limiting minimal parking garage structure on R3, which is the object
consisting of a foliation L by planes with columns being a locally �nite set S(L) of lines orthogonal to
the planes in L (this is the singular set of convergence of λnMn to L), and:

5.1 S(L) contains a line L1 which passes through the origin and another line L2 at distance 1 from L1.

5.2 All of the lines in S(L) have distance at least 1 from each other.

5.3 If the genus of λnΣn is bounded, then S(L) consists of just two components L1, L2 with associated
limiting double multi-valued graphs being oppositely handed (as in Theorem 4.8).

6. There exists a non-empty, closed set S ⊂ R3 and a minimal lamination L of R3 \ S such that the surfaces
(λnΣn)\S converge to L outside some singular set of convergence S(L) ⊂ R3 \S. Furthermore, there exists
R0 > 0 such that the genus of (λnΣn) ∩ B(R0)}n is not bounded.

Remark 4.15. Observe that item 6 of Theorem 4.14 cannot occur if there is a bound on the genus of the
surfaces Mn.

5 The Ho�man-Meeks conjecture. By Collin's Theorem (Theorem 1.1), a PEMS M ⊂ R3 of �nite
topology with 2 ≤ r < ∞ ends has �nite total curvature. Nowadays we dispose of a great abundance of such
PEMS, and all known examples support the following conjecture.

Conjecture 5.1. (Finite Topology Conjecture, Ho�man, Meeks) A connected surface M of �nite topology,
genus g and r > 2 ends can be properly minimally embedded in R3 if and only if r ≤ g + 2.

By Collin's theorem, solving the Ho�man-Meeks conjecture relies on �nding topological obstructions for CEMS
of �nite total curvature in R3. If the genus g of a CEMS M ⊂ R3 with �nite total curvature is zero, then
Theorem 1.2 ensures that M is a catenoid or a plane, and thus r ≤ 2. This means that one can reduce the validity
of Conjecture 5.1 to the case of genus g ≥ 1. Even in the simplest case g = 1, the conjecture remains open. The
best partial answer up to date to the Ho�man-Meeks conjecture is the following result.

Theorem 5.2. For every g ∈ N∪{0}, there exists r(g) ∈ N such that if M ⊂ R3 is a CEMS of �nite topology
with genus g, then the number of ends of M is at most r(g).

Sketch of proof. The failure of the theorem would produce a sequence of CEMS {Mn ⊂ R3}n of �xed �nite
genus g and a strictly increasing number of ends, each of which is properly embedded in R3 since it has �nite
total curvature. Normalize Mn by a translation composed with a homothety so that each renormalized surface
(denoted by M1,n) intersects B(1) in some non-simply-connected component, and that every open ball of radius 1
intersects Mn in simply-connected components.

Next analyze the possible subsequential limits of the M1,n: Theorem 4.14 implies that these limits are either
non-simply-connected PEMS with genus at most g and possibly in�nitely many ends, or parking garage structures

5This convergence must be understood similarly as those in Theorems 4.3 and 4.8, outside the singular set of convergence S(L) of
λnMn to L.
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on R3 with exactly two columns (by item 5.3; observe that item 6 is excluded by Remark 4.15). Limits of the
M1,n being surfaces with in�nitely many ends can be ruled out by previous results for PEMS with with �nite
genus and two limit ends and by the non-existence of PEMS with �nite genus and one limit end. Parking garage
structure limits are also discarded by a modi�cation of the argument that eliminates the two-limit-ended limits.
This gives a subsequential limit M1,∞ of the M1,n which is a non-simply-connected minimal surface, either having
�nite total curvature or being a helicoid with positive genus at most g.

The next step consists of replacing compact pieces of the M1,n close to the limit M1,∞ by a �nite number

of topological disks, obtaining a new surface M̃1,n with strictly simpler topology than M1,n and which is not
minimal in the replaced part. A careful study of the replaced parts during the sequence allows one to iterate the
process of rescaling the M̃1,n in a similar manner that we rescaled the M1,n in the �rst paragraph and take a

subsequential limit M2,∞ of the M̃1,n which is again a non-simply-connected minimal surface, either having �nite
total curvature or being a helicoid with positive genus at most g.

Since the genus of all the Mn is at most g, the above iterative process must �nish in a �nite number of stages.
This means that we arrive to a stage in the process of producing limits from which all subsequent limits have genus
zero, and so they are catenoids. From this point in the proof, one works with the original surfaces Mn, �nding a
large integer n such that Mn contains a non-compact planar domain Ωn ⊂ Mn whose boundary consists of two
convex planar curves Γ1(n),Γ2(n) in parallel planes, such that each Γi(n) separates Mn and has �ux orthogonal
to the plane that contains Γi(n). In this setting, the López-Ros deformation mentioned in Section 2.2 applies to
Ωn giving the desired contradiction. This �nishes the sketch of the proof of Theorem 5.2.

There is a nice interpretation of the genus bound in Theorem 5.2 in terms of the Jacobi (or stability) index. For
a compact, orientable minimal surface M with boundary in R3, this index is the number of negative eigenvalues
of the Jacobi operator Lu = ∆u − 2Ku, acting on smooth functions u that vanish at the boundary of M .
When M is complete (and hence, non-compact) one can de�ne the index by taking limits on the indices of a
compact exhaustion of M , because the index of compact subdomains increases with respect to inclusion. Fischer-
Colbrie [15] proved that a complete, orientable minimal surface M with compact (possibly empty) boundary in
R3 has �nite index of stability if and only if it has �nite total curvature, and Tysk [61] showed that under the
same hypotheses for M , the index of M is less than a universal constant times the degree of its Gauss map N .
Finally, the so-called Jorge�Meeks formula [25] calculates the degree of the Gauss map of a CEMS in R3 with
�nite total curvature in term of its genus g and number of ends r: deg(N) = g + r − 1. Putting all together,
Theorem 5.2 implies an upper bound for the index of a CEMS in R3 of �nite total curvature solely as a function
of its genus.

6 Properness versus completeness. The Calabi-Yau problem, in one of its formulations, asks under
what conditions a complete, minimal immersion of a surface in R3 is proper (the converse always holds, regardless
of the minimality of the surface). There are many complete, immersed non-proper minimal surfaces in R3 (Jorge
and Xavier [26], Rosenberg and Toubiana [57], Nadirashvili [53], and later developments). Embeddedness creates
a dichotomy in results concerning the Calabi-Yau problem: There are some additional assumptions under which
a CEMS in R3 must be proper: e.g., Meeks, Pérez and Ros [38] proved properness of every CEMS with �nite
genus and locally bounded Gaussian curvature (Corollary 2.1); Colding and Minicozzi [10] obtained the same
conclusion of a CEMS of �nite topology, whithout the local boundedness assumption on its Gaussian curvature;
Meeks and Rosenberg [51] generalized the result by Colding and Minicozzi imposing the weaker hypothesis of
positive injectivity radius (this generalizaion is a consequence of Theorem 4.13). It is expected that every CEMS
of �nite genus is proper; the validity of this conjecture would close the embedded Calabi-Yau problem for �nite
genus. The best result so far in this line is the following:

Theorem 6.1 (Meeks, Pérez and Ros [46]). Let M ⊂ R3 be a CEMS of �nite genus. If the set E(M) of M
is countable, then M is proper.

Remark 6.2. By Theorem 1.5, every PEMS has countably many ends.

Sketch of proof of Theorem 6.1. If E(M) is �nite, then M has �nite topology hence it is proper by Colding
and Minicozzi [10]. So assume the cardinal |E(M)| = ∞. Let E0(M) be the set of simple ends of M , hence
E(M)\E0(M) ̸= ∅ is the set of limit ends. A Baire category argument shows that the set E1(M) of isolated points
in E(M) \ E0(M) is dense (elements in E1(M) are called simple limit ends). The proof then reduces to check the
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following two steps: (1) If 1 ≤ |E1(M)| ≤ 2 then M is proper6, and (2) M cannot have three simple limit ends.
Item (1) follows from the so-called Christmas tree picture for every simple limit end e: one can �nd a proper

representative E of e with genus zero and compact boundary ∂E, satisfying the following features after a rotation
and homothety: (A) all simple ends in E have �nite total curvature and non-positive logarithmic growth; (B)
the unique limit end in E is its top end; (C) ∂E bounds a convex disk D ⊂ {x3 = 0} with Int(D) ∩ E = ∅. We
will only comment that properness of E comes from proving that the injectivity radius function of E is bounded
away from zero outside an intrinsic δ-neighborhood of ∂E and from the aforementioned result by Meeks and
Rosenberg [51].

Regarding item (2), if |E1(M)| ≥ 3 then we can �nd e1 ̸= e2 ∈ E1(M) with disjoint proper representatives
E1, E2 as in (1). E1, E1 can be used as barriers to produce an area-minimizing surface Σ between them with
compact boundary. Then, Σ has �nite total curvature by Fischer-Colbrie [15] and one can prove that the top end
C of Σ has positive logarithmic growth. This positivity implies that no simple ends of E1, E2 can then lie above
C, forcing them to have �nitely many ends, a contradiction.

7 Open problems. We �nish this paper with some open questions related to the above program.

� Characterize �nite topology for a CEMS M ⊂ R3 by the linear growth of its injectivity radius function:
InjM∩B(r) ≥ C r for some C > 0 (in analogy with the quadratic curvature decay characterization of �nite
total curvature, see Theorem 2.2).

� Prove an a�ne upper bound on the number of ends in the Ho�man-Meeks conjecture: the number r of ends
of a CEMS in R3 with �nite total curvature should be bounded from above by an a�ne function of g.

� It is known that every one-ended PEMS in R3 with �nite genus is asymptotic to a helicoid (hence called
a genus g-heliocoid), but very little is known about them. Existence results for genus one were given by
Ho�man, Karcher and Wei [19, 20], and later for any genus by Ho�man, Traizet and Wei [23], and it is
expected that the examples are unique for each genus g ≥ 1. Even local uniqueness for these examples is
open.

� The well-known monotonicity formula implies that for a connected, properly immersed minimal surface
f : M → R3 and every point p ∈ R3, the function

R ∈ (0,∞) 7→ A(R) = Area[f−1(B(p,R))]

satis�es that A(R)R−2 is non-decreasing. In particular, limR→∞ A(R)R−2 ≥ π with equality if and only if
M is a plane. Are the Scherk singly periodic minimal surfaces the only connected PEMS in R3 with area
growth ratio π < A(R)/R2 ≤ 2π? This was proved in the a�rmative by Meeks and Wolf [52] when M has
in�nite symmetry group.

� Does a non-trivial minimal lamination of R3 exist? Recall that if such an L exists, then L contains a non-�at
leaf L which is proper in an open slab or halfspace (and its limit set consists of the boundary planes), it has
in�nite genus and unbounded Gaussian curvature.

� Is there a CEMS M ⊂ R3 which is not proper? If yes, under what conditions is a CEMS proper?

� In connection to the last two items, one could more ambitiously ask about a possible program to understand
CEMS of in�nite genus, which is an almost unexplored research topic.
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