Teaching Innovations in Higher Education

My interest in teaching and its innovations arises as a consequence of the crisis in the teaching of college-level science and engineering. The number of graduates in science and engineering is decreasing in most developed countries.

The problem lies at the university level. There is a high number of high school students interested in science and technology, but their numbers shrink when they enter university. One brief account of the problem can be found at:

Why Science Majors Change Their Minds (It’s Just So Darn Hard). New York Times, 2011.

There is no general agreement on the causes of the dwindling number of students in science and engineering. My belief is that one of the causes is that too much time is devoted to the learning of scientific facts wihtouth paying attention to the process that produced that knowledge.

There is little that deserves the name of knowledge in being able to recite that the earth revolves around the sun. That knowledge carries intellectual value if we know about the evidence and the arguments that support this belief, if we know about the science behind.

Hasok Chang (Adapted)

Another cause is that college-level courses of science and engineering do no take into account the diversity of students attending them. Usually education in science is thought as a training for scientific research but only a reduced number of students will take the research path. One good description of this fact can be found at They’re Not Dumb, They’re Different: Stalking the Second Tier. pp. 19-32 by Sheila Tobias.

What can we do to fix this problem?

As we don’t know the causes there is no silver bullet. My personal approach consists in periodically devoting some time  to get training on the subject. It’s my belief that the best course that is widely available is

Teaching College-Level Science and Engineering by Dr. Sanjoy Mahajan.

I also spend some time in the development of innovations in teaching. I focus in real world applications of teaching metodologies that have been shown to be effective. I believe that university teachers should focus on real world innovations, leaving basic level pedagogical reseach to specialists.

Some examples of teaching Innovations implemented during the last few years.

Automatic assessment tools in introductory programming courses.

Our goal is to study the use of an automatic assessment tool –CodeRunner– in introductory programming courses. These tools assess exercises automatically and provide feedbak to students. Several studies have shown that these tools enhance students’ engagement and learning.

If you are interested in installing this tool in the cloud you can use this guide (in spanish).

Using Arduino to enhacen students learning: teaching introductory programming to science and engineering students.

This study has two aims: to design and implement several introductory programming learning modules applying the physical computing paradigm and to evaluate these modules when taught to science students and engineering. We selected the Arduino board as the hardware platform for the electronic component. This webpage describes briefly the project.

Physical Computing: Using Arduino to teach introductoy programming.
The use of information technology in interdisciplinary activities for biology students.

The aim of this project is to create a set of interdicisplinary activities using new computer tools. These activities will be aimed to first year biology students and will involve mathematics, physics, biology, statistics and computer science contents.