
This manuscript has been accepted for publication in Computers & Education. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that
during the production process errors may be discovered which could affect the content, and all disclaimers that
apply to the journal apply to this manuscript.

Closing the gender gap in an introductory
programming course

Miguel Angel Rubioa,*, Rocio Romero-Zaliza, Carolina Mañosob and Angel P. de
Madridb
aDepartamento de Ciencias de la Computación e IA, ETSIIT, University of Granada., Spain
bDepartamento de Sistemas de Comunicación y Control, ETSI Informática, UNED., Spain
*Corresponding author: e-mail: marubio@ugr.es (M. Rubio) Tel: +34958240466

Highlights

• We analyze gender differences in a university introductory programming course.
• Male and female students have different perceptions and learning outcomes.
• We have developed several learning modules based on physical computing

principles.
• Using these modules the differences in perception and learning outcomes

disappear.

Abstract

Although there is a growing interest in learning to program, the number of women
involved in programming remains surprisingly low. We don’t understand completely
the causes but it has become clear that men and women have different perceptions of
programming. The pedagogy of introductory programming courses should take these
differences into account. In this study we analyze gender differences in an introductory
programming course at the university level. Our results indicate that male and female
students have different perceptions and learning outcomes: male students find
programming easier, have a higher intention to program in the future and show higher
learning outcomes than female students. To reduce these differences we have designed
and implemented several learning modules using the principles of physical computing.
The physical computing approach aims to take computational concepts out of the screen
and into the real world so that students can interact with them. We have applied these
modules in a MATLAB introductory programming course in a biology degree. When
using these modules both male and female students showed similar results in
perceptions and learning outcomes. The use of physical computing principles in
combination with the traditional methodology reduced –actually closed– this gender
gap.

mailto:marubio@ugr.es

1 Introduction
In the last years there has been a growing interest in learning and teaching to program
(Wortham, 2012). Initiatives like The Hour of Code (“The Hour of Code,” n.d.) or
Codecademy (“Codecademy: Learn to code,” n.d.) have taught programming to
thousands of students. Computer science topics have been introduced in the primary-
school curriculum in the UK (Brown, Sentance, Crick, & Humphreys, 2014) and New
Zealand (Bell, Andreae, & Robins, 2014). New methodological approaches have been
developed to help students in these courses. Successful examples are Scratch (Resnick
et al., 2009), App Inventor(Wolber, Abelson, Spertus, & Looney, 2011), and Light-Bot
(“Light-Bot,” n.d.). These learning resources have been shown to improve students
outcomes (Goadrich, 2014; Gouws, Bradshaw, & Wentworth, 2013; Guzdial, Ericson,
Mcklin, & Engelman, 2014).

There remains one dark spot: the number of women involved in computer science is
surprisingly low. In the United States only 0.4 percent of girls entering college intended
to major in computer science in 2013 and they made up 14 percent of all computer
science graduates, down from 37% in the mid-80s (Alvarado, Dodds, & Libeskind-
Hadas, 2012; Patitsas, Craig, & Easterbrook, 2014; Tiku, 2014). Other studies show
similarly disproportionate ratios of participation between male and female students in
computer science programs (Stoilescu & Egodawatte, 2010). This problem is global: a
study conducted on the use of computers and the Internet among fifteen-year olds
showed that boys report using computers more often than girls in the vast majority of
the 40 countries under investigation (Drabowicz, 2014).

Although we don’t understand completely the causes of the differences in participation
it has become clear that men and women have different perceptions of programming.
Werner, Hanks, & McDowell (2004) analyzed a survey of over 400,000 entering
freshman across the US. They found that the gender gap in computer use was almost
non-existent but there was a very big confidence gender gap in computer skills. Several
authors (Alvarado, Lee, & Gillespie, 2014; Carter & Jenkins, 1999) have found that
female students are much less confident in their programming abilities than male
students.

If we want to involve more women in computing, the pedagogy of introductory
programming courses needs to change. This is a complex problem and there are no
magic bullets but new approaches might help. In 2005 Harvey Mudd College started a
three pronged approach: a breadth-first CS1 course with separate tracks according to
previous experience, computing research experiences for first-year women and female
community building activities. They observed a marked increase of women majoring in
computer science (Alvarado et al., 2012). Google has launched a $50 million initiative
to teach programming to young girls (“Made with Code,” 2014). This initiative includes
coding projects, female community building activities and video profiles of women that
use programming to solve all kind of problems. In Europe, the European ACM
Committee on Women in Computing (ACM-WE) has launched several initiatives to
facilitate women participation in computing (Hanson, Ayfer, & Bachmayer, 2014).

One approach that might be effective is contextualized computing. Contextualized
computing education is defined as the use of a consistent application or domain area,
which effectively covers the core areas of a computer science course (Guzdial, 2010).
Examples of contexts for introductory computer science include Media Computation
(Guzdial, 2003), traditional manipulatives (“Computer Science Unplugged,” n.d.), and
robotics (Cuéllar & Pegalajar, 2014).

Students find contextualized approaches to programming very attractive. Instead of
writing an abstract program, students can learn about basic programs by programming a
robot to exit a maze, animating a story, or creating light symphonies. Rich, Perry, &
Guzdial (2004) explored the possibilities of using context teaching to specifically
address female students and obtained good results.

One contextualized approach that has attracted increased attention is the physical
computing approach. This approach takes the computational concepts “out of the screen”
and into the real world so that student can interact with them (Richard, 2010). Several
studies have analyzed the feasibility of using physical computing principles in the
teaching of computer programming, see for example Ruthmann, Heines, Greher, Laidler,
& Saulters (2010).

Male and female students might react differently to physical computing activities.
McGill (2012) studied the use of robots in an introductory programming course and
found that female students were slightly more intimidated than males by the robots. She
also found that female students believed more strongly that using the robots helped them
to learn and that it was a pleasure to work with robots.

One alternative approach, used in this study, is to use electronic boards to develop small
and simple systems capable of display interesting behaviors (Grasel, Vonnegut, &
Dodds, 2010). This approach presents several advantages: the systems are simpler and
easier to understand, they are more reliable, show more reproducible behaviors and the
overall cost is lower (Hill & Ciccarelli, 2013).

Our aim in this study is to answer the following research questions: is there a gender
gap in the traditional introductory programming course? And, if the answer is
affirmative, can we use physical computing principles to reduce it? To answer these
research questions the following research hypotheses are examined first:

• H1: Using traditional teaching methods there is no gender difference in the
perception on programming.

• H2: Using traditional teaching methods there is no difference between male and
female failure rates.

• H3: Using physical computing modules there is no gender difference in the
perception on programming.

• H4: Using physical computing modules there is no difference between male and
female failure rates.

With this goal in mind we have developed several learning modules based on the
physical computing approach. We have used them in an introductory programming
course and analyzed the perceptions and learning outcomes of male and female
students. As a control we performed the same analysis in another introductory
programming course taught with traditional methods.

There have been several studies about gender differences in introductory programming
(Murphy et al., 2006; Stoilescu & Egodawatte, 2010) but –to our knowledge– only one
study compared the effect of the intervention with a similar group used as control
(Sabitzer & Pasterk, 2014).

2 Methods

2.1 Materials
In this study we have developed several learning modules for an introductory
programming course at the university level. These modules can be used to teach C/C++,
Python or MATLAB covering both compiled languages and interpreted ones. Different
course approaches and teaching methodologies might benefit from their use.

One of the first design decisions we had to make was whether to use an electronic board
or a robotic platform. Both present several advantages and disadvantages. We decided to
work with an electronic board because robotic platforms are more complex and,
therefore, their behavior is less reproducible in an educational laboratory (Cuéllar &
Pegalajar, 2014). Alvarez & Larranaga (2013) found that factors related to surface
friction, battery load or light conditions affected significantly the behavior of the robot
and hindered students’ work. We heeded McGill’s warning that “potential technical
problems should be seriously considered since they can easily negate any potential
positive motivational effect” (McGill, 2012).

We have selected the Arduino microcontroller board (Banzi, 2009) as the development
platform. Arduino is an open hardware board that is becoming increasingly common
within the teaching community (Grasel et al., 2010; Mellodge & Russell, 2013). One
important advantage for our project is that Arduino is a very easy to use board: its first
users were artists and designers. Also, thanks to its open-source nature, a wide variety
of developers have selected it as a development platform for all kinds of computational
systems (Hill & Ciccarelli, 2013).

We designed specific modules for lecture demonstrations and for laboratory sessions
(Fig. 1). The contents of the lecture demonstrations and the laboratory sessions are
directly related. It is our experience that lecture demonstrations create a desire to learn
more about the inner workings of the system shown. We can take advantage of this
interest if students find similar activities during the laboratory sessions.

Fig. 1. Electronic circuit created for the laboratory sessions: design (left) and implementation (right). The
design shows a photocell (left), a temperature sensor (center) and several LEDs (right).

Lecture demonstrations are designed to enhance the traditional teaching methodology,
not to replace it. Lecturers will explain a computational concept using the traditional
methodology and afterwards will reinforce the explanation doing a physical computing
demonstration.

The lecture modules show different physical examples of computational concepts.
Lecture demonstrations use different perceptive elements –light, sound and movement–
to reach a broader audience. It’s been shown that the use of diverse perceptive paths
enhances the student understanding (Ainsworth, 1999). A brief description of selected
demonstrations follows:

• We use musical melodies to teach arrays. Following previous studies (Misra,
Blank, & Kumar, 2009) we associate different arrays to different melodies. Using
this approach, we can explore concepts as arrays concatenation or the difference
between the position and the value of an array element.

• Conditional structures are illustrated using a photocell and LEDs. We write during
the lecture a small program that will turn on a variable number of LEDs taking as
input the ambient light.

• Loop concepts are reinforced using an ultrasonic sensor and a servo motor. During
the lecture we implement a program that will continuously read from the proximity
sensor. When the value drops below a certain threshold the servo motor and the
associated LEDs are activated.

The laboratory sessions allow students to have additional hands-on time with the
physical computing system shown in lectures. Several studies show that these activities
can greatly improve students’ learning (Kay, 2011; Wu, Hsu, Lee, Wang, & Sun, 2014).

After completing the design process we piloted the first version of the learning modules
in an introductory programming course. Preliminary results of our experiences were
positive and showed that students had a good experience. Students completed a

questionnaire and we used their answers to improve the learning material before
conducting the study.

2.2 Student demographic
In our study the sample contained 76 university students: 47 women and 29 men. We
selected only students that were in their first year, had no previous programming
experience and were 18 years old.

By restricting our analysis to freshmen without previous programming knowledge we
expect to obtain a clearer picture of the impact of the learning modules on our target
population. In a study of students’ attitudes towards programming Gomes, Santos, &
Mendes (2012) found that freshmen and repeaters differed on personal perceptions and
learning approaches.

2.3 Study design
One of the goals of our study was to assess whether men and women have different
perceptions and learning outcomes when they learn to program. Another goal was to
analyze if the physical computing modules we have designed were effective in reducing
these differences.

To this end we used two sections of an introductory programming course in a Biology
degree. Students in this course learn basic computing skills and devote ten weeks to learn
to program using MATLAB. The course comprises two weekly lectures of one hour and
a two hours lab session. Students from different sections had different lectures and lab
sessions. Students were assigned into one of the two groups either by the university
administrative staff or by online registration based on student schedule availability only.

The learning modules were used in one section –the experimental group– and the other
section was designated as the control group. In the experimental group the number of
students included in the study was 38: 21 women and 17 men. In the control group there
were 38 students: 26 women and 12 men. The gender ratios were close to the Biology
degree average. In this degree around 60% of students are female.

In the control group the instructor used traditional methods: PowerPoint slides and
multimedia material were used to introduce theoretical concepts. Students would also
discuss some generic examples using peer instruction techniques (Crouch & Mazur,
2001). In lab sessions students would work individually. In the experimental group the
instructor used the physical computing modules in the lectures. Lecture demonstrations
were conducted following Crouch’s suggestions to increase student’s engagement
(Crouch, Fagen, Callan, & Mazur, 2004). In lab sessions students worked in pairs only
when completing the physical computing modules.

The same instructor taught both sections back-to-back. He used lesson plans and a course
diary to guarantee both courses comparability. The time devoted by the experimental
group to work on the learning modules was used by the control group to work on
additional examples and exercises.

2.4 Measurements
We used two different measurements to compare the control and experimental group:
students’ perceptions and learning outcomes. Several studies have established the
importance of students’ perceptions in their future performances in the STEM disciplines
(Valentine, DuBois, & Cooper, 2004).

2.4.1 Students perceptions
There are several instruments capable of measuring students’ attitudes towards
introductory programming. Each instrument is aimed to a different group of students
and aims to measure a different construct. We will describe some of the instruments
available and justify our choice.

The Computing Attitudes Survey (CAS) is a newly designed instrument developed by
Tew, Dorn, & Schneider (2012). It focuses in the differences in perceptions between
novices and experts programmers. The preliminary results obtained by the authors are
quite encouraging. We decided not to use this survey in our study because we are
teaching to non-majors and we do not expect them to become experts. Additionally, the
survey has not finished the validation process and it is not publicly available (Dorn &
Tew, 2013).

Another option is the survey developed by Hoegh & Moskal (2009). This survey
focuses on high level perceptions about computer science and has been validated with
non-major students. In our study we decided not to use it because we were interested
only in attitudes specific towards programming.

We chose the TAM model (Davis, 1993) to evaluate students’ perception on
programming. The TAM model is a powerful tool commonly used to predict the
acceptance, adoption and real use of new technologies in production environments. In
our case we were interested in assessing whether students had the intention to program
in the future.

Pejcinovic, Holtzman, Chrzanowska-Jeske, & Wong (2013) have shown that a
significant percentage of students that learn to program in their first university year do
not use this knowledge during their studies. Using the TAM model we can estimate the
future use of the technology –computer programming in our case– from the user
perceptions.

In the TAM model (Fig. 2) the main constructs are the perception of usefulness, the
perception of ease of use and the behavioral intention to use. These are defined by Davis
(1993) as:

1. Perceived usefulness: the degree to which an individual believes that using a
particular system would enhance his or her job performance.

2. Perceived ease of use: the degree to which an individual believes that using a
particular system would be free of physical and mental effort.

3. Behavioral intention to use: the degree to which an individual has formulated
plans to use a certain system in the future.

Fig. 2. Original TAM model proposed by Davis (1993).

The TAM model has been used to estimate the future use of a wide variety of new
innovations in information technology. Several studies have applied this model in
educational environments (Liu, Chen, Sun, Wible, & Kuo, 2010; Padilla-Meléndez,
Garrido-Moreno, & Aguila-Obra, 2008; Selim, 2003). The TAM model has received
extensive empirical support (Venkatesh, Morris, Davis, & Davis, 2003) and has been
validated in meta-analyses that involved dozens of studies (King & He, 2006; Turner,
Kitchenham, Brereton, Charters, & Budgen, 2010).

We designed a questionnaire based on the TAM model to measure students’ perceptions.
A translation of the survey –the survey was conducted in Spanish- can be found in
appendix A. The surveys used a Likert scale to collect students’ opinion using several
items for each TAM construct. Students could grade each item with a score ranging from
1 to 5. Students’ perceptions were calculated using the mean score of the students’
answers to each construct in the TAM model. The surveys were anonymous to reduce
any bias in students’ answers that may occur if they believed their answers would affect
their course grade.

We conducted three surveys model during the course. One survey was conducted at the
beginning of the course, the second at the midterm exam and the third at the final exam.
The second and third surveys were conducted just after the exams to increase student
participation. The third survey of the experimental group contained several additional
questions regarding the use of the Arduino board. These questions are listed in appendix
B.

External
Variables

Perceived
Usefulness

Perceived
Ease of Use

Behavioural
Intention to Use Actual Use

2.4.2 Learning outcomes
There is a notable lack of easily accessible and validated assessment tools in introductory
programming (Tew, 2010). A small set of tools are in development or have been recently
developed but they were not applicable to our study.

For example, Tew & Guzdial (2011) have validated a standardized exam –the FCS1–
that can be used with different programming languages and methodologies. We could
not use the FCS1 exam in our study because the validation results indicate that it is not
applicable to courses using contextualized computing methods.

Another promising line of work is the development of concept inventories for
introductory programming (Goldman et al., 2010). These concept inventories have been
very successful in other scientific fields but no concept inventory aimed to introductory
programming has been completed. It remains an open research question if it is possible
to identify a set of misconceptions common to the different programming languages used
in teaching.

In our study we measured students’ learning achievements by means of an exam testing
their programming skills. Our exam was designed to assess students’ writing and reading
skills. It contained three questions that asked to trace and explain code –we summarize
them as reading questions– and two questions that asked to write code. Both reading and
writing questions contained a combination of conditional and loops. Several studies
(Lopez, Whalley, Robbins, & Lister, 2008; Venables, Tan, & Lister, 2009) have found
that there is a strong correlation among tracing, explaining and writing code. Students
were given two hours to complete the exam.

The assessment was performed following the guidelines proposed by the BRACElet
group (Lister et al., 2010). These guidelines are based on a widely used cognitive
taxonomy, the SOLO taxonomy (Lister, Simon, Thompson, Whalley, & Prasad, 2006).
This taxonomy describes the type of responses a student may give to a task and it has
been validated as a reliable tool to assess introductory programming exams (Clear et al.,
2008).

2.5 Analysis performed

2.5.1 Students perceptions
We analyzed students’ perceptions in the control and experimental groups. In both
groups we compared the men and women perceptions at the end of the course. The
analysis was performed applying Student’s t-test to the different constructs present in
the TAM model.

There has been some controversy on the use of parametric methods like the t-test with
data obtained from Likert scales. It is generally accepted that parametric statistical tests
can be applied if we first sum all the Likert items associated to a construct. The sums
obtained can be treated as interval data measuring a latent variable (Carifio & Perla,
2008).

2.5.2 Learning outcomes
We used the final exam to measure students’ learning outcomes. We analyzed the exam
results using clustering techniques: a class of computational methods that has been
proved effective in analyzing complex datasets (Brooks, Erickson, Greer, & Gutwin,
2014). Several studies have successfully applied these techniques in the introductory
programming context (Bumbacher, Sandes, Deutsch, & Blikstein, 2013; Worsley &
Blikstein, 2013).

We clustered the data using the K-Medoids technique, a variation of K-Means
clustering where centroids are represented by the median. We have used the Partitioning
Around Medoids (PAM) algorithm (Reynolds, Richards, Iglesia, & Rayward-Smith,
2006) implemented in R (R Core Team, 2014)

The first step in this method is to choose the correct number of clusters. The quality of
the results depends heavily on this choice: choosing a very large number of clusters
reduces the model representative power; choosing a very small number of clusters
reduces the accuracy of any given cluster. In our study we have used a subset of the
classification scheme proposed by Lahtinen (2007):

• Competent students: Students that have learned all aspects of programming
fairly.

• Theoretical students: Students that have learnt to read program code but have
difficulties in producing programs on their own.

• Practical students: This group of students had succeeded in writing code and has
average reading code skills.

• Unprepared students: Students that lacked reading or writing skills.

We defined the failure rate in a group as the ratio of students in that group that belong to
the unprepared students cluster to the total number of students in the group. We used
Fisher's exact test to compare the failures rate because the sample size was too small for
Student’s t-test.

In our study we created one data set using the experimental and control measurements
and did the clustering on this data set. We were interested in comparing the number of
students that belong to each of the clusters and we needed the clusters to be comparable.

3 Results

3.1 Student perception
In our study we conducted three surveys to measure students’ perception on
programming. We measured the values of the TAM model parameters –perceived
usefulness, perceived ease of programming and intention to program– in the control and
the experimental group. One survey was conducted at the beginning of the course, the
second at the midterm exam and the third at the final exam. We conducted the second
and third surveys just after the exams to increase student participation.

We analyzed the survey reliability calculating Cronbach’s alpha on the proposed
questions within each construct. We obtained in all cases values over 0.7, a quality
threshold widely accepted (Santos, 1999).

In Table 1 we show students’ initial attitudes toward programming. The experimental
and control groups showed small differences but none was statistically significant. From
these results we can conclude that both groups were equivalent at the beginning of the
course.

To establish the presence of a gender gap in the control group we need to compare males
and females’ attitudes at the end of the course. These results are collected in Table 2.
Male students find programming significantly easier than female students: their
perceived ease of programming score is 30% higher, a difference that is statistically
significant at the 10% level (p-value = 0.054). They also show a higher intention to
program in the future: their future intention to program score is 21% higher (p-value =
0.054). In the case of perceived usefulness the difference is also noticeable (11%), but
not statistically significant.

The experimental group shows a different pattern: gender differences in attitudes are
much smaller and none is statistically significant. The differences in the perceived ease
and usefulness of programming are in both cases less than 1%. The differences in the
future intention to program are close to 7%.

We also analyzed the change in students’ attitudes during the course. Fig. 3 shows the
evolution of the perceived ease of programming. There is a marked difference between
male and female attitudes in the control group but these differences disappear in the
experimental group. If we focus our attention on the evolution of perceived usefulness
(Fig. 4) we don’t see any significant change during the course. There is a small
systematic difference between males and females in the control group but it is not
statistically significant. Fig. 5 shows the evolution of student’s intention to program.
Males in the control group show a small increase and females show a small decrease, but
neither of them is statistically significant. In the experimental group the scores for men
and women are similar.

We also measured the perceptions of the students regarding the Arduino board. The
results obtained can be found in Table 3. Both male and female students show similar
perceptions with no significant differences.

Fig. 3. Changes in perceived ease of programming during the course. At the beginning of the course
males and females had similar scores. At the end of the course in the control group they had significant
different but in the experimental group males and females showed similar scores.

Fig. 4. Changes in perceived usefulness during the course. We can observe a systematic difference
between males and females in the control group but it is not statistically significant. The experimental
group shows no differences.

Fig. 5. Changes in students’ intention to program during the course. At the beginning of the course males
and females had similar scores. At the end of the course the control group showed a significant difference
but the experimental group did not.

Table 1 Student perceptions at the beginning of the programming course

Control Experimental

 mean scores |∆| p-value mean scores |∆| p-value
 male female male female
Perceived ease of
programming

2.47 2.29 0.18 0.409 2.22 2.07 0.15 0.625

Perceived usefulness 4.23 3.96 0.27 0.264 4.00 3.83 0.17 0.435
Intention to program 3.60 3.46 0.14 0.663 3.14 3.32 0.18 0.535

Table 2 Student perceptions at the end of the programming course

Control Experimental

 mean scores |∆| p-value mean scores |∆| p-value
 male female male female
Perceived ease of
programming

3.31 2.48 0.83 0.054ª 2.87 2.85 0.02 0.961

Perceived
usefulness

4.29 3.84 0.45 0.111 3.73 3.70 0.03 0.914

Intention to
program

3.89 3.18 0.71 0.054ª 3.31 3.10 0.21 0.557

 a result significant at the 10% level

Table 3 Student perceptions of the Arduino board

Experimental

 mean scores |∆| p-value
 male female
Perceived ease of use of the
Arduino board

4.10 4.17 0.07 0.823

Perceived usefulness of the
Arduino board

3.79 3.48 0.31 0.271

Perceived enjoyment when using
the Arduino board

4.69 4.61 0.08 0.779

3.2 Learning outcomes
We assessed students learning outcomes analyzing the final exam results. Both control
and experimental group completed the same exam at the same time. This eased the
analysis as we were able to compare the results directly.

The experimental and control group had equivalent knowledge levels at the beginning of
the course as we restricted our analysis to students without any previous programming
knowledge.

Cluster analysis of the reading code and writing code scores classified students in four
different groups: competent students, theoretical students, practical students and
unprepared students. The location of these clusters along the writing-reading dimensions
is shown in Fig. 6.

Each group presents different characteristics: unprepared students have low scores for
writing and reading code, theoretical students have high reading scores but low writing
scores, practical students have average reading and writing scores and competent
students have high reading and writing scores.

All the clusters had similar sizes. The most numerous group was the competent students
with 23 members. There were similar numbers of practical and unprepared students, 19
for the former and 18 for the later. The smaller group was the one comprised by
theoretical students with only 16 members.

One noticeable fact is that the presence of an empty area at the top left corner of the
graph. That indicates an absence of students with high writing scores and low reading
scores. This makes sense as it would be hard for a student to be able to write meaningful
code without the ability to read it.

In our study we define the failure rate as the ratio of students classified as unprepared to
the total number of students in each group. Failure rate results are shown in Fig. 7. If we
compare failure rates for men and women in the control and experimental group we
observe an interesting difference. In the control group females’ failure rate, 35%, double
males’ failure rate, 17%. This difference disappears in the experimental group, there both
rates are similar: 19% for women versus 18% for men. The difference in the control
group is very suggestive but is not statistically significant, probably due to the small
sample size.

Fig. 6. Clustering of the final exam results. Ellipses represent the normal probability contours at the 90%
confidence level. A small amount of jitter has been added to reduce the points overlap.

Fig. 7. Programming failure rates. The failure rate for females shows a marked reduction in the
experimental group. Males’ failure rate shows no such variation.

4 Discussion
We have found differences in perception between men and women in the traditional
introductory programming course. The perceived ease of programming and the intention
to program in the future were significantly higher in males than in females. These
differences in perception allow us to reject the hypothesis H1. We also found suggestive
differences in learning outcomes but these differences were not statistically significant
so we cannot reject the hypothesis H2.

To reduce these differences we have designed and implemented several modules to teach
introductory programming using the physical computing approach. These modules
comprise lecture demonstrations and laboratory sessions. They aim to enhance the
traditional teaching methodology without replacing it.

We evaluated the modules in an introductory programming course and found that they
were highly effective. Using these modules the differences in perception between males
and females became negligible and no difference in learning outcomes was found. These
results strongly support hypotheses H3 and H4 and we cannot reject them.

Using these results we can now answer our original research questions. Our first
question was: is there a gender gap in the traditional introductory programming course?
Our study indicates that the answer is affirmative; there is a significant difference in
students’ perceptions. The difference in learning outcomes is also noticeable although it
is no statistically significant. Our second question was: can we use physical computing
principles to reduce it? Our results indicate that using the physical computing approach
reduces this gender gap.

To our knowledge there are no other studies assessing gender differences that use
contextualized computing techniques and compare them with a control group. McGill
(2012) studied how female and male university students differed in their perceptions of
robots but she didn’t use a control group.

In our study we also found that all the students able to write code knew how to read
code. Similar results have been obtained by other authors (Lister, Fidge, & Teague,
2009; Venables et al., 2009). This suggests that acquiring a certain level of tracing and
reading code skills is a first step in the path of learning to write code (Tan & Venables,
2010).

Students found the learning modules useful and highly enjoyable. They perceived them
as a valuable learning experience. Students stated that the effort necessary to complete
the lab sessions was reasonable and that more laboratory sessions should be devoted to
this kind of experiences.

One mechanism that could explain the effectiveness of these modules is that women
might find easier to overcome their lack of confidence thanks to the learning modules
novelty. McGill (2012) found some interesting differences in the perceptions of boys and

girls related to the use of robots and suggested that using robots may give a sense of
empowerment to women making them more confident.

Other authors have successfully improved women attitudes using other educational
approaches. Sabitzer & Pasterk (2014) developed an introductory programming course
based on educational neuroscience principles and found that the gender based differences
present at the traditional course disappeared in the new one. Freeman et al. (2014)
developed a music-based introductory programming course for high school students and
found that it was particularly effective in increasing female motivations to persist on
computing problems.

Media computing (Guzdial, 2013) has also been studied extensively with good results.
Porter & Simon (2013) found that women in media computing courses expressed greater
enjoyment and interest that those attended a traditional introductory programming
course.

The differences in perceptions between males and females that we have reported are
coherent with other authors’ findings. Beyer, Rynes, Perrault, Hay, & Haller (2003)
found that women’s computer confidence was lower than men’s, even when controlling
for quantitative ability. Other studies have found gender differences in perceived
usefulness, perceived ease of use and intention to use in e-learning environments (Ong
& Lai, 2006; Padilla-Meléndez, del Aguila-Obra, & Garrido-Moreno, 2013).

We have found some differences in learning between males and females in the
traditional programming course. Other authors have obtained similar results: Sabitzer &
Pasterk (2014) obtained significant differences between male and female learning
outcomes in a traditional introductory programming course. But these results should be
taken with care: in our study they were not statistically significant and it is possible that
they are a statistical outlier. Without further studies the differences found in learning
outcomes should be taken as suggestive but inconclusive.

Our study has several limitations. The sample size is small as the study comprised only
one course and two sections. We think that the results are relevant because the
differences were statistically significant. Additionally there is no reason to believe that
the results will be different in other scientific and engineering disciplines.

Another possible source of bias is that students in the control group worked always
individually and the ones in the experimental group worked by pairs in certain moments.
Although the advantages of pair programming have been well stablished (Williams,
Wiebe, Yang, Ferzli, & Miller, 2002), in our case students only worked in pairs in a
small number of lab sessions.

The fact that the teacher in charge of both courses was involved in the developing of the
learning modules is another limitation. These modules might be less effective when used
by teachers that are less familiar with the material. We think this would be unlikely as no
specific knowledge –apart from a basic understanding of electric circuits– is needed.

This study needs to be confirmed using data from other degrees in different institutions.
We plan to extend this study to see if we obtain similar results. Additionally we will use
clustering techniques to analyze the learning outcomes of other courses using the
traditional approach to see if the differences we have found are reproducible.

5 Conclusions
We have found differences between male and female students in a traditional
introductory programming course. In the traditional setting we found that men and
women differ significantly in their perception of the ease of programming and their
intention to program in the future. We also found suggestive differences in learning
outcomes, although these differences were not statistically significant.

To reduce these differences we have designed and implemented several learning
modules using the principles of physical computing. These modules can be easily
integrated within the existing methodologies and they can be used in lectures and
laboratory sessions.

We evaluated the modules in an introductory programming course and found that they
were highly effective. Using these modules the differences in perception and learning
outcomes between men and women disappeared.

Learning to program is incredibly useful and will become even more important in the
future. As a consequence there is a growing interest in learning to program and
programming courses are being introduced in schools. The fact that computer literacy
rates for women are dropping is a worrisome fact. Active strategies should be conducted
to try to reverse this trend.

In our study the use of the physical computing approach has reduced –actually closed–
this gender gap. If these results can be reproduced in other institutions it could increase
the number of women interested in computing.

Acknowledgment

This work is supported by the University of Granada (PID/13-54). The authors wish to
thank the Biology degree students at UGR that participated in the experience. The
authors would also like to thank reviewer number 1 for his/her insightful comments.

Appendix A

Questionnaire items used in this study by construct.

Do you agree or disagree with the following statements?

Perceived Usefulness of programming
 Totally Neither agree Totally
 agree nor disagree disagree

Knowing how to program will help me find a job. 5 4 3 2 1

It will be easier to finish my studies if I know how to
program.

 5 4 3 2 1

During my studies it will be useful for me to know
how to program.

 5 4 3 2 1

Knowing how to program will be useful for my
work.

 5 4 3 2 1

Perceived ease of programming

It is easy for me to learn how to program. 5 4 3 2 1

It is easy to make the program do what I want to. 5 4 3 2 1

Programing is easy. 5 4 3 2 1

Intention to program

I intend to use programing during my studies. 5 4 3 2 1

In my job I will code programs that will be helpful
for me.

 5 4 3 2 1

Programing will form part of my profession. 5 4 3 2 1

Appendix B

Questionnaire items related to the use of the Arduino board by construct.

Do you agree or disagree with the following statements?

Perceived Usefulness of the Arduino board Totally Neither agree Totally
 agree nor disagree disagree

When programing with Arduino I learn more. 5 4 3 2 1

With Arduino I learn better how to program. 5 4 3 2 1

Arduino helps me understand programming. 5 4 3 2 1

I learn more quickly when working with Arduino. 5 4 3 2 1

Perceived Ease of Use of the Arduino board

It is easy to work with Arduino. 5 4 3 2 1

Arduino is easy to use. 5 4 3 2 1

It is easy to program the Arduino board. 5 4 3 2 1

Perceived enjoyment when using the Arduino
board

Lab sessions with Arduino are more entertaining. 5 4 3 2 1

I have fun working with Arduino. 5 4 3 2 1

Working with Arduino is more enjoyable. 5 4 3 2 1

References

Ainsworth, S. (1999). The functions of multiple representations . Computers &
Education, 33(2–3), 131 – 152. doi:http://dx.doi.org/10.1016/S0360-1315(99)00029-
9

Alvarado, C., Dodds, Z. & Libeskind-Hadas, R. (2012). Increasing Women’s
Participation in Computing at Harvey Mudd College. ACM Inroads, 3(4), 55–64.
doi:10.1145/2381083.2381100

Alvarado, C., Lee, C. B. & Gillespie, G. (2014). New CS1 Pedagogies and Curriculum,
the Same Success Factors? In Proceedings of the 45th ACM Technical Symposium on
Computer Science Education (pp. 379–384). New York, NY, USA: ACM.
doi:10.1145/2538862.2538897

Alvarez, A. & Larranaga, M. (2013). Using LEGO mindstorms to engage students on
algorithm design. In Frontiers in Education Conference, 2013 IEEE (pp. 1346–
1351). doi:10.1109/FIE.2013.6685052

Banzi, M. (2009). Getting Started with arduino. Make.

Bell, T., Andreae, P. & Robins, A. (2014). A Case Study of the Introduction of
Computer Science in NZ Schools. Trans. Comput. Educ., 14(2), 10:1–10:31.
doi:10.1145/2602485

Beyer, S., Rynes, K., Perrault, J., Hay, K. & Haller, S. (2003). Gender differences in
computer science students. In ACM SIGCSE Bulletin (Vol. 35, pp. 49–53).

Brooks, C., Erickson, G., Greer, J. & Gutwin, C. (2014). Modelling and quantifying the
behaviours of students in lecture capture environments . Computers & Education ,
75(0), 282 – 292. doi:http://dx.doi.org/10.1016/j.compedu.2014.03.002

Brown, N. C. C., Sentance, S., Crick, T. & Humphreys, S. (2014). Restart: The
Resurgence of Computer Science in UK Schools. Trans. Comput. Educ., 14(2), 9:1–
9:22. doi:10.1145/2602484

Bumbacher, E., Sandes, A., Deutsch, A. & Blikstein, P. (2013). Student Coding Styles
as Predictors of Help-Seeking Behavior. In Lane, H.Chad and Yacef, Kalina and
Mostow, Jack and Pavlik, Philip (Ed.), Artificial Intelligence in Education (Vol.
7926, pp. 856–859). Springer Berlin Heidelberg. doi:10.1007/978-3-642-39112-
5_130

Carifio, J. & Perla, R. (2008). Resolving the 50-year debate around using and misusing
Likert scales. Medical Education, 42(12), 1150–1152. doi:10.1111/j.1365-

2923.2008.03172.x

Carter, J. & Jenkins, T. (1999). Gender and Programming: What’s Going on? SIGCSE
Bull., 31(3), 1–4. doi:10.1145/384267.305824

Clear, T., Whalley, J., Lister, R., Carbone, A., Hu, M., Sheard, J., … Thompson, E.
(2008). Reliably classifying novice programmer exam response using the SOLO
taxonomy. In 21st Annual NACCQ Conference, NACCQ, Auckland, New Zealand
(pp. 23–30).

Codecademy: Learn to code. (n.d.). Retrieved 7–25, 2014, from
http://www.codecademy.com/

Computer Science Unplugged. (n.d.). Retrieved April 2014, from
http://csunplugged.org

Crouch, C., Fagen, A. P., Callan, J. P. & Mazur, E. (2004). Classroom demonstrations:
Learning tools or entertainment? American Journal of Physics, 72(6), 835–838.
doi:http://dx.doi.org/10.1119/1.1707018

Crouch, C. & Mazur, E. (2001). Peer Instruction: Ten years of experience and results.
American Journal of Physics, 69(9), 970–977.
doi:http://dx.doi.org/10.1119/1.1374249

Cuéllar, M. P. & Pegalajar, M. C. (2014). Design and implementation of intelligent
systems with LEGO Mindstorms for undergraduate computer engineers. Computer
Applications in Engineering Education, 22(1), 153–166. doi:10.1002/cae.20541

Davis, F. D. (1993). User acceptance of information technology: system characteristics,
user perceptions and behavioral impacts . International Journal of Man-Machine
Studies , 38(3), 475 – 487. doi:http://dx.doi.org/10.1006/imms.1993.1022

Dorn, B. & Tew, A. E. (2013). Becoming Experts: Measuring Attitude Development in
Introductory Computer Science. In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education (pp. 183–188). New York, NY, USA:
ACM. doi:10.1145/2445196.2445252

Drabowicz, T. (2014). Gender and digital usage inequality among adolescents: A
comparative study of 39 countries . Computers & Education, 74(0), 98 – 111.
doi:http://dx.doi.org/10.1016/j.compedu.2014.01.016

Freeman, J., Magerko, B., McKlin, T., Reilly, M., Permar, J., Summers, C. & Fruchter,
E. (2014). Engaging underrepresented groups in high school introductory computing
through computational remixing with EarSketch. In Proceedings of the 45th ACM

technical symposium on Computer science education (pp. 85–90).

Goadrich, M. (2014). Incorporating Tangible Computing Devices into CS1. J. Comput.
Sci. Coll., 29(5), 23–31. Retrieved from
http://dl.acm.org/citation.cfm?id=2600623.2600627

Goldman, K., Gross, P., Heeren, C., Herman, G. L., Kaczmarczyk, L., Loui, M. C. &
Zilles, C. (2010). Setting the Scope of Concept Inventories for Introductory
Computing Subjects. Trans. Comput. Educ., 10(2), 5:1–5:29.
doi:10.1145/1789934.1789935

Gomes, A. J., Santos, A. N. & Mendes, A. J. (2012). A Study on Students’ Behaviours
and Attitudes Towards Learning to Program. In Proceedings of the 17th ACM Annual
Conference on Innovation and Technology in Computer Science Education (pp. 132–
137). New York, NY, USA: ACM. doi:10.1145/2325296.2325331

Gouws, L. A., Bradshaw, K. & Wentworth, P. (2013). Computational Thinking in
Educational Activities: An Evaluation of the Educational Game Light-bot. In
Proceedings of the 18th ACM Conference on Innovation and Technology in
Computer Science Education (pp. 10–15). New York, NY, USA: ACM.
doi:10.1145/2462476.2466518

Grasel, J., Vonnegut, W. & Dodds, Z. (2010). Bitwise Biology: Crossdisciplinary
Physical Computing Atop the Arduino. In 2010 AAAI Spring Symposium Series.

Guzdial, M. (2003). A Media Computation Course for Non-majors. SIGCSE Bull.,
35(3), 104–108. doi:10.1145/961290.961542

Guzdial, M. (2010). Does Contextualized Computing Education Help? ACM Inroads,
1(4), 4–6. doi:10.1145/1869746.1869747

Guzdial, M. (2013). Exploring Hypotheses About Media Computation. In Proceedings
of the Ninth Annual International ACM Conference on International Computing
Education Research (pp. 19–26). New York, NY, USA: ACM.
doi:10.1145/2493394.2493397

Guzdial, M., Ericson, B., Mcklin, T. & Engelman, S. (2014). Georgia Computes! An
Intervention in a US State, with Formal and Informal Education in a Policy Context.
Trans. Comput. Educ., 14(2), 13:1–13:29. doi:10.1145/2602488

Hanson, V., Ayfer, R. & Bachmayer, B. (2014). European Women in Computing.
Commun. ACM, 57(7), 5–5. doi:10.1145/2631183

Hill, L. & Ciccarelli, S. (2013). Using a Low-cost Open Source Hardware Development
Platform in Teaching Young Students Programming Skills. In Proceedings of the
14th Annual ACM SIGITE Conference on Information Technology Education (pp.
63–68). New York, NY, USA: ACM. doi:10.1145/2512276.2512289

Hoegh, A. & Moskal, B. M. (2009). Examining science and engineering students’
attitudes toward computer science. In Frontiers in Education Conference, 2009. FIE
’09. 39th IEEE (pp. 1–6). doi:10.1109/FIE.2009.5350836

Kay, J. S. (2011). Contextualized Approaches to Introductory Computer Science: The
Key to Making Computer Science Relevant or Simply Bait and Switch? In
Proceedings of the 42Nd ACM Technical Symposium on Computer Science
Education (pp. 177–182). New York, NY, USA: ACM.
doi:10.1145/1953163.1953219

King, W. R. & He, J. (2006). A meta-analysis of the technology acceptance model .
Information & Management , 43(6), 740 – 755.
doi:http://dx.doi.org/10.1016/j.im.2006.05.003

Lahtinen, E. (2007). A categorization of Novice Programmers: a cluster analysis study.
In Proceedings of the 19th annual Workshop of the Psychology of Programming
Interest Group, Joensuu, Finnland (pp. 32–41).

Light-Bot. (n.d.). Retrieved 18–11, 2014, from http://lightbot.com/

Lister, R., Clear, T., Simon, Bouvier, D. J., Carter, P., Eckerdal, A., … Thompson, E.
(2010). Naturally Occurring Data As Research Instrument: Analyzing Examination
Responses to Study the Novice Programmer. SIGCSE Bull., 41(4), 156–173.
doi:10.1145/1709424.1709460

Lister, R., Fidge, C. & Teague, D. (2009). Further Evidence of a Relationship Between
Explaining, Tracing and Writing Skills in Introductory Programming. SIGCSE Bull.,
41(3), 161–165. doi:10.1145/1595496.1562930

Lister, R., Simon, B., Thompson, E., Whalley, J. L. & Prasad, C. (2006). Not Seeing the
Forest for the Trees: Novice Programmers and the SOLO Taxonomy. SIGCSE Bull.,
38(3), 118–122. doi:10.1145/1140123.1140157

Liu, I.-F., Chen, M. C., Sun, Y. S., Wible, D. & Kuo, C.-H. (2010). Extending the TAM
model to explore the factors that affect Intention to Use an Online Learning
Community . Computers & Education, 54(2), 600 – 610.
doi:http://dx.doi.org/10.1016/j.compedu.2009.09.009

Lopez, M., Whalley, J., Robbins, P. & Lister, R. (2008). Relationships Between
Reading, Tracing and Writing Skills in Introductory Programming. In Proceedings of
the Fourth International Workshop on Computing Education Research (pp. 101–
112). New York, NY, USA: ACM. doi:10.1145/1404520.1404531

Made with Code. (2014). Retrieved 7–25, 2014, from https://www.madewithcode.com/

McGill, M. M. (2012). Learning to Program with Personal Robots: Influences on
Student Motivation. Trans. Comput. Educ., 12(1), 4:1–4:32.
doi:10.1145/2133797.2133801

Mellodge, P. & Russell, I. (2013). Using the Arduino Platform to Enhance Student
Learning Experiences. In Proceedings of the 18th ACM Conference on Innovation
and Technology in Computer Science Education (pp. 338–338). New York, NY,
USA: ACM. doi:10.1145/2462476.2466530

Misra, A., Blank, D. & Kumar, D. (2009). A Music Context for Teaching Introductory
Computing. SIGCSE Bull., 41(3), 248–252. doi:10.1145/1595496.1562955

Murphy, L., Richards, B., McCauley, R., Morrison, B. B., Westbrook, S. & Fossum, T.
(2006). Women Catch Up: Gender Differences in Learning Programming Concepts.
SIGCSE Bull., 38(1), 17–21. doi:10.1145/1124706.1121350

Ong, C.-S. & Lai, J.-Y. (2006). Gender differences in perceptions and relationships
among dominants of e-learning acceptance . Computers in Human Behavior , 22(5),
816 – 829. doi:http://dx.doi.org/10.1016/j.chb.2004.03.006

Padilla-Meléndez, A., del Aguila-Obra, A. R. & Garrido-Moreno, A. (2013). Perceived
playfulness, gender differences and technology acceptance model in a blended
learning scenario . Computers & Education, 63(0), 306 – 317.
doi:http://dx.doi.org/10.1016/j.compedu.2012.12.014

Padilla-Meléndez, A., Garrido-Moreno, A. & Aguila-Obra, A. R. D. (2008). Factors
affecting e-collaboration technology use among management students . Computers &
Education, 51(2), 609 – 623. doi:http://dx.doi.org/10.1016/j.compedu.2007.06.013

Patitsas, E., Craig, M. & Easterbrook, S. (2014). A Historical Examination of the Social
Factors Affecting Female Participation in Computing. In Proceedings of the 2014
Conference on Innovation & Technology in Computer Science Education (pp. 111–
116). New York, NY, USA: ACM. doi:10.1145/2591708.2591731

Pejcinovic, B., Holtzman, M., Chrzanowska-Jeske, M. & Wong, P. K. (2013). Just
because we teach it does not mean they use it: Case of programming skills. In
Frontiers in Education Conference, 2013 IEEE (pp. 1287–1289).

doi:10.1109/FIE.2013.6685038

Porter, L. & Simon, B. (2013). Retaining Nearly One-third More Majors with a Trio of
Instructional Best Practices in CS1. In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education (pp. 165–170). New York, NY, USA:
ACM. doi:10.1145/2445196.2445248

R Core Team. (2014). R: A Language and Environment for Statistical Computing.
Retrieved from http://www.R-project.org/

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K.,
… Kafai, Y. (2009). Scratch: Programming for All. Commun. ACM, 52(11), 60–67.
doi:10.1145/1592761.1592779

Reynolds, A. P., Richards, G., Iglesia, B. & Rayward-Smith, V. J. (2006). Clustering
Rules: A Comparison of Partitioning and Hierarchical Clustering Algorithms.
Journal of Mathematical Modelling and Algorithms, 5(4), 475–504.
doi:10.1007/s10852-005-9022-1

Rich, L., Perry, H. & Guzdial, M. (2004). A CS1 Course Designed to Address Interests
of Women. SIGCSE Bull., 36(1), 190–194. doi:10.1145/1028174.971370

Richard, G. T. (2010). Employing Physical Computing in Education: How Teachers and
Students Utilized Physical Computing to Develop Embodied and Tangible Learning
Objects. The International Journal of Technology, Knowledge and Society.

Ruthmann, A., Heines, J. M., Greher, G. R., Laidler, P. & Saulters, I. C. (2010).
Teaching Computational Thinking Through Musical Live Coding in Scratch. In
Proceedings of the 41st ACM Technical Symposium on Computer Science Education
(pp. 351–355). New York, NY, USA: ACM. doi:10.1145/1734263.1734384

Sabitzer, B. & Pasterk, S. (2014). Brain-based Programming continued. In Frontiers in
Education Conference, 2014 IEEE (pp. 1495–1500).

Santos, J. R. A. (1999). Cronbach’s alpha: A tool for assessing the reliability of scales.
Journal of Extension, 37(2), 1–5.

Selim, H. M. (2003). An empirical investigation of student acceptance of course
websites . Computers & Education, 40(4), 343 – 360.
doi:http://dx.doi.org/10.1016/S0360-1315(02)00142-2

Stoilescu, D. & Egodawatte, G. (2010). Gender differences in the use of computers,
programming, and peer interactions in computer science classrooms. Computer

Science Education, 20(4), 283–300. doi:10.1080/08993408.2010.527691

Tan, G. & Venables, A. (2010). Wearing the Assessment “BRACElet” . Journal of
Information Technology Education: Innovations in Practice , 9 (1), 25–34 .
Retrieved from http://www.editlib.org/p/111692

Tew, A. E. (2010). Assessing Fundamental Introductory Computing Concept
Knowledge in a Language Independent Manner. Georgia Institute of Technology,
Atlanta, GA, USA.

Tew, A. E., Dorn, B. & Schneider, O. (2012). Toward a Validated Computing Attitudes
Survey. In Proceedings of the Ninth Annual International Conference on
International Computing Education Research (pp. 135–142). New York, NY, USA:
ACM. doi:10.1145/2361276.2361303

Tew, A. E. & Guzdial, M. (2011). The FCS1: A Language Independent Assessment of
CS1 Knowledge. In Proceedings of the 42Nd ACM Technical Symposium on
Computer Science Education (pp. 111–116). New York, NY, USA: ACM.
doi:10.1145/1953163.1953200

The Hour of Code. (n.d.). Retrieved 7–17, 2014, from http://csedweek.org/

Tiku, N. (2014). How to Get Girls Into Coding. New York Times. Retrieved from
http://www.nytimes.com/2014/06/01/opinion/sunday/how-to-get-girls-into-
coding.html

Turner, M., Kitchenham, B., Brereton, P., Charters, S. & Budgen, D. (2010). Does the
technology acceptance model predict actual use? A systematic literature review .
Information and Software Technology , 52(5), 463 – 479.
doi:http://dx.doi.org/10.1016/j.infsof.2009.11.005

Valentine, J. C., DuBois, D. L. & Cooper, H. (2004). The Relation Between Self-Beliefs
and Academic Achievement: A Meta-Analytic Review. Educational Psychologist,
39(2), 111–133. doi:10.1207/s15326985ep3902_3

Venables, A., Tan, G. & Lister, R. (2009). A Closer Look at Tracing, Explaining and
Code Writing Skills in the Novice Programmer. In Proceedings of the Fifth
International Workshop on Computing Education Research Workshop (pp. 117–128).
New York, NY, USA: ACM. doi:10.1145/1584322.1584336

Venkatesh, V., Morris, M. G., Davis, G. B. & Davis, F. D. (2003). User Acceptance of
Information Technology: Toward a Unified View. MIS Q., 27(3), 425–478. Retrieved
from http://dl.acm.org/citation.cfm?id=2017197.2017202

Werner, L. L., Hanks, B. & McDowell, C. (2004). Pair-programming Helps Female
Computer Science Students. J. Educ. Resour. Comput., 4(1).
doi:10.1145/1060071.1060075

Williams, L., Wiebe, E., Yang, K., Ferzli, M. & Miller, C. (2002). In support of pair
programming in the introductory computer science course. Computer Science
Education, 12(3), 197–212.

Wolber, D., Abelson, H., Spertus, E. & Looney, L. (2011). App Inventor. “ O’Reilly
Media, Inc.”

Worsley, M. & Blikstein, P. (2013). Programming Pathways: A Technique for
Analyzing Novice Programmers’ Learning Trajectories. In Lane, H.Chad and Yacef,
Kalina and Mostow, Jack and Pavlik, Philip (Ed.), Artificial Intelligence in Education
(Vol. 7926, pp. 844–847). Springer Berlin Heidelberg. doi:10.1007/978-3-642-
39112-5_127

Wortham, J. (2012). A surge in learning the language of the internet. New York Times.
Retrieved from http://www.nytimes.com/2012/03/28/technology/for-an-edge-on-the-
internet-computer-code-gains-a-following.html

Wu, H.-T., Hsu, P.-C., Lee, C.-Y., Wang, H.-J. & Sun, C.-K. (2014). The impact of
supplementary hands-on practice on learning in introductory computer science course
for freshmen . Computers & Education, 70(0), 1 – 8.
doi:http://dx.doi.org/10.1016/j.compedu.2013.08.002

	1 Introduction
	2 Methods
	2.1 Materials
	2.2 Student demographic
	2.3 Study design
	2.4 Measurements
	2.4.1 Students perceptions
	2.4.2 Learning outcomes

	2.5 Analysis performed
	2.5.1 Students perceptions
	2.5.2 Learning outcomes

	3 Results
	3.1 Student perception
	3.2 Learning outcomes

	4 Discussion
	5 Conclusions

