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Highlights 

• We analyze gender differences in a university introductory programming course. 
• Male and female students have different perceptions and learning outcomes. 
• We have developed several learning modules based on physical computing 

principles. 
• Using these modules the differences in perception and learning outcomes 

disappear.  

 

Abstract 

Although there is a growing interest in learning to program, the number of women 
involved in programming remains surprisingly low. We don’t understand completely 
the causes but it has become clear that men and women have different perceptions of 
programming. The pedagogy of introductory programming courses should take these 
differences into account. In this study we analyze gender differences in an introductory 
programming course at the university level. Our results indicate that male and female 
students have different perceptions and learning outcomes: male students find 
programming easier, have a higher intention to program in the future and show higher 
learning outcomes than female students. To reduce these differences we have designed 
and implemented several learning modules using the principles of physical computing. 
The physical computing approach aims to take computational concepts out of the screen 
and into the real world so that students can interact with them. We have applied these 
modules in a MATLAB introductory programming course in a biology degree. When 
using these modules both male and female students showed similar results in 
perceptions and learning outcomes. The use of physical computing principles in 
combination with the traditional methodology reduced –actually closed– this gender 
gap. 
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1 Introduction 
In the last years there has been a growing interest in learning and teaching to program 
(Wortham, 2012). Initiatives like The Hour of Code (“The Hour of Code,” n.d.) or 
Codecademy (“Codecademy: Learn to code,” n.d.) have taught programming to 
thousands of students. Computer science topics have been introduced in the primary-
school curriculum in the UK (Brown, Sentance, Crick, & Humphreys, 2014) and New 
Zealand (Bell, Andreae, & Robins, 2014). New methodological approaches have been 
developed to help students in these courses. Successful examples are Scratch (Resnick 
et al., 2009), App Inventor(Wolber, Abelson, Spertus, & Looney, 2011), and Light-Bot 
(“Light-Bot,” n.d.). These learning resources have been shown to improve students 
outcomes (Goadrich, 2014; Gouws, Bradshaw, & Wentworth, 2013; Guzdial, Ericson, 
Mcklin, & Engelman, 2014). 

There remains one dark spot: the number of women involved in computer science is 
surprisingly low. In the United States only 0.4 percent of girls entering college intended 
to major in computer science in 2013 and they made up 14 percent of all computer 
science graduates, down from 37% in the mid-80s (Alvarado, Dodds, & Libeskind-
Hadas, 2012; Patitsas, Craig, & Easterbrook, 2014; Tiku, 2014). Other studies show 
similarly disproportionate ratios of participation between male and female students in 
computer science programs (Stoilescu & Egodawatte, 2010). This problem is global: a 
study conducted on the use of computers and the Internet among fifteen-year olds 
showed that boys report using computers more often than girls in the vast majority of 
the 40 countries under investigation (Drabowicz, 2014). 

Although we don’t understand completely the causes of the differences in participation 
it has become clear that men and women have different perceptions of programming. 
Werner, Hanks, & McDowell (2004) analyzed a survey of over 400,000 entering 
freshman across the US. They found that the gender gap in computer use was almost 
non-existent but there was a very big confidence gender gap in computer skills. Several 
authors (Alvarado, Lee, & Gillespie, 2014; Carter & Jenkins, 1999) have found that 
female students are much less confident in their programming abilities than male 
students. 

If we want to involve more women in computing, the pedagogy of introductory 
programming courses needs to change. This is a complex problem and there are no 
magic bullets but new approaches might help. In 2005 Harvey Mudd College started a 
three pronged approach: a breadth-first CS1 course with separate tracks according to 
previous experience, computing research experiences for first-year women and female 
community building activities. They observed a marked increase of women majoring in 
computer science (Alvarado et al., 2012). Google has launched a $50 million initiative 
to teach programming to young girls (“Made with Code,” 2014). This initiative includes 
coding projects, female community building activities and video profiles of women that 
use programming to solve all kind of problems. In Europe, the European ACM 
Committee on Women in Computing (ACM-WE) has launched several initiatives to 
facilitate women participation in computing (Hanson, Ayfer, & Bachmayer, 2014). 



One approach that might be effective is contextualized computing. Contextualized 
computing education is defined as the use of a consistent application or domain area, 
which effectively covers the core areas of a computer science course (Guzdial, 2010). 
Examples of contexts for introductory computer science include Media Computation 
(Guzdial, 2003), traditional manipulatives (“Computer Science Unplugged,” n.d.), and 
robotics (Cuéllar & Pegalajar, 2014).  

Students find contextualized approaches to programming very attractive. Instead of 
writing an abstract program, students can learn about basic programs by programming a 
robot to exit a maze, animating a story, or creating light symphonies. Rich, Perry, & 
Guzdial (2004) explored the possibilities of using context teaching to specifically 
address female students and obtained good results.  

One contextualized approach that has attracted increased attention is the physical 
computing approach. This approach takes the computational concepts “out of the screen” 
and into the real world so that student can interact with them (Richard, 2010). Several 
studies have analyzed the feasibility of using physical computing principles in the 
teaching of computer programming, see for example Ruthmann, Heines, Greher, Laidler, 
& Saulters (2010).  

Male and female students might react differently to physical computing activities. 
McGill (2012) studied the use of robots in an introductory programming course and 
found that female students were slightly more intimidated than males by the robots. She 
also found that female students believed more strongly that using the robots helped them 
to learn and that it was a pleasure to work with robots. 

One alternative approach, used in this study, is to use electronic boards to develop small 
and simple systems capable of display interesting behaviors (Grasel, Vonnegut, & 
Dodds, 2010). This approach presents several advantages: the systems are simpler and 
easier to understand, they are more reliable, show more reproducible behaviors and the 
overall cost is lower (Hill & Ciccarelli, 2013). 

Our aim in this study is to answer the following research questions: is there a gender 
gap in the traditional introductory programming course? And, if the answer is 
affirmative, can we use physical computing principles to reduce it? To answer these 
research questions the following research hypotheses are examined first:  

• H1: Using traditional teaching methods there is no gender difference in the 
perception on programming.  

• H2: Using traditional teaching methods there is no difference between male and 
female failure rates. 

• H3: Using physical computing modules there is no gender difference in the 
perception on programming.  

• H4: Using physical computing modules there is no difference between male and 
female failure rates. 



With this goal in mind we have developed several learning modules based on the 
physical computing approach. We have used them in an introductory programming 
course and analyzed the perceptions and learning outcomes of male and female 
students. As a control we performed the same analysis in another introductory 
programming course taught with traditional methods.  

There have been several studies about gender differences in introductory programming 
(Murphy et al., 2006; Stoilescu & Egodawatte, 2010) but –to our knowledge– only one 
study compared the effect of the intervention with a similar group used as control 
(Sabitzer & Pasterk, 2014).  

 

2 Methods 

2.1 Materials 
In this study we have developed several learning modules for an introductory 
programming course at the university level. These modules can be used to teach C/C++, 
Python or MATLAB covering both compiled languages and interpreted ones. Different 
course approaches and teaching methodologies might benefit from their use. 

One of the first design decisions we had to make was whether to use an electronic board 
or a robotic platform. Both present several advantages and disadvantages. We decided to 
work with an electronic board because robotic platforms are more complex and, 
therefore, their behavior is less reproducible in an educational laboratory (Cuéllar & 
Pegalajar, 2014). Alvarez & Larranaga (2013) found that factors related to surface 
friction, battery load or light conditions affected significantly the behavior of the robot 
and hindered students’ work. We heeded McGill’s warning that “potential technical 
problems should be seriously considered since they can easily negate any potential 
positive motivational effect” (McGill, 2012). 

We have selected the Arduino microcontroller board (Banzi, 2009) as the development 
platform. Arduino is an open hardware board that is becoming increasingly common 
within the teaching community (Grasel et al., 2010; Mellodge & Russell, 2013). One 
important advantage for our project is that Arduino is a very easy to use board: its first 
users were artists and designers. Also, thanks to its open-source nature, a wide variety 
of developers have selected it as a development platform for all kinds of computational 
systems (Hill & Ciccarelli, 2013). 

We designed specific modules for lecture demonstrations and for laboratory sessions 
(Fig. 1). The contents of the lecture demonstrations and the laboratory sessions are 
directly related. It is our experience that lecture demonstrations create a desire to learn 
more about the inner workings of the system shown. We can take advantage of this 
interest if students find similar activities during the laboratory sessions. 



  

Fig. 1. Electronic circuit created for the laboratory sessions: design (left) and implementation (right). The 
design shows a photocell (left), a temperature sensor (center) and several LEDs (right).  

 

Lecture demonstrations are designed to enhance the traditional teaching methodology, 
not to replace it. Lecturers will explain a computational concept using the traditional 
methodology and afterwards will reinforce the explanation doing a physical computing 
demonstration.  

The lecture modules show different physical examples of computational concepts. 
Lecture demonstrations use different perceptive elements –light, sound and movement– 
to reach a broader audience. It’s been shown that the use of diverse perceptive paths 
enhances the student understanding (Ainsworth, 1999). A brief description of selected 
demonstrations follows:  

• We use musical melodies to teach arrays. Following previous studies (Misra, 
Blank, & Kumar, 2009) we associate different arrays to different melodies. Using 
this approach, we can explore concepts as arrays concatenation or the difference 
between the position and the value of an array element.  

• Conditional structures are illustrated using a photocell and LEDs. We write during 
the lecture a small program that will turn on a variable number of LEDs taking as 
input the ambient light.  

• Loop concepts are reinforced using an ultrasonic sensor and a servo motor. During 
the lecture we implement a program that will continuously read from the proximity 
sensor. When the value drops below a certain threshold the servo motor and the 
associated LEDs are activated.  

The laboratory sessions allow students to have additional hands-on time with the 
physical computing system shown in lectures. Several studies show that these activities 
can greatly improve students’ learning (Kay, 2011; Wu, Hsu, Lee, Wang, & Sun, 2014). 

After completing the design process we piloted the first version of the learning modules 
in an introductory programming course. Preliminary results of our experiences were 
positive and showed that students had a good experience. Students completed a 



questionnaire and we used their answers to improve the learning material before 
conducting the study.  

2.2 Student demographic 
In our study the sample contained 76 university students: 47 women and 29 men. We 
selected only students that were in their first year, had no previous programming 
experience and were 18 years old.   

By restricting our analysis to freshmen without previous programming knowledge we 
expect to obtain a clearer picture of the impact of the learning modules on our target 
population. In a study of students’ attitudes towards programming Gomes, Santos, & 
Mendes (2012) found that freshmen and repeaters differed on personal perceptions and 
learning approaches.  

2.3 Study design 
One of the goals of our study was to assess whether men and women have different 
perceptions and learning outcomes when they learn to program. Another goal was to 
analyze if the physical computing modules we have designed were effective in reducing 
these differences.  

To this end we used two sections of an introductory programming course in a Biology 
degree. Students in this course learn basic computing skills and devote ten weeks to learn 
to program using MATLAB. The course comprises two weekly lectures of one hour and 
a two hours lab session. Students from different sections had different lectures and lab 
sessions. Students were assigned into one of the two groups either by the university 
administrative staff or by online registration based on student schedule availability only.  

The learning modules were used in one section –the experimental group– and the other 
section was designated as the control group. In the experimental group the number of 
students included in the study was 38: 21 women and 17 men. In the control group there 
were 38 students: 26 women and 12 men. The gender ratios were close to the Biology 
degree average. In this degree around 60% of students are female. 

In the control group the instructor used traditional methods: PowerPoint slides and 
multimedia material were used to introduce theoretical concepts. Students would also 
discuss some generic examples using peer instruction techniques (Crouch & Mazur, 
2001). In lab sessions students would work individually. In the experimental group the 
instructor used the physical computing modules in the lectures. Lecture demonstrations 
were conducted following Crouch’s suggestions to increase student’s engagement 
(Crouch, Fagen, Callan, & Mazur, 2004).  In lab sessions students worked in pairs only 
when completing the physical computing modules. 

The same instructor taught both sections back-to-back. He used lesson plans and a course 
diary to guarantee both courses comparability. The time devoted by the experimental 
group to work on the learning modules was used by the control group to work on 
additional examples and exercises.  



2.4 Measurements  
We used two different measurements to compare the control and experimental group: 
students’ perceptions and learning outcomes. Several studies have established the 
importance of students’ perceptions in their future performances in the STEM disciplines 
(Valentine, DuBois, & Cooper, 2004).  

2.4.1 Students perceptions 
There are several instruments capable of measuring students’ attitudes towards 
introductory programming. Each instrument is aimed to a different group of students 
and aims to measure a different construct. We will describe some of the instruments 
available and justify our choice. 

The Computing Attitudes Survey (CAS) is a newly designed instrument developed by 
Tew, Dorn, & Schneider (2012). It focuses in the differences in perceptions between 
novices and experts programmers. The preliminary results obtained by the authors are 
quite encouraging. We decided not to use this survey in our study because we are 
teaching to non-majors and we do not expect them to become experts. Additionally, the 
survey has not finished the validation process and it is not publicly available (Dorn & 
Tew, 2013). 

Another option is the survey developed by Hoegh & Moskal (2009). This survey 
focuses on high level perceptions about computer science and has been validated with 
non-major students. In our study we decided not to use it because we were interested 
only in attitudes specific towards programming.  

We chose the TAM model (Davis, 1993) to evaluate students’ perception on 
programming.  The TAM model is a powerful tool commonly used to predict the 
acceptance, adoption and real use of new technologies in production environments. In 
our case we were interested in assessing whether students had the intention to program 
in the future.  

Pejcinovic, Holtzman, Chrzanowska-Jeske, & Wong (2013) have shown that a 
significant percentage of students that learn to program in their first university year do 
not use this knowledge during their studies. Using the TAM model we can estimate the 
future use of the technology –computer programming in our case– from the user 
perceptions. 

In the TAM model (Fig. 2) the main constructs are the perception of usefulness, the 
perception of ease of use and the behavioral intention to use. These are defined by Davis 
(1993)  as: 

1. Perceived usefulness: the degree to which an individual believes that using a 
particular system would enhance his or her job performance. 

2. Perceived ease of use: the degree to which an individual believes that using a 
particular system would be free of physical and mental effort. 

3. Behavioral intention to use: the degree to which an individual has formulated 
plans to use a certain system in the future.  



 

Fig. 2. Original TAM model proposed by Davis (1993). 

 

The TAM model has been used to estimate the future use of a wide variety of new 
innovations in information technology. Several studies have applied this model in 
educational environments (Liu, Chen, Sun, Wible, & Kuo, 2010; Padilla-Meléndez, 
Garrido-Moreno, & Aguila-Obra, 2008; Selim, 2003). The TAM model has received 
extensive empirical support (Venkatesh, Morris, Davis, & Davis, 2003) and has been 
validated in meta-analyses that involved dozens of studies (King & He, 2006; Turner, 
Kitchenham, Brereton, Charters, & Budgen, 2010). 

We designed a questionnaire based on the TAM model to measure students’ perceptions. 
A translation of the survey –the survey was conducted in Spanish- can be found in 
appendix A. The surveys used a Likert scale to collect students’ opinion using several 
items for each TAM construct. Students could grade each item with a score ranging from 
1 to 5. Students’ perceptions were calculated using the mean score of the students’ 
answers to each construct in the TAM model. The surveys were anonymous to reduce 
any bias in students’ answers that may occur if they believed their answers would affect 
their course grade. 

We conducted three surveys model during the course. One survey was conducted at the 
beginning of the course, the second at the midterm exam and the third at the final exam. 
The second and third surveys were conducted just after the exams to increase student 
participation. The third survey of the experimental group contained several additional 
questions regarding the use of the Arduino board. These questions are listed in appendix 
B.  

 

External 
Variables 

Perceived 
Usefulness 

Perceived 
Ease of Use 

Behavioural 
Intention to Use Actual Use 



2.4.2 Learning outcomes 
There is a notable lack of easily accessible and validated assessment tools in introductory 
programming (Tew, 2010). A small set of tools are in development or have been recently 
developed but they were not applicable to our study.  

For example, Tew & Guzdial (2011) have validated a standardized exam –the FCS1– 
that can be used with different programming languages and methodologies. We could 
not use the FCS1 exam in our study because the validation results indicate that it is not 
applicable to courses using contextualized computing methods.   

Another promising line of work is the development of concept inventories for 
introductory programming (Goldman et al., 2010). These concept inventories have been 
very successful in other scientific fields but no concept inventory aimed to introductory 
programming has been completed. It remains an open research question if it is possible 
to identify a set of misconceptions common to the different programming languages used 
in teaching. 

In our study we measured students’ learning achievements by means of an exam testing 
their programming skills. Our exam was designed to assess students’ writing and reading 
skills. It contained three questions that asked to trace and explain code –we summarize 
them as reading questions– and two questions that asked to write code. Both reading and 
writing questions contained a combination of conditional and loops. Several studies 
(Lopez, Whalley, Robbins, & Lister, 2008; Venables, Tan, & Lister, 2009) have found 
that there is a strong correlation among tracing, explaining and writing code. Students 
were given two hours to complete the exam. 

The assessment was performed following the guidelines proposed by the BRACElet 
group (Lister et al., 2010). These guidelines are based on a widely used cognitive 
taxonomy, the SOLO taxonomy (Lister, Simon, Thompson, Whalley, & Prasad, 2006). 
This taxonomy describes the type of responses a student may give to a task and it has 
been validated as a reliable tool to assess introductory programming exams (Clear et al., 
2008). 

2.5 Analysis performed 

2.5.1 Students perceptions 
We analyzed students’ perceptions in the control and experimental groups. In both 
groups we compared the men and women perceptions at the end of the course. The 
analysis was performed applying Student’s t-test to the different constructs present in 
the TAM model.  

There has been some controversy on the use of parametric methods like the t-test with 
data obtained from Likert scales. It is generally accepted that parametric statistical tests 
can be applied if we first sum all the Likert items associated to a construct. The sums 
obtained can be treated as interval data measuring a latent variable (Carifio & Perla, 
2008). 



2.5.2 Learning outcomes 
We used the final exam to measure students’ learning outcomes. We analyzed the exam 
results using clustering techniques: a class of computational methods that has been 
proved effective in analyzing complex datasets (Brooks, Erickson, Greer, & Gutwin, 
2014). Several studies have successfully applied these techniques in the introductory 
programming context (Bumbacher, Sandes, Deutsch, & Blikstein, 2013; Worsley & 
Blikstein, 2013). 

We clustered the data using the K-Medoids technique, a variation of K-Means 
clustering where centroids are represented by the median. We have used the Partitioning 
Around Medoids (PAM) algorithm (Reynolds, Richards, Iglesia, & Rayward-Smith, 
2006) implemented in R (R Core Team, 2014)  

The first step in this method is to choose the correct number of clusters. The quality of 
the results depends heavily on this choice: choosing a very large number of clusters 
reduces the model representative power; choosing a very small number of clusters 
reduces the accuracy of any given cluster. In our study we have used a subset of the 
classification scheme proposed by Lahtinen (2007): 

• Competent students: Students that have learned all aspects of programming 
fairly. 

• Theoretical students: Students that have learnt to read program code but have 
difficulties in producing programs on their own. 

• Practical students: This group of students had succeeded in writing code and has 
average reading code skills. 

• Unprepared students: Students that lacked reading or writing skills. 

We defined the failure rate in a group as the ratio of students in that group that belong to 
the unprepared students cluster to the total number of students in the group. We used 
Fisher's exact test to compare the failures rate because the sample size was too small for 
Student’s t-test. 

In our study we created one data set using the experimental and control measurements 
and did the clustering on this data set. We were interested in comparing the number of 
students that belong to each of the clusters and we needed the clusters to be comparable.  

3 Results 

3.1 Student perception 
In our study we conducted three surveys to measure students’ perception on 
programming. We measured the values of the TAM model parameters –perceived 
usefulness, perceived ease of programming and intention to program– in the control and 
the experimental group. One survey was conducted at the beginning of the course, the 
second at the midterm exam and the third at the final exam. We conducted the second 
and third surveys just after the exams to increase student participation. 



We analyzed the survey reliability calculating Cronbach’s alpha on the proposed 
questions within each construct. We obtained in all cases values over 0.7, a quality 
threshold widely accepted (Santos, 1999). 

In Table 1 we show students’ initial attitudes toward programming. The experimental 
and control groups showed small differences but none was statistically significant. From 
these results we can conclude that both groups were equivalent at the beginning of the 
course. 

To establish the presence of a gender gap in the control group we need to compare males 
and females’ attitudes at the end of the course. These results are collected in Table 2. 
Male students find programming significantly easier than female students: their 
perceived ease of programming score is 30% higher, a difference that is statistically 
significant at the 10% level (p-value = 0.054). They also show a higher intention to 
program in the future: their future intention to program score is 21% higher (p-value = 
0.054). In the case of perceived usefulness the difference is also noticeable (11%), but 
not statistically significant. 

The experimental group shows a different pattern: gender differences in attitudes are 
much smaller and none is statistically significant. The differences in the perceived ease 
and usefulness of programming are in both cases less than 1%. The differences in the 
future intention to program are close to 7%.  

We also analyzed the change in students’ attitudes during the course. Fig. 3 shows the 
evolution of the perceived ease of programming. There is a marked difference between 
male and female attitudes in the control group but these differences disappear in the 
experimental group. If we focus our attention on the evolution of perceived usefulness 
(Fig. 4) we don’t see any significant change during the course. There is a small 
systematic difference between males and females in the control group but it is not 
statistically significant. Fig. 5 shows the evolution of student’s intention to program. 
Males in the control group show a small increase and females show a small decrease, but 
neither of them is statistically significant. In the experimental group the scores for men 
and women are similar. 

We also measured the perceptions of the students regarding the Arduino board. The 
results obtained can be found in Table 3. Both male and female students show similar 
perceptions with no significant differences. 



 
Fig. 3. Changes in perceived ease of programming during the course. At the beginning of the course 
males and females had similar scores. At the end of the course in the control group they had significant 
different but in the experimental group males and females showed similar scores. 

 
Fig. 4. Changes in perceived usefulness during the course. We can observe a systematic difference 
between males and females in the control group but it is not statistically significant. The experimental 
group shows no differences. 

 
Fig. 5. Changes in students’ intention to program during the course. At the beginning of the course males 
and females had similar scores. At the end of the course the control group showed a significant difference 
but the experimental group did not. 



Table 1 Student perceptions at the beginning of the programming course 

 
Control Experimental 

  mean scores |∆| p-value mean scores |∆| p-value 
 male  female   male  female   
Perceived ease of 
programming 

2.47 2.29 0.18 0.409 2.22 2.07 0.15 0.625 

Perceived usefulness 4.23 3.96 0.27 0.264 4.00 3.83 0.17 0.435 
Intention to program 3.60 3.46 0.14 0.663 3.14 3.32 0.18 0.535 
 

Table 2 Student perceptions at the end of the programming course 

 
Control Experimental 

  mean scores |∆| p-value mean scores |∆| p-value 
 male  female   male female   
Perceived ease of 
programming 

3.31 2.48 0.83 0.054ª 2.87 2.85 0.02 0.961 

Perceived 
usefulness 

4.29 3.84 0.45 0.111 3.73 3.70 0.03 0.914 

Intention to 
program 

3.89 3.18 0.71 0.054ª 3.31 3.10 0.21 0.557 

    
 a result significant at the 10% level 

     
Table 3 Student perceptions of the Arduino board 

 
Experimental 

  mean scores |∆| p-value 
 male  female  
Perceived ease of use of the 
Arduino board 

4.10 4.17 0.07 0.823 

Perceived usefulness of the 
Arduino board 

3.79 3.48 0.31 0.271 

Perceived enjoyment when using 
the Arduino board 

4.69 4.61 0.08 0.779 

     
     
 

 



3.2 Learning outcomes 
We assessed students learning outcomes analyzing the final exam results. Both control 
and experimental group completed the same exam at the same time. This eased the 
analysis as we were able to compare the results directly. 

The experimental and control group had equivalent knowledge levels at the beginning of 
the course as we restricted our analysis to students without any previous programming 
knowledge. 

Cluster analysis of the reading code and writing code scores classified students in four 
different groups: competent students, theoretical students, practical students and 
unprepared students. The location of these clusters along the writing-reading dimensions 
is shown in Fig. 6.  

Each group presents different characteristics: unprepared students have low scores for 
writing and reading code, theoretical students have high reading scores but low writing 
scores, practical students have average reading and writing scores and competent 
students have high reading and writing scores. 

All the clusters had similar sizes. The most numerous group was the competent students 
with 23 members.  There were similar numbers of practical and unprepared students, 19 
for the former and 18 for the later. The smaller group was the one comprised by 
theoretical students with only 16 members.  

One noticeable fact is that the presence of an empty area at the top left corner of the 
graph. That indicates an absence of students with high writing scores and low reading 
scores. This makes sense as it would be hard for a student to be able to write meaningful 
code without the ability to read it. 

In our study we define the failure rate as the ratio of students classified as unprepared to 
the total number of students in each group. Failure rate results are shown in Fig. 7. If we 
compare failure rates for men and women in the control and experimental group we 
observe an interesting difference. In the control group females’ failure rate, 35%, double 
males’ failure rate, 17%. This difference disappears in the experimental group, there both 
rates are similar: 19% for women versus 18% for men. The difference in the control 
group is very suggestive but is not statistically significant, probably due to the small 
sample size.  

 



 
Fig. 6. Clustering of the final exam results. Ellipses represent the normal probability contours at the 90% 
confidence level. A small amount of jitter has been added to reduce the points overlap. 

 

 
Fig. 7. Programming failure rates. The failure rate for females shows a marked reduction in the 
experimental group. Males’ failure rate shows no such variation. 



 

4 Discussion 
We have found differences in perception between men and women in the traditional 
introductory programming course. The perceived ease of programming and the intention 
to program in the future were significantly higher in males than in females. These 
differences in perception allow us to reject the hypothesis H1. We also found suggestive 
differences in learning outcomes but these differences were not statistically significant 
so we cannot reject the hypothesis H2. 

To reduce these differences we have designed and implemented several modules to teach 
introductory programming using the physical computing approach. These modules 
comprise lecture demonstrations and laboratory sessions. They aim to enhance the 
traditional teaching methodology without replacing it.  

We evaluated the modules in an introductory programming course and found that they 
were highly effective. Using these modules the differences in perception between males 
and females became negligible and no difference in learning outcomes was found. These 
results strongly support hypotheses H3 and H4 and we cannot reject them. 

Using these results we can now answer our original research questions. Our first 
question was: is there a gender gap in the traditional introductory programming course? 
Our study indicates that the answer is affirmative; there is a significant difference in 
students’ perceptions. The difference in learning outcomes is also noticeable although it 
is no statistically significant. Our second question was: can we use physical computing 
principles to reduce it? Our results indicate that using the physical computing approach 
reduces this gender gap.  

To our knowledge there are no other studies assessing gender differences that use 
contextualized computing techniques and compare them with a control group. McGill 
(2012) studied how female and male university students differed in their perceptions of 
robots but she didn’t use a control group.   

In our study we also found that all the students able to write code knew how to read 
code. Similar results have been obtained by other authors (Lister, Fidge, & Teague, 
2009; Venables et al., 2009). This suggests that acquiring a certain level of tracing and 
reading code skills is a first step in the path of learning to write code (Tan & Venables, 
2010). 

Students found the learning modules useful and highly enjoyable. They perceived them 
as a valuable learning experience. Students stated that the effort necessary to complete 
the lab sessions was reasonable and that more laboratory sessions should be devoted to 
this kind of experiences. 

One mechanism that could explain the effectiveness of these modules is that women 
might find easier to overcome their lack of confidence thanks to the learning modules 
novelty. McGill (2012) found some interesting differences in the perceptions of boys and 



girls related to the use of robots and suggested that using robots may give a sense of 
empowerment to women making them more confident. 

Other authors have successfully improved women attitudes using other educational 
approaches. Sabitzer & Pasterk (2014) developed an introductory programming course 
based on educational neuroscience principles and found that the gender based differences 
present at the traditional course disappeared in the new one. Freeman et al. (2014) 
developed a music-based introductory programming course for high school students and 
found that it was particularly effective in increasing female motivations to persist on 
computing problems.  

Media computing (Guzdial, 2013) has also been studied extensively with good results. 
Porter & Simon (2013) found that women in media computing courses expressed greater 
enjoyment and interest that those attended a traditional introductory programming 
course.  

The differences in perceptions between males and females that we have reported are 
coherent with other authors’ findings. Beyer, Rynes, Perrault, Hay, & Haller (2003) 
found that women’s computer confidence was lower than men’s, even when controlling 
for quantitative ability. Other studies have found gender differences in perceived 
usefulness, perceived ease of use and intention to use in e-learning environments (Ong 
& Lai, 2006; Padilla-Meléndez, del Aguila-Obra, & Garrido-Moreno, 2013). 

We have found some differences in learning between males and females in the 
traditional programming course. Other authors have obtained similar results: Sabitzer & 
Pasterk (2014) obtained significant differences between male and female learning 
outcomes in a traditional introductory programming course. But these results should be 
taken with care: in our study they were not statistically significant and it is possible that 
they are a statistical outlier. Without further studies the differences found in learning 
outcomes should be taken as suggestive but inconclusive. 

Our study has several limitations. The sample size is small as the study comprised only 
one course and two sections. We think that the results are relevant because the 
differences were statistically significant. Additionally there is no reason to believe that 
the results will be different in other scientific and engineering disciplines.  

Another possible source of bias is that students in the control group worked always 
individually and the ones in the experimental group worked by pairs in certain moments. 
Although the advantages of pair programming have been well stablished (Williams, 
Wiebe, Yang, Ferzli, & Miller, 2002), in our case students only worked in pairs in a 
small number of lab sessions. 

The fact that the teacher in charge of both courses was involved in the developing of the 
learning modules is another limitation. These modules might be less effective when used 
by teachers that are less familiar with the material. We think this would be unlikely as no 
specific knowledge –apart from a basic understanding of electric circuits– is needed.  



This study needs to be confirmed using data from other degrees in different institutions. 
We plan to extend this study to see if we obtain similar results. Additionally we will use 
clustering techniques to analyze the learning outcomes of other courses using the 
traditional approach to see if the differences we have found are reproducible. 

5 Conclusions 
We have found differences between male and female students in a traditional 
introductory programming course. In the traditional setting we found that men and 
women differ significantly in their perception of the ease of programming and their 
intention to program in the future. We also found suggestive differences in learning 
outcomes, although these differences were not statistically significant. 

To reduce these differences we have designed and implemented several learning 
modules using the principles of physical computing. These modules can be easily 
integrated within the existing methodologies and they can be used in lectures and 
laboratory sessions.  

We evaluated the modules in an introductory programming course and found that they 
were highly effective. Using these modules the differences in perception and learning 
outcomes between men and women disappeared.  

Learning to program is incredibly useful and will become even more important in the 
future. As a consequence there is a growing interest in learning to program and 
programming courses are being introduced in schools. The fact that computer literacy 
rates for women are dropping is a worrisome fact. Active strategies should be conducted 
to try to reverse this trend.  

In our study the use of the physical computing approach has reduced –actually closed– 
this gender gap. If these results can be reproduced in other institutions it could increase 
the number of women interested in computing. 
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Appendix A 

Questionnaire items used in this study by construct. 

 

Do you agree or disagree with the following statements?   

Perceived Usefulness of programming 
  Totally       Neither agree       Totally  
    agree         nor disagree      disagree 

Knowing how to program will help me find a job.      5        4        3        2        1 

It will be easier to finish my studies if I know how to 
program.  

     5        4        3        2        1 

During my studies it will be useful for me to know 
how to program. 

     5        4        3        2        1 

Knowing how to program will be useful for my 
work. 

     5        4        3        2        1 

  

Perceived ease of programming  

It is easy for me to learn how to program.      5        4        3        2        1 

It is easy to make the program do what I want to.      5        4        3        2        1 

Programing is easy.      5        4        3        2        1 

  

Intention to program  

I intend to use programing during my studies.       5        4        3        2        1 

In my job I will code programs that will be helpful 
for me. 

     5        4        3        2        1 

Programing will form part of my profession.      5        4        3        2        1 

 

  



Appendix B 

Questionnaire items related to the use of the Arduino board by construct.  

 

Do you agree or disagree with the following statements? 

Perceived Usefulness of the Arduino board    Totally      Neither agree   Totally  
     agree       nor disagree    disagree 

When programing with Arduino I learn more.        5        4        3        2        1 

With Arduino I learn better how to program.        5        4        3        2        1 

Arduino helps me understand programming.         5        4        3        2        1 

I learn more quickly when working with Arduino.        5        4        3        2        1 

  

Perceived Ease of Use of the Arduino board  

It is easy to work with Arduino.        5        4        3        2        1 

Arduino is easy to use.         5        4        3        2        1 

It is easy to program the Arduino board.        5        4        3        2        1 

  
Perceived enjoyment when using the Arduino 
board 

 

Lab sessions with Arduino are more entertaining.         5        4        3        2        1 

I have fun working with Arduino.        5        4        3        2        1 

Working with Arduino is more enjoyable.         5        4        3        2        1 
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