
Enhancing an introductory programming course with
physical computing modules

Miguel Angel Rubio and Rocio Romero-Zaliz
Departamento de Ciencias de la Computación e IA

University of Granada
Granada, Spain

marubio@ugr.es

 Carolina Mañoso and Angel P. de Madrid
 Departamento de Sistemas de Comunicación y Control
UNED - Universidad Nacional de Educación a Distancia

Madrid, Spain

Abstract— Learning to program can be very difficult for the
students involved. Students must master language syntax,
programming theory and problem solving techniques in a short
period of time. A non-traditional approach might help students
to overcome these difficulties. Several studies have proposed the
use of the physical computing paradigm. This paradigm takes the
computational concepts “out of the screen” and into the real
world so that the student can interact with them.

Following this paradigm we designed different learning
modules -to be used in lectures and laboratory sessions- to teach
C/C++ and MATLAB. Lecturers explain a computational
concept and, afterwards, reinforce it using the physical
computing modules. For example, conditional structures are
illustrated using a photocell and several LEDs, arrays are
explained using musical melodies, etc.

The effectiveness of the physical computing modules was
assessed by means of learning outcomes and students
perceptions. Surveys conducted at the beginning and end of the
course were analyzed using the Technological Acceptance Model
(TAM). Results indicate that the students were highly motivated
and found the modules very enjoyable. As a consequence we
observed a significant increase in the retention rate of this course.

Keywords— Arduino; Physical Computing; CS1; Introductory
Programming; Novice Programmer

I. INTRODUCTION
Lecturers in charge of an introductory programming course

face a complex challenge [1]. Students must master language
syntax, programming theory and problem solving techniques in
a short period of time, something they usually struggle to do. In
addition students often consider the subject to be unrelated to
their core interests and feel uncomfortable when learning to
program [2].

As a consequence introductory programming courses show
poor results and high dropout rates [3], [4]. Quoting Carter and
Jenkins [5]:

“Few teachers of programming in higher education would
claim that all their students reach a reasonable standard of
competence by graduation. Indeed, most would confess that an

alarmingly large proportion of graduates are unable to
‘program’ in any meaningful sense.”

Several studies suggest that new teaching methodologies
might help the student to overcome their initial difficulties and
improve their results [6],[7]. Among these approaches the use
of contextualized computing education is one of the most
promising.

Contextualized computing education is defined as the use
of a consistent application or domain area, which effectively
covers the core areas of a computer science course [8].
Examples of contexts for introductory computer science
include Media Computation [9], traditional manipulatives [10],
and robotics [11]. These methods are not completely new:
mathematics teachers have used similar methods for decades;
physical objects are used in the teaching of mathematics since
the beginning of the last century [12].

Students find contextualized approaches to learning
introductory CS very attractive. Instead of writing an abstract
program, students can learn about basic programs by
programming a robot to exit a maze, animating a story, or
creating light symphonies.

Among the paradigms that belong to the contextualized
approach the physical computing paradigm has attracted
increased attention in the last years. This paradigm takes the
computational concepts “out of the screen” and into the real
world so that the student can interact with them [13]. Resnick
proposed a similar concept: “Digital manipulatives” [14],
tangible objects with some computational capabilities.

Several studies have analyzed the feasibility of using
physical computing principles in the teaching of computer
programming, see for example [15]. However most of these
proposals are based on using robots to teach programming and
require students to possess design skills not always available.

One alternative approach –used in this study- is to develop
small and simple systems capable of display interesting
behaviors using electronic boards. This approach presents
several advantages: the systems are simpler and easier to
understand, they are more reliable, show more reproducible
behaviors and the overall cost is lower.

978-1-4799-3922-0/14/$31.00 ©2014 IEEE 1019
2014 IEEE Frontiers in Education Conference

Fig. 1 Electronic circuit used in lecture demonstrations: design (left) and implementation (right). The design shows a piezoelectric
loudspeaker (left), a servo motor with LEDs (center) and an ultrasonic sensor (right).

The present study has two aims: (1) to design and
implement several learning modules for an introductory
programming course using the physical computing paradigm
and (2) to evaluate these modules when taught to university
students. We develop these learning modules on an open
hardware platform -Arduino [16]- which is widely available.

II. MATERIAL AND METHODS

A. Learning modules design
In this study we have developed several learning modules

for an introductory programming course at the university level.
These modules can be used to teach C/C++, or MATLAB
covering both compiled languages and interpreted ones.
Different course approaches and teaching methodologies might
benefit from their use.

We designed specific modules for lecture demonstrations
and for laboratory sessions. In the laboratory sessions students
had some hands-on time with the physical computing system.
Several studies show that if, due to cost or time constraints,
students are forced to rely only on teacher demonstrations, the
benefits of using these systems are reduced [17].

The physical computing modules are designed to enhance
the traditional teaching methodology, not replacing it.
Lecturers will explain a computational concept using the
traditional methodology and afterwards will reinforce it using
the Arduino modules.

When designing these modules one of the first decisions
was whether to use an electronic board or a robotic platform.
Both present several advantages and disadvantages. Electronic
board projects are inexpensive but it is time consuming to
acquire and organize the electronic components. Robotic
platforms, on the other hand, are easier to start with but more
expensive.

We decided to work with an electronic board because
robotic platforms are more complex and, therefore, their
behavior is less reproducible in an educational laboratory [11].
Alvarez and Larranaga [18] found out that factors related to
surface friction, battery load or light conditions affected
significantly the behavior of the robot and hindered the
students’ work. We heeded McGill’s warning that “potential
technical problems should be seriously considered since they
can easily negate any potential positive motivational effect”
[19].

We have selected the Arduino microcontroller board [16] as
the development platform. Arduino is an open hardware board
that is becoming increasingly common within the teaching
community [20]. A wide variety of developers have selected it
as a development platform for all kinds of computational
systems.

Arduino presents several advantages for our project. The
creators of Arduino designed a very easy to use board: their
main targets were artists and designers. Also, thanks to its
open-source nature, it is supported by a vast user community
who share their ideas, projects and solutions ranging from
small science fair projects to full- scale robotics [21].

The contents of the lecture demonstrations and the
laboratory sessions are directly related. It is our experience that
lecture demonstrations create a desire to learn more about the
inner workings of the system shown. We can take advantage of
this interest if students find similar activities during the
laboratory sessions.

Lecture demonstrations show physical examples of
computational concepts. To engage the student we used LEDs
of various colors, loudspeakers to generate melodies and servo
motors to link movements with different programming
elements. Lecture demonstrations use different perceptive
elements –light, sound and movement– to reach a broader
audience. It’s been shown that the use of diverse perceptive
paths enhances the student understanding [22].

1020
2014 IEEE Frontiers in Education Conference

The lecture demonstrations can be performed using only
two different electronic circuits, one of them can be seen in
Fig. 1. That way we reduce the burden on the lecturers as the
only have to mount two different protoboards at the beginning
of the course. We also developed all the software code needed
to perform the demonstrations.

Lecture demonstrations were conducted following Mazur’s
suggestions [23]. A brief description of selected
demonstrations follows1:

• We use the loudspeaker to teach arrays. We associate
different arrays to different melodies. That way we can
explore concepts as arrays concatenation or the
difference between the position and the value of an
array.

• Conditional structures are illustrated using a photocell
and LEDs. We write in the classroom a small program
that will light a variable number of LEDs depending on
the light conditions.

• Loop concepts are reinforced using the ultrasonic sensor
and the servo motor. During the lecture we implement a
program that will continuously read from the proximity
sensor. When the value drops below a certain threshold
the servo motor and the associated LEDs are activated.

The laboratory session modules aim to link the Arduino
demonstrations to the laboratory activities. Laboratory modules
are based on the lecture demonstrations, that way we can take
advantage of students’ curiosity. For example, one activity
asks the student to create a light pattern similar to those seen in
science fiction television shows. Another involves the use of a
temperature sensor, converting the temperature measurement
from decimal to binary and finally showing it using LEDs. The
laboratory modules use only one protoboard design to simplify
the staff work.

After completing the design process we piloted the first
version of the learning modules in an introductory
programming course. We obtained extensive feedback from the
students and modified the design accordingly.

B. Evaluation of learning modules
In our study we assessed whether the Arduino modules

were effective in enhancing our students learning outcomes and
their perception on programming.

To this end we compared the results obtained in two
introductory programming courses in a biology degree. In this
course students learn to write basic programs using MATLAB.
The learning modules were randomly assigned to one group
and the other was designated as the control.

We decided to restrict our analysis to data obtained from 18
years old freshmen students without any previous
programming knowledge. Gomes et al [24] found -in a study
on students’ behaviors and attitudes towards learning to
program- that freshmen and repeaters differed on personal
perceptions, organization and learning approaches. Restricting

1 A more detailed description of the modules can be found at
http://wdb.ugr.es/~marubio/?page_id=532

our analysis to freshmen without previous programming
knowledge we expect to obtain a clearer picture of the impact
of the physical computing learning modules on our target
population.

The students were assigned into one of the two groups –
control and experimental- either by the university
administrative staff or by online registration based on student
schedule availability only. In the control group there were 39
students that fulfilled our criteria, in the experimental group the
number of students included in the study was 38.

In the control group the teacher used traditional methods;
PowerPoint slides and multimedia material were used to
introduce theoretical concepts. The students would also discuss
some generic examples using peer instruction techniques [25].

In the experimental group he enhanced these methods using
the Arduino modules. The same teacher taught both courses in
the same semester. Lesson plans and a course diary were used
to guarantee both courses comparability.

When designing the learning outcomes analysis we looked
for a standardized assessment tool. Unfortunately, there
remains a notable lack of easily accessible and validated
assessment tools in introductory programming [26]. Although
some new assessment tools have been developed in the last
years none was applicable to our study.

Tew and Guzdial [27] have developed and validated a
standardized exam -the FCS1- that can be used with different
programming languages and methodologies. In our study we
could not use this test because it is not applicable to courses
using contextualized computing methods. Another promising
line of work is the development of concept inventories for
introductory programming [28] but these inventories are not
available yet.

We measured the students’ learning achievements by
means of an exam testing their programming knowledge and
skills. The assessment was performed following the guidelines
proposed by the BRACElet project [29] based on the SOLO
taxonomy [30]. This taxonomy has been validated as a reliable
tool to assess introductory programming exams [31]

We were also interested in the students’ perception on
programming. Several studies have found within STEM
disciplines a relationship between student perceptions and
learning outcomes [32].

There are different options to measure students’ attitudes
in introductory programming. The Computing Attitudes
Survey (CAS) is a newly designed instrument developed by
Tew et al. [33]. It focuses in the differences in perceptions
between novices and experts programmers. We did not use it
in our study because we are teaching programming to non-
majors and we do not expect them to reach the expert level.

One available instrument that has been validated for non-
majors is the survey developed by Hoegh et al [34]. This
survey focuses on high level perceptions and constructs on the
computer sciences field but we were interested only in
attitudes towards programming.

1021
2014 IEEE Frontiers in Education Conference

0%

5%

10%

15%

20%

25%

30%

Control Group Experimental Group

Final exam failure rate

Fig. 3 Percentage of students that failed the
programming final exam. The control group has a
significantly higher failure rate than the experimental
group. The difference is significant at the 10% level.

External
Variables

Perceived
Usefulness

Perceived
Ease of Use

Behavioural
Intention to Use Actual Use

Fig. 2 Original TAM model proposed by Davis [35]

We have used the TAM model [35] to evaluate students’
perception on programming. The TAM model is a powerful
tool commonly used to predict the acceptance, adoption and
real use of new technologies in production environments. In
our case we were interested in assessing whether students had
the intention to use programming in the future.

Pejcinovic et al [36] have shown that a significant
percentage of students that learn to program in their first
university year do not use this knowledge during their studies.
Using the TAM model we can estimate the future use of the
technology –computer programming in our case- from the user
perceptions.

In the TAM model (Fig. 2) the parameters measured are the
perception of usefulness, perception of ease of use and the
behavioral intention to use. These are defined by Davis [35] as:

a) Perceived usefulness: the degree to which an
individual believes that using a particular system would
enhance his or her job performance.

b) Perceived ease of use: the degree to which an
individual believes that using a particular system would be
free of physical and mental effort.

c) Behavioral intention to use: the degree to which an
individual has formulated plans to use a certain system in the
future.

The TAM model has been used to estimate the future use of
a wide variety of new innovation in information technology.
Several studies have applied this model in educational
environments [37], [38]. The TAM model has been also
validated in meta-analysis that involved dozens of studies [39],
[40].

Using the TAM model we conducted several surveys at the
beginning, midterm and end of the semester. These surveys
were anonymous to reduce any bias in students’ answers that
may occur if they believed their answers would affect their
course grade.

These surveys contained questions about the students’
attitude towards programming. In the experimental group we
also collected the opinion towards Arduino after the students
used it in the lab. Both surveys used a Likert scale to collect the
students’ opinion.

III. RESULTS
We assessed the learning modules evaluating the learning

outcomes and the perceptions of the students involved in the
study. Learning outcomes were estimated from the results of
the final exam and several surveys were conducted to obtain
the students perceptions throughout the course.

A. Learning outcomes
We used the final exam to assess students learning in the

control and the experimental group. Both groups completed the
same exam at the same time. This allowed us to make a
straightforward comparison.

As we restricted our analysis to students without any
previous programming knowledge both the experimental and
control group were equivalent at the beginning of the course.

The main difference found is related to the percentage of
the students that did not pass the programming exam, the
failure rate. In Fig. 3 we can observe that the control group had
a significantly higher failure rate, 25.6%, than the experimental
group, 7.9%.

1022
2014 IEEE Frontiers in Education Conference

TABLE I. FINAL EXAM RESULTS

 Control
Group

Experimental
Group p-value

Mean Grade 5.7 5.9 0.7114
Students that

failed 10 3 0.0654*

High achieving
students 10 7 0.6249

* result significant at the 10% level

TABLE II. STUDENTS PERCEPTION ON ARDUINO

Mean score.

1(min)-7(max) scale
Perceived Usefulness 5.58

Perceived Ease of Use 4.80

Perceived Enjoyment 6.31

Fig. 4 A comment by a student. The question reads “Any other comment? (Explanations or examples that got your attention,
improvements…) Write on the backside if needed.”

Related measurements can be found in Table 1. We collect
there the number of students that failed, the number of high
achieving students (those obtaining a mark over 90%) and the
mean grade for both groups. P-values were obtained running
the Welch Two Sample t-test for the mean grade, the Fisher's
Exact Test for Count Data for the number of students that
failed and 2-sample test for equality of proportions for the
number of high achieving students.

The exam’s mean grade has similar values in both groups
with no significant differences. If we look at the number of
high achieving students the control group has a larger number
of high achieving students than the experimental group,
although the difference is not significant. From these results we
can conclude that the control group has a more extreme
distribution –more students that fail or are high achievers- than
the experimental group.

B. Students’ perception on Arduino
We conducted a survey on the experimental group asking

students about their opinion on the Arduino platform. Results –
shown in Table 2- were very positive. The perceived
enjoyment of using the platform stands out with a score of
90%.

Students’ comments -both formal and informal- were very
encouraging. One student wrote: “incredibly useful lesson, now
the whole course makes sense”. A more graphic comment is
shown in Fig. 4.

C. Students’ perception on programming

In our study we conducted three surveys: at the beginning

of the course, at the midterm exam and at the final exam. We
analyzed the survey reliability using Cronbach’s alpha
obtaining in all cases values over 0.7 a quality threshold widely
accepted [34].

In these surveys we measured the values of the TAM model
parameters in the control and the experimental group at the
beginning of the course, at midterm and at the final exams.
Results are shown in Fig. 5.

At the beginning of the course the experimental and control
groups were equivalent: there were no significant differences in
perceived usefulness, perceived ease of use or intention to use.

If we analyze the change of these parameters during the
course we see that there is a statistically significant increase on
the perceived ease of use of programming. In the experimental
group it goes from 2.14 to 2.87 and in the control group it goes
from 2.34 to 2.80. That indicates that, thanks to the course,
students perceive programming as an easier endeavor.

An interesting fact is that there is no significant variation of
the perceived usefulness or the intention to use during the
course for both groups. It seems that lectures and lab sessions
do not affect the student perceptions in these areas.

There is no significant difference in the behavior of the
experimental and control group parameters. Perceived
usefulness and intention to use behave in a similar manner in
both groups. The perceived ease of the experimental group
shows a slightly higher growth rate than the control group but
the difference in not statistically significant.

IV. DISCUSSION
In this study we have designed and implemented several

modules to teach introductory programming. These modules
comprise lecture demonstrations and laboratory sessions. They
aim to enhance the traditional teaching methodology without
replacing it. In the design process we have used the principles
of the physical computing paradigm.

We evaluated the modules in an introductory programming
course and found that they were highly effective. When

1023
2014 IEEE Frontiers in Education Conference

Students perception on programming

Time

Sc
or

e

1
2

3
4

5

Initial Midterm Final

Experimental:Usefulness
Experimental:Ease of Use
Experimental:Intention to Use

Control:Usefulness
Control:Ease of Use
Control:Intention to Use

Fig. 5 Students’ perception on programming. There is
no significant difference between the experimental and
control group. Ease of use shows a significant
difference between the beginning and the end of the
course in both groups.

comparing failure rates the experimental group showed a
significant lower value: 8% versus 26% in the control group.
No significant difference was observed in the mean grades or
in the number of high achieving students.

This is consistent with results obtained in other studies [41].
Guzdial [42] applied the contextualized approach in his media
computing class and also found that the retention rate increased
significantly but the best students did not learn more. The
contextualized approach was able to increase the number of
students able to complete the course but students learned the
same as in the traditional setting.

In that sense it seems that this approach helps the students
to get involved in the subject, but does not constitute a
cognitive help. We agree with Guzdial that these results
probably show that the new approach is effective because,
thanks to it, more students find the subject relevant.

Students found the learning modules useful and highly
enjoyable and found reasonable the effort necessary to
complete the lab sessions. They perceived them as a valuable
learning experience. Students stated that more laboratory
sessions should be devoted to this kind of experiences.

We did not find any significant effect on the students’
perception on programming: both the experimental and control
group showed similar responses. We were surprised to find out
that a semester course had a negligible effect on the students’
perception on the usefulness of programming although Gomes
et al [24] also obtained in their study that students’ attitudes
show very little change during a semester course.

We did find a significant signal in the evolution of students'
perceptions on programming difficulty. Both the experimental
and control group students thought that programming was
easier at the end of the semester. This result deserves a more
thorough study to clarify what is the actual effect of an
introductory programming course on students’ attitudes.

Our study has several limitations. We have only used these
modules for one year in one degree, biology. We believe that
the results will be similar in the empirical sciences and
engineering disciplines. In more formal fields, like
mathematics and statistics, these modules might be less
effective. We plan to extend this study to these disciplines and
compare the results obtained with those obtained till now.

Another limitation is the fact that the teacher in charge of
both courses was involved in the developing of the learning
modules. These modules might be less effective when used by
teachers that are less familiar with the material.

One future line of work is to adapt these learning materials
to other programming languages. We are interested in
including an open-source interactive language. MATLAB is a
very powerful platform but the fact that is proprietary hampers
its development in academic environments. Using open
interactive environments like iPython [43] would increase
these modules usefulness.

V. CONCLUSIONS
We have developed an introductory programming teaching

resource that enhances students learning. These modules follow
the principles of the physical computing paradigm using the
Arduino board as the physical platform. These modules can be
used to teach C/C++ and MATLAB.

We have used them in an introductory programming course
and compared the results with those obtained in a traditional
course. We found that when using these modules the students’
failure rate decreased significantly. Surprisingly the mean
grade and the number of high achieving students did not
change significantly. This suggests that although a higher
proportion of students got involved in the subject they did not
learn more than with the traditional approach.

Students found the learning modules useful and fun. They
expressed visibly their satisfaction and asked for more sessions
using the physical computing approach. Nonetheless, the
students’ perceptions on programming were only slightly
affected by these modules. Both groups showed the same
behavior in terms of the programming usefulness, ease of use
and intention to program in the future.

Teaching introductory programming to university students
is a challenge: students perceive the subject to be difficult and
boring and feel uncomfortable during the course. The
application of the physical computing paradigm engages
students more effectively and increases the proportion of
students that learn effectively.

1024
2014 IEEE Frontiers in Education Conference

ACKNOWLEDGMENT
This work is supported by the University of Granada

(PID/13-54). The authors wish to thank the students of the
Biology degree at the UGR that participated in the experience.

REFERENCES
[1] A. Robins, J. Rountree, and N. Rountree, “Learning and teaching

programming: A review and discussion,” Computer Science
Education, vol. 13, no. 2, pp. 137–172, 2003.

[2] H. Qin, “Teaching computational thinking through bioinformatics to
biology students,” in ACM SIGCSE Bulletin, 2009, vol. 41, no. 1, pp.
188–191.

[3] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-
D. Kolikant, C. Laxer, L. Thomas, I. Utting, and T. Wilusz, “A multi-
national, multi-institutional study of assessment of programming
skills of first-year CS students,” ACM SIGCSE Bulletin, vol. 33, no. 4,
pp. 125–180, 2001.

[4] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hamer, M.
Lindholm, R. McCartney, J. E. Mostr�m, K. Sanders, O. Seppälä,
and others, “A multi-national study of reading and tracing skills in
novice programmers,” ACM SIGCSE Bulletin, vol. 36, no. 4, pp. 119–
150, 2004.

[5] J. Carter and T. Jenkins, “Gender and programming: What’s going
on?,” in ACM SIGCSE Bulletin, 1999, vol. 31, no. 3, pp. 1–4.

[6] J. Wells, R. M. Barry, and A. Spence, “Using Video Tutorials as a
Carrot-and-Stick Approach to Learning,” IEEE Transactions on
Education, vol. 55, pp. 453–458, 2012.

[7] K. E. Merrick, “An Empirical Evaluation of Puzzle-Based Learning as
an Interest Approach for Teaching Introductory Computer Science,”
IEEE Transactions on Education, vol. 53, pp. 677–680, 2010.

[8] M. Guzdial, “Does contextualized computing education help?,” ACM
Inroads, vol. 1, no. 4, pp. 4–6, 2010.

[9] M. Guzdial, “A media computation course for non-majors,” in ACM
SIGCSE Bulletin, 2003, vol. 35, no. 3, pp. 104–108.

[10] “Computer Science Unplugged,” 2014. [Online]. Available:
http://csunplugged.org. [Accessed: Apr-2014].

[11] M. Cuéllar and M. Pegalajar, “Design and implementation of
intelligent systems with LEGO Mindstorms for undergraduate
computer engineers,” Computer Applications in Engineering
Education, 2011.

[12] P. S. Moyer, “Are we having fun yet? How teachers use
manipulatives to teach mathematics,” Educational Studies in
Mathematics, vol. 47, no. 2, pp. 175–197, 2001.

[13] G. T. Richard, “Employing Physical Computing in Education: How
Teachers and Students Utilized Physical Computing to Develop
Embodied and Tangible Learning Objects,” The International Journal
of Technology, Knowledge and Society, 2010.

[14] M. Resnick, F. Martin, R. Berg, R. Borovoy, V. Colella, K. Kramer,
and B. Silverman, “Digital manipulatives: new toys to think with,” in
Proceedings of the SIGCHI conference on Human factors in
computing systems, 1998, pp. 281–287.

[15] A. Ruthmann, J. M. Heines, G. R. Greher, P. Laidler, and C. Saulters
II, “Teaching computational thinking through musical live coding in
scratch,” in Proceedings of the 41st ACM technical symposium on
Computer science education, 2010, pp. 351–355.

[16] M. Banzi, Getting Started with arduino. Make, 2009.
[17] J. S. Kay, “Contextualized approaches to introductory computer

science: the key to making computer science relevant or simply bait
and switch?,” in Proceedings of the 42nd ACM technical symposium
on Computer science education, 2011, pp. 177–182.

[18] A. Alvarez and M. Larranaga, “Using LEGO mindstorms to engage
students on algorithm design,” in Frontiers in Education Conference,
2013 IEEE, 2013, pp. 1346–1351.

[19] M. M. McGill, “Learning to program with personal robots: Influences
on student motivation,” ACM Transactions on Computing Education
(TOCE), vol. 12, no. 1, p. 4, 2012.

[20] J. Grasel, W. Vonnegut, and Z. Dodds, “Bitwise Biology:
Crossdisciplinary Physical Computing Atop the Arduino,” in 2010
AAAI Spring Symposium Series, 2010.

[21] L. Hill and S. Ciccarelli, “Using a low-cost open source hardware
development platform in teaching young students programming
skills,” in Proceedings of the 13th annual ACM SIGITE conference on
Information technology education, 2013, pp. 63–68.

[22] S. Ainsworth, “The functions of multiple representations,” Computers
& Education, vol. 33, no. 2, pp. 131–152, 1999.

[23] C. Crouch, A. P. Fagen, J. P. Callan, and E. Mazur, “Classroom
demonstrations: Learning tools or entertainment?,” American Journal
of Physics, vol. 72, p. 835, 2004.

[24] A. J. Gomes, A. N. Santos, and A. J. Mendes, “A study on students’
behaviours and attitudes towards learning to program,” in
Proceedings of the 17th ACM annual conference on Innovation and
technology in computer science education, 2012, pp. 132–137.

[25] C. H. Crouch and E. Mazur, “Peer instruction: Ten years of
experience and results,” American Journal of Physics, vol. 69, p. 970,
2001.

[26] A. E. Tew, “Assessing Fundamental Introductory Computing Concept
Knowledge in a Language Independent Manner,” Georgia Institute of
Technology, Atlanta, GA, USA, 2010.

[27] A. E. Tew and M. Guzdial, “The FCS1: A Language Independent
Assessment of CS1 Knowledge,” in Proceedings of the 42Nd ACM
Technical Symposium on Computer Science Education, 2011, pp.
111–116.

[28] K. Goldman, P. Gross, C. Heeren, G. L. Herman, L. Kaczmarczyk, M.
C. Loui, and C. Zilles, “Setting the Scope of Concept Inventories for
Introductory Computing Subjects,” Trans. Comput. Educ., vol. 10, no.
2, pp. 5:1–5:29, 2010.

[29] R. Lister, T. Clear, D. J. Bouvier, P. Carter, A. Eckerdal, J. Jacková,
M. Lopez, R. McCartney, P. Robbins, O. Seppälä, and others,
“Naturally occurring data as research instrument: analyzing
examination responses to study the novice programmer,” ACM
SIGCSE Bulletin, vol. 41, no. 4, pp. 156–173, 2010.

[30] R. Lister, B. Simon, E. Thompson, J. L. Whalley, and C. Prasad, “Not
seeing the forest for the trees: novice programmers and the SOLO
taxonomy,” in ACM SIGCSE Bulletin, 2006, vol. 38, no. 3, pp. 118–
122.

[31] T. Clear, J. Whalley, R. Lister, A. Carbone, M. Hu, J. Sheard, B.
Simon, and E. Thompson, “Reliably classifying novice programmer
exam response using the SOLO taxonomy,” in 21st Annual NACCQ
Conference, NACCQ, Auckland, New Zealand, 2008, pp. 23–30.

[32] J. C. Valentine, D. L. DuBois, and H. Cooper, “The relation between
self-beliefs and academic achievement: A meta-analytic review,”
Educational Psychologist, vol. 39, no. 2, pp. 111–133, 2004.

[33] A. E. Tew, B. Dorn, and O. Schneider, “Toward a Validated
Computing Attitudes Survey,” in Proceedings of the Ninth Annual
International Conference on International Computing Education
Research, 2012, pp. 135–142.

[34] A. Hoegh and B. M. Moskal, “Examining science and engineering
students’ attitudes toward computer science,” in Frontiers in
Education Conference, 2009. FIE’09. 39th IEEE, 2009, pp. 1–6.

[35] F. Davis, “User acceptance of information technology: system
characteristics, user perceptions and behavioral impacts,”
International journal of man-machine studies, vol. 38, no. 3, pp. 475–
487, 1993.

[36] B. Pejcinovic, M. Holtzman, M. Chrzanowska-Jeske, and P. K. Wong,
“Just because we teach it does not mean they use it: Case of
programming skills,” in Frontiers in Education Conference, 2013
IEEE, 2013, pp. 1287–1289.

[37] H. M. Selim, “An empirical investigation of student acceptance of
course websites,” Computers & Education, vol. 40, no. 4, pp. 343–
360, 2003.

[38] I.-F. Liu, M. C. Chen, Y. S. Sun, D. Wible, and C.-H. Kuo,
“Extending the TAM model to explore the factors that affect Intention
to Use an Online Learning Community,” Computers & Education,
vol. 54, no. 2, pp. 600–610, 2010.

1025
2014 IEEE Frontiers in Education Conference

[39] M. Turner, B. Kitchenham, P. Brereton, S. Charters, and D. Budgen,
“Does the technology acceptance model predict actual use? A
systematic literature review,” Information and Software Technology,
vol. 52, no. 5, pp. 463–479, 2010.

[40] W. R. King and J. He, “A meta-analysis of the technology acceptance
model,” Information & Management, vol. 43, no. 6, pp. 740–755,
2006.

[41] L. Porter, M. Guzdial, C. McDowell, and B. Simon, “Success in
introductory programming: what works?,” Communications of the
ACM, vol. 56, no. 8, pp. 34–36, 2013.

[42] M. Guzdial, “Exploring hypotheses about media computation,” in
Proceedings of the ninth annual international ACM conference on
International computing education research, 2013, pp. 19–26.

[43] F. Perez and B. E. Granger, “IPython: a system for interactive
scientific computing,” Computing in Science & Engineering, vol. 9,
no. 3, pp. 21–29, 2007.

1026
2014 IEEE Frontiers in Education Conference

