Simulation of RRAM memory circuits, a Verilog-A compact modeling approach

G. González-Cordero, J. B. Roldán, and F. Jimenez-Molinos, “Simulation of RRAM memory circuits, a Verilog-A compact modeling approach,” in XXXI edition of the Design of Circuits and Integrated Systems Conference (DCIS), 2016 in Granada, Spain. DOI: 10.1109/DCIS.2016.7845386

Abstract
Three different compact models for resistive RAM are introduced in this work. The role of the conductive filaments ohmic resistance is introduced for different filament shapes, affecting the voltage at the gap between the filament tip and the electrode, and therefore the device hopping current. The temperature behavior of the devices under study is also described with a different degree of accuracy. These models have been implemented in Verilog-A in the ADS circuit simulator (Keysight Technologies) to analyze several non-volatile memory circuits. First, a single memory cell, making use of a NMOS transistor is studied accounting for the differences of the three RRAM models, and later on a 3×3 memory matrix is analyzed.
References
  1. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories—Nanoionic mechanisms, prospects, and challenges” Adv. Mater., vol. 21, nos. 25–26, pp. 2632–2663, 2009.
  2. S. P. Wong, H. Y. Lee, S. Yu. Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen and M.-J. Tsai. “Metal-Oxide RRAM” Proceedings of the IEEE, Vol. 100, Nº. 6, June 2012.
  3. S. Lee, S. Lee., T.W. Noh, “Resistive switching phenomena: A review of statistical physics approaches”, Applied Physics Reviews, 2, 031303, 2015.
  4. Villena, M.A., Jiménez-Molinos, F., Roldán, J.B., Suñé, J., Long, S. Lian, X., Gámiz, F., And Liu,M., “An In-Depth Simulation Study Of Thermal Reset Transitions In Resistive Switching Memories”, J. Appl. Phys., Vol. 114, pp. 144505-144505-8, 2013.
  5. Pan, S. Gao, C. Chen, C. Song, F. Zeng, “Recent progress in resistive random access memories: materials, switching mechanisms and performance”, Materials Science and Engineering, 83, pp. 1-59, 2014.
  6. Zahurak, et al., “Process integration of a 27nm, 16Gb Cu ReRAM,” Electron Devices Meeting (IEDM), 2014 IEEE International, vol., no., pp.6.2.1,6.2.4, 15-17 Dec. 2014.
  7. A. Villena, M.B. González, F. Jiménez-Molinos, F. Campabadal, J.B. Roldán, J. Suñé, E. Romera, E. Miranda, “Simulation of thermal reset transitions in RRAMs including quantum effects”, J. Appl. Phys., vol. 115, p. 214504, 2014.
  8. Jiménez-Molinos, F., Villena, M.A., Roldán, J.B., Roldán, A.M., “A spice compact model for unipolar rram reset process analysis”, IEEE Trans. Elec. Dev., vol 62, n.3, pp. 955-962, 2015.
  9. Guan, S. Yu, and H.S.P. Wong, “A SPICE Compact Model of Metal Oxide Resistive Switching Memory with Variations”, IEEE Elec. Dev. Lett., vol. 33, pp. 1405-1407, 2012.
  10. Y. Chen and S. Yu, “Compact Modeling of RRAM Devices and Its Applications in 1T1R and 1S1R Array Design,” in IEEE Transactions on Electron Devices, vol. 62, no. 12, pp. 4022-4028, Dec. 2015.
  11. Fang; X. Yang; J. Wu; X. Yi, “A Compact SPICE Model of Unipolar Memristive Devices,” Nanotechnology, IEEE Transactions on, vol.12, no.5, pp.843-850, 2013.
  12. Picos, J.B. Roldán, M.M. Al Chawa, P. García-Fernández, F. Jiménez-Molinos, E. García-Moreno, “Semiempirical Modeling of Reset Transitions in Unipolar Resistive-Switching based Memristors”, Radioengineering Journal, vol 24, nº 2, pp. 420-424, 2015.
  13. Menzel, U. Böttger, and R. Waser, “Simulation of multilevel switching in electrochemical metallization memory cells”, J. Appl. Phys. 111, 014501/1-5, 2012.
  14. Bocquet, D. Deleruyelle, C. Muller and J.-M. Portal, “Self-consistent physical modeling of set/reset operations in unipolar resistive-switching memories”. Appl. Phys. Letters, 98, 263507, 2011.
  15. Long, L. Perniola, C. Cagli, J. Buckley, X. Lian, E. Miranda, F. Pan, M. Liu and J. Suñé. “Voltage and power-controlled regimes in the progressive unipolar RESET transition of HfO2-based RRAM”. Scientific reports, 3, 2013.
  16. Long, C. Cagli, D. Ielmini, M. Liu and J. Suñé. “Analysis and modeling of resistive switching statistics”. Journal of Applied Physics, 111(7), 074508, 2012.
  17. A. Villena, J.B. Roldán, M.B. González, P. González-Rodelas, F. Jiménez-Molinos, F. Campabadal, D. Barrera, “A new parameter to characterize the charge transport regime in Ni/HfO2/Si-n+-based RRAMs”, Solid State Electronics, pp. 56-60, 2016.
  18. A. Villena, M.B. González, J.B. Roldán, F. Campabadal, F. Jiménez-Molinos, F.M. Gómez-Campos, J. Suñé, “An in-depth study of thermal effects in reset transitions in HfO2 based RRAMs”, Solid State Electronics, 111, pp. 47-51, 2015.
  19. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, H.S.P. Wong, “A neuromorphic visual system using RRAM synaptic devices with sub-pj energy and tolerance to variability: experimental characterization and large-scale modeling”, IEDM, pp. 239-242, 2012.
  20. Huang. et al., “A physics-based compat model of metal-oxide-based RRAM DC and AC operations”, IEEE Trans. Elec. Dev., vol. 60, 4090, 2013.
  21. Jiang; S. Yu; Y. Wu; J.H. Engel; X. Guan; H.S. P. Wong, “Verilog-A Compact Model for Oxide-based Resistive Random Access Memory,” Simulation of Semiconductor Processes and Devices (SISPAD), 2014 International Conference on, vol., no., pp.41,44, 9-11 Sept. 2014
  22. Ariza, M. Bocquet, M. Moreau, J.M. Portal, “A built-in-self test structure (BIST) for resistive RRAMs characterization: application to bipolar OxRRAM”, Solid State Electronics, 103, pp. 73-78, 2015
  23. Predictive Technology Model (PTM). Nanoscale Integration and Modeling (NIMO) Group at Arizona State University. Available: http://ptm.asu.edu/
  24. P. Y. Chen and S. Yu, “Compact Modeling of RRAM Devices and Its Applications in 1T1R and 1S1R Array Design,” in IEEE Transactions on Electron Devices, vol. 62, no. 12, pp. 4022-4028, Dec. 2015.

Views: 733

Leave a Reply

Your email address will not be published. Required fields are marked *