Transient SPICE simulation of Ni/HfO2/Si-n+ resistive memories

G. González-Cordero, F. Jimenez-Molinos, J. B. Roldán, M. B. González and F. Campabadal, “Transient SPICE simulation of Ni/HfO2/Si-n+ resistive memories,” in XXXI edition of the Design of Circuits and Integrated Systems Conference (DCIS), 2016 in Granada, Spain. DOI: 10.1109/DCIS.2016.7845384

Abstract
A new SPICE model for the simulation of conductive bridge resistive memories has been developed. The model is based on filamentary transport and includes conduction through a constriction (by means of the quantum point contact model) and an accurate thermal description. It has been used for calculating thermally assisted reset transitions in Ni/HfO2/Si-n+ samples. Transient simulations have been carried out in order to obtain reset I-V and I-t curves, which are compared with experimental results showing a reasonably good fit. Finally, the role of the evolution at simulation time of the ohmic and thermal resistances is analyzed.
References
  1.  F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, “Recent progress in resistive random access memories: materials, switching mechanisms and performance”, Materials Science and Engineering, 83, pp. 1-59, 2014.
  2. P.  Cappelletti,  “Non  volatile  memory  evolution  and  revolution”,  in IEDM Proceedings, 2015.
  3. H. Li et al., “A spice model of resistive random access memory for large-scale memory array simulation”, IEEE Electr. Dev. Lett., vol. 35, n. 2, 2014.
  4. P. Huang et al., “A physics-based compact model of metal-oxide-based rram dc and ac operations”, IEEE Trans. Electr. Dev., vol. 60, no 12,2013.
  5. X. Guan, S. Yu, and H-S.P Wong, ‘‘A spice compact model of metal oxide resistive switching memory with variations’’, IEEE Elec. Dev. Lett., vol. 33, pp. 1405-1407, 2012.
  6. M.A. Villena et al., “An in-depth simulation study of thermal reset transitions in resistive switching memories”, J. Appl. Phys., vol. 114, p.144505, 2013.
  7. M.A. Villena et al., “Simulation of thermal reset transitions in resistive switching memories including quantum effects”,J. Appl. Phys., vol. 115, p. 214504, 2014.
  8. F. Jiménez-Molinos, M.A. Villena, J.B. Roldán, A. Roldán, “A spice compact model for unipolar rram reset process analysis”, IEEE Trans. on Elec. Dev, vol. 62, no. 3, pp. 955-962, 2015.
  9. A. Rák, G. Cserey, ‘‘Macromodeling of the memristor in Spice’’, IEEE Trans. On Computer-aided design of integrated circuits and systems, vol. 29, pp.632-636, 2010.
  10. S. Shin, K. Kin and S.-M. Kang, ‘‘Compact models for memristors based on charge-flux constitutive relationships’’, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 29, pp. 590-598, 2010.
  11. P. Sheridan, K.-H. Kim, S. Gaba, T. Chang, L. Chen and W. Lu, ‘‘Device and spice modeling of rram devices’’, Nanoscale, vol. 3, pp.3833-3840,2011.
  12. X. Fang, X. Yang, J. Wu and X. Yi, ‘‘A compact spice model of unipolar memristive devices’’, IEEE Transactions on nanotechnology, vol. 12, pp843-849, 2013.
  13. J.P. Strachan, A. C. Torrezan, F. Miao, M.D. Pickett, J.J. Yang, W. Yi, G. Medeiros-Ribeiro and R. S. Williams, ‘‘State dynamics and modeling of tantalum oxide memristors’’, IEEE Trans. Elec. Dev., vol. 60, pp.21942202, 2013.
  14. L.  Chua,  “Resistance  switching  memories  are  memristors”,  Applied Physics, vol. 102, pp. 765-783, 2011.
  15. M.A. Villena et al., “An in-depth study of thermal effects in reset transitions in HfO2  based rrams”, Solid-State Electronics, vol. 111, pp. 47-51, 2015.
  16. M.A. Villena, “Estudio, modelado y simulación de memorias rrams”, Ph.D. Thesis, 2015.
  17. http://www.linear.com/designtools/software/#LTspice
  18. G. González, F. Jiménez-Molinos, M.A. Villena and J.B. Roldán, “Spice simulation of thermal reset transitions in Ni/HfO2/Si-n+ rrams including quantum effects”, presented in Wodim 2016.
  19. E. Miranda, C. Walczyk, C. Wenger and T. Schroeder, “Model for the resistive switching effect in mim structures based on the transmission properties of narrow constrictions”, Electron Device Letters, IEEE, vol.31, no. 6, pp. 609–611, 2010.
  20. M.B.   Gonzalez,   J.   M.   Rafí,   O.   Beldarrain,  M.   Zabala   and   F. Campabadal, “Analysis of the switching variability in Ni/HfO2-based rram devices”, IEEE Trans. on dev. and mat.reliab., vol. 14, no. 2, 2014.
  21. M.A.  Villena  et  al.,  “A  new  parameter  to  characterize  the  charge transport regime in Ni/HfO2/Si-n+-based rrams”, Solid-State electr., vol. 118, pp. 56-60, 2016.
  22. U.  Russo,  D.  Ielmini,  C.  Cagli  and  A.L.  Lacaita,  “Self-accelerated thermal dissolution model for reset programming in unipolar resistive switching memory (rram) devices”, IEEE Trans. Electron Devices, vol. 56, nº2, pp. 193-200, 2009.
  23. M.A. Villena et al., “A comprehensive analysis on progressive reset transitions in rrams”, J. Phys. D: Appl. Phys., vol. 47, p. 205102, 2014.

Views: 196

Leave a Reply

Your email address will not be published. Required fields are marked *