The response variable is Est and the predictor variable is Qui.
The following objects are masked _by_ .GlobalEnv:
Est, Qui
Minimum | Lower Quartile | Median | Mean | Upper Quartile | Maximum | Standard Deviation | Missing Values | |
---|---|---|---|---|---|---|---|---|
Est | 2 | 4.75 | 6.0 | 6.1250 | 7.500 | 10 | 2.587746 | 0 |
Qui | 1 | 4.50 | 6.5 | 6.0625 | 8.125 | 10 | 2.981341 | 0 |
The following objects are masked _by_ .GlobalEnv:
Est, Qui
1 2 3 4 Sum
4 0 1 0 2 3
3 0 1 1 0 2
2 1 0 0 0 1
1 1 1 0 0 2
Sum 2 3 1 2 8
Warning in markdown::markdownToHTML(out, output, encoding = "UTF-8", ...):
stylesheet must either be valid CSS or a file containing CSS!
The term Qui is not significant to 10%.
Call:
lm(formula = Est ~ Qui, data = Est.Qui)
Residuals:
Min 1Q Median 3Q Max
-3.5711 -1.2548 0.1896 1.6587 2.5143
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.9643 1.8906 1.568 0.168
Qui 0.5213 0.2833 1.840 0.115
Residual standard error: 2.235 on 6 degrees of freedom
Multiple R-squared: 0.3608, Adjusted R-squared: 0.2542
F-statistic: 3.386 on 1 and 6 DF, p-value: 0.1153
A separate html page showing the residual analysis and model validity checking for Est.Qui.lm is at Est.Qui.lm.Validity.html
Analysis of Variance Table
Response: Est
Df Sum Sq Mean Sq F value Pr(>F)
Qui 1 16.911 16.911 3.3863 0.1153
Residuals 6 29.964 4.994