Identification and quantification of mineral phases commonly found in building materials using the software HighScore available at the Department of Mineralogy and Petrology (UGR)

Introduction

Generally, building materials contain several different minerals. More than 4000 minerals are officially recognized. Fortunately, the number of minerals that we normally find in materials such as earth, stone, bricks, mortars, alteration products, etc. is more limited. The following table shows the most common minerals in these materials and their most intense (identifying) d_{hkl} reflection. Mineral names are included in English because XRD-analysis programs use English names.

Mineral Phases

Earth

(quartz 3.34 Å, phyllosilicates ~4.50 Å; calcite 3.03 Å, dolomite 2.88 Å, gypsum 7.59 Å; feldspars ~3.20 Å, hematite, goethite, rutile)

Clay fraction (<2µm)

(smectite (montmorillonite, beidellite, nontronite, saponite ~13-15Å), mica/illite 10.0 Å, paragonite 9.6 Å, kaolinite 7.15 Å, chlorite ~7.15 Å, quartz, calcite)

Bricks

(quartz, mica/illite, feldspars (orthoclase, plagioclase, etc.), calcite, dolomite, hematite, mullite, gehlenite, diopside, wollastonite)

Mortars/Plasters

(quartz, lime (CaO), calcite, vaterite, aragonite, dolomite, portlandite, periclase, brucite, hydromagnesite, calcium silicate hydrate (cemento Portland), gypsum, bassanite, anhydrite, phyllosilicates (mica/illite))

Stone

(quartz, calcite, dolomite, gypsum, feldspars, pyroxene, amphibole, olivine, phyllosilicates, phyllosilicates (mica), magnetite, hematite, goethite, pyrite, rutile)

Alteration Products

about minerals:

(bassanite, calcite, hexahydrite, anhidrite, gypsum, epsomite, halite, kalicinite, mirabilite, natron, niter, thenardite, trona, weddellite, whewellite)

Additional information

http://www.webmineral.com y https://www.mindat.org

Use of the software «HighScore»

2. We verify that the diffractogram is not shifted, preferably using the most intense peak of quartz at 3.34 Å or another mayor phase (due to small variations in the height of the sample during analysis the peaks may be shifted). Place the mouse above the peak and check the value.

3. If the value does not coincide with 3.34 Å, select «Scan List» and «Shifts» and enter a negative value to shift the diffractogram to the left or positive value to shift it to the right so that the value of the quartz peak of our sample is equal to 3.34 Å.

	Ť	🗶 HighScore - Ke	erstin clay 28 min_4	Alh ori 1	_		_		_	_		_		_			- = x
		Pos. [°20]:	d	-spacing [Å]:	Counts:	_											
		File Edit View	/ Treatment Ref	erence Patterns Analysis F	eports Tools	Customize Window	Help										-
			_			EDI	 • 🔲 🖻 🔈 🖻	AND BO	(N - 11)	1 A X - Ax 12	<u>赤 林 碑</u> 羔	s 🖓 🖬 🖕					
		: 🖼 🗛 🗔	- 🖂 (A. M.)	V A. C A. A. A		-	M.	× - 4 🖶 😵 :	Automatic •	-							
			200 200 a		<u></u>	<u>. 1</u>				•							×
		1倍 Kerstin	n day 28 min_Alh ori	1 🔛 🦻 📋 X						T							
										Scan List				= x	Object Inspector		= ×
		Counts								Quantification Anchor	r Scan Data Pattern	List Peak List F	Refinement Control Scan List X		Selected object: Scan(s)		
		counts				1		Kerstin clay 28 min	Alh ori 1		erstin cl 3.008	2 0	0000 0000 12/03/20	20 15:1	Chi Position [*]		0 🔺
		10													2Theta Position [°]		0
															Gamma Position [°]	V ray pourder differentian	0
														_	Flat Sample Width [mm]	Anay powder dimacuon	30
_															Flat Sample Thickness [mm]		0.4
Scan	List	t													Custom Z-axis Value		0
												/	_		Custom Z-axis Name		
Out	antif	fication	Anch	or Scan Da	ta P	attern Li	st Pea	k List Ref	finemen	t Control	Scan I	ist D	c		Scall Statistics Peak Statistics		
-20	arra	neuron	i j nina	ior ocarroe		accent E	St T Co	in Libe preci	incinen	CONTROL	beam			_	Instrument Settings		
N	a 1	lin	Vici	Mama	Cto	rt nor	Omer	- Desition	V D	acition In	1	Mane	urad Data		Incident Beam Monochromator		
IN	0. 1		VISI	Name	Sta	n pos	Omeg	a Position	A PO	osition [n	inij	weas	ured Date/		Spinner used	V	
			122	Varatio al		2 0092		0.00	00	,	0.0000	10/00	(2020 15:11		Mode Linear Detector	Scanning	
			N.	Kersun d.		5.0002		0.00	00		0.0000	12/05	/2020 15:1		Length Linear Detector [°20]	Conner (Cu)	2.122
															Tube Current [mA]	Copper (Cu)	40
															Tube Tension [kV]		45
	_									_					K-β Filter Material	Ni	
	4	<u>x</u> , •													K-β Filter Thickness [mm]		0.02
		AM						1							Divergence Silt Type Fixed Div. Silt Size [9]	Fixed	0.23026
	-					J									Irradiated Length [mm]		10
					-	n									Diffractometer	000000011020275	
		-													Sample Length [mm]		10
		Inc	ident Be	eam Mask Po	sition						10	9			Receiving Slit Size [mm]		0.1
															Goniometer Radius [mm]		240
		Shifts													Temperature [°C]		25
		- 20111112	·												Humidity [%]		0 🔳
		chi	A Donitiv	no by Fond1		5			_						Offset		0
		SUI	rt Positi	on by [-20]		-2									Incident Beam Mask Present	V	
															Incident Beam Soller Slit Pre	V	
		Set	: Minimu	m (cts)							1/0.355				Incident Beam Mask Width [6.6
															Incident Beam Mask Position		109
		Set	Maxim	im [cts]							24348-1	3			Shifts		
		000	PIGAIIII	an feral							2 10 10/1				Shift Position by [°28]	-2	\$
		ر ار ۵	L Catal												Set Minimum [cts]		170.3551
		Add	i [Cts]									0			Add [cts]		21010.13
		-				2 2 22									Scale Intensity by ctivar	Windows	1
		Sca	ale Inter	sity by c+	War	Wind	10W/					1			Add Poisson Noise [ESD]	guración para activar Wi	indows. 1
				ACL	val	VVIII	10113)					Alboran - 🕰	¥4	La Dadiation		
		Δde	Poisso	n Noise [ESI	1							1		*			
		- Aut	11 01000	THOISE LEGE	Cont	10urac	ión na	ra activa	ar Min	anne		-					

4. For the analysis of our diffractogram we have to select the peaks using «Treatment» and «Search Peaks» and «Accept». If the values of «Minumum significance» and «Minimum tip width Gonio» are too high, only the highest intensity peaks are marked (if we decrease the values the program will also select the smaller peaks).

Example of a diffractogram with selected peaks (marked by a line and a «V»).

5. For the «automatic» analysis of our diffractogram by comparison with reference data files included in the software database, we choose «Analysis» and «Execute Search & Match» and click «Search» and "OK". The program gives us a list of possible candidates, indicating the match (Score, orange column) of the peaks of each candidate with our sample.

	🏠 Hig	ghScore - Kerstin clay 28 min_Bacteria								
	Po	s. [°20]: d-spacing [Å]:	Analusia Da	Counts:						
	; Fue	Edit view freatment Reference Fatterns	Analysis Ke		» 🖬 🗗 🧳 🖉 📽 🗶 🗗 🔃 📦	• (A) • 🕼 🔒	1. 浙江大学家公式任圣!	á 🗊 🖸 📃 🚦		
	: 💌	1 📈 da • 🛌 🗛 🗛 🏎 • 🗛 😋 🌆		Analyzis	Panaita Taala Custami	a Windo	u Hala			
		🖀 Kerstin day 28 min_Bacteria 🚡 🤌 🗋	х	Analysis	Reports Tools Custom	<u>ze w</u> indo	v <u>ri</u> cip			
		Counts	Y	y y <u>S</u> ea	rch & Match 🔹 🦓	Execute Se	arch & Match	Peak List Refinement Control Scan List		
	 10				۵ 📃		*	Search & Watch - [Untitled]		X
	9							Restrictions Parameters Autom	a <u>ti</u> c	
		15000 -								Search
	<u>, (1</u>							None		
Candidates			O Sea	arch				Restriction set Edit Eli	ements from XRE	
canuluates.			- 500				andidates:	Celect restriction set		
No. Ref. Code		Mineral Name	🕈 s	Compound Na.	Chemical Formula	Scal 📥	No. Ref. Code Mineral Nam 1 CDD 01-089-1961 Quartz Iow, d	Selectresujcuonset	.	
1 1000 01-08	9-196	51 Quartz low, dau	44	Silicon Oxide	Si O2	0.🔳	2 UCDD 01-070-2517 Quartz low - 1 3 UCDD 01-070-3755 Quartz 4 UCDD 01 089 8935 Quartz SGA			
2 100 01-07	0-251	17 Quartz low - the	43	Silicon Oxide	Si O2	0.	5 CDD 01-083-0539 Quartz 6 CDD 01-083-0539 Quartz 6 CDD 01-078-1252 Quartz Iow, s	© S <u>u</u> bset	Select Su <u>b</u> set File	OK
3 1000 01-07	0-375	55 Quartz	41	Silicon Oxide	Si O2	0.	7 1Cpp 01-089-8936 Quartz SGA 8 1Cpp 01-077-1060	<u>File name:</u>		Cancel
4 ICDD 01-08	9-893	35 Quartz \$GA	41	Silicon Oxide	Si O2	0.	10 CDD 01-085-0457 Quartz low 11 CDD 01-083-2465 Quartz low, s			More >>
5 100 01-08	3-053	39 Quartz	41	Silicon Oxide	Si O2	0.				
6 CDD 01-07	8-125	52 Quartz low, syn	41	Silicon Oxide	Si O2	0.				
7	9-893	6 Quartz \$GA	41	Silicon Oxide	Si O2	0.				
8 JCDD 01-07	7-106	50	40	Silicon Oxide	Si O2	0.				
9 JCDD 01-08	6-156	50 Quartz	39	Silicon Oxide	Si O2	0.				
10 01-08	5-045	57 Quartz low	39	Silicon Oxide	Si O2	0.				
11 000 01-08	3-246	55 Quartz Iow, syn	39	Silicon Oxide	Si O2	0. 🔻				
						- F	II 🖄 🏠 🕹 🛣 🕮	🕂 🗶 💿 💡 i Alboran 🔹 😤 😓		

6. Once the reference mineral with the positions and intensities of peaks that fit best those of our sample (generally the phase with the highest «Score», orange column) has been selected, we drag it to the list of «Accepted Ref. Pattern Name». The program indicates the peaks of our sample that still need to be assigned (V) and automatically selects the next phase in the list whose peaks coincide with unidentified peaks.

«Manual» analysis

In many cases the automatic analysis gives satisfactory results. However, we have to consider that the software chooses candidate minerals based on similarity of the position and intensity of their peaks. We have to use common sense to select the «true» minerals from the list and exclude those with «exotic» compositions. In the case of more complex diffractograms, it may be necessary to do an additional «manual» analysis, looking for specific mineral phases. In the case of construction materials, it is useful to first look for the maximum intensity peaks of the most common minerals (see below) using their d_{hkl} and mark all peaks of the identified phase. Then you would search for phases that match the peaks that have not been assigned to any of the «common» minerals.

Quartz (3.34 Å) Calcite (3.03 Å) Dolomite (2.88 Å) Feldspars (~3.20 Å) Gypsum (~7.60 Å) Clays (~4.50 Å), including smectites, illite, kaolinite etc.

«Manual» analysis

7. There is also the possibility to search for a specific phase by choosing «Reference Patterns» and «Restrictions». We select «Strings» and we introduce the name of the mineral phase (Quartz) and press «Load».

8. All the files of the particular mineral in the database appear in the list «Accepted Ref. Pattern Name». We should choose the most «suitable» candidate. Duplicates can be removed by selecting them and pressing «Delete».

9. The program allows the comparison of the similarity of the peaks of our sample with several reference mineral files at the same time by choosing the reference files from the list «Accepted Ref. Pattern Name» and selecting «Pattern View».

🛣 HighScore - Kerstin clay 28 min_Alh ori 3												
Po	s. [°20]: 45.944	d-spacing [Å]: 1.9737 Counts:	Ŧ									
<u>F</u> ile	<u>E</u> dit <u>V</u> iew Treat	t <u>m</u> ent Reference <u>P</u> atterns <u>A</u> nalysis <u>R</u> eports <u>T</u> ools	<u>C</u> ustomize <u>W</u> indow	<u>H</u> elp								
	📈 Ju 🕶 🚾	M M A₂ • M ⊖ M M A₂ •		• 5 11 11 11	<u>s</u> 2 3	X □ □ □ • ○ • □	· A A S A & A I					
	Kerstin day 28	8 min_Alh ori 2 🏽 Kerstin day 28 min_Alh ori 3 🙍 😭	🤌 🗋 🗙									
							Pattin List			•	×	
							Quantification Anchor Scan D	Pattern List X Peak List Refir	nement Control	Scan List	-	
		Peak List					No. Visi Ref. Code	Compound Na Chemical Form	n Score Scal	le Display Co. 📥		
₩ ₽				Accep	oted Re	ef. Pattern, 00-002-0	458					
		Muestra		No.	Visi	Pef. Code	Compound Na	Chemical Form	Score	Scale	Display Co.	-
				1	V	CDD 00-001-0649	Silicon Oxide	Si O2	20	0.296	Blue	≣
				2	\checkmark	🕼 00-002-0458	Silicon Oxide	Si O2	Un	0.139	Lime	ш
1		Ficha 1		3		CDD 00-002-0471	Silicon Oxide	Si O2	21	0.043	Gray	
				4		CDD 00-003-0419	Silicon Oxide	Si O2	25	0.129	Mar	
()				5		CDD 00-003-0427	Silicon Oxide	Si O2	13	0.193	Aqua	1
1 <u>1</u> .		Ficha 2		6		CDD 00-003-0444	Silicon Oxide	Si O2	5	0.047	Fuc	
<u>×</u> • ₩				7		CDD 00-007-0346	Silicon Oxide	Si O2	Un	0.010	Yell	
14				8		CDD 01-070-3755	Silicon Oxide	Si O2	36	0.548	Red	
/Nr.		10 20	30	9		ICDD 01-074-1811	Silicon Oxide	Si O2	18	0.034	Blue	•
			Position [°2θ] (-				· ·	
	4					Patte	rn View					
	Isolines View	😥 3D View 🔀 2D View 🕅 Compare View 🕅 Ana	lyze View 🔛 Pattern Vie	ew								
	Additional Graphics					•	×					
		Residue + Peak List										
		Accepted Patterns	1. Marsh									
		Accepted Patterns										
: 💷	ClipAllToZoom 🧾	Default 📰 IdeAll 📰 IdeCom 📰 IdeMin 📰 IdMi	ne2 뺊 Merge PDF scan	s 🖭 Mino	rMinerals 📃	MultiRiet 📰 Overlay Scans 📰 Print	IdeAll 🝦 🕅 🧟 🗠 - 🛓 -	· 🔏 🏛 👥 📇 🗛 🎯 🖕 🕅	boran	- 😤 🔀		
				_					_			

10. The program allows to view the information of the reference mineral files (including the d_{hkl} of each peak), by double clicking with the right mouse button on the Ref. Code of the selected mineral file.

11. To analyze several samples at the same time use «File» and «Insert» to open additional sample files.

12. There are several options to compare different samples, for example: «Compare View» (you see the diffractograms stacked on top of each other) or «2D View» (you see the diffractograms separately, one above the other).

13. By default the program analyzes the first sample. If you want to analyze a different sample, you have to select it with a double «clic» of the right mouse button and choose «Take as Anchor Scan».

The analyzed diffractogram can be stored as a pdf file.

Quantification of mineral phases using XRD

Generally, commercial software allows a more or less reliable automatic quantification. A high precision quantitative analysis requires the application of the Rietveld method (advanced XRD analysis). In general, the XRD analysis is semiquantitative and in many cases we have to assume an error of approximately ± 5 wt% (in the case of clay minerals up to ± 10 wt%). Considering that many building materials are quite complex and contain several mineral phases including clays, a «semimanual» quantification is recommended. The automatic and semimanual methods are described below, using experimental reflective power values and the general peak of clays at ~4.50 Å (if the sample contains clay minerals) in the case of the latter.

14. For a correct quantification we have to ensure that all peaks are selected and separated adequately. This can be verified by selecting a specific zone using the left mouse button.

Here we see the effect of a reduction in the «Minimum tip width Gonio» on the peak separation. To obtain the full view of the diffractogram again we use the right mouse button and select «Zoom Out».

15. Once we have selected all peaks, we click on «Execute Fitting» in order to improve the curve fitting for each peak.

Below we see how the curve fitting influences the value of the peak area (counts). This information can be obtained by selecting «Peak List».

uan	tification A	nch	or Scan D	ata Pattern List Pe	ak List 🗙 Refinement	Control Scan List					
No.	Pos. [°20]	d	-spacing	Height [c Sha.	Area [cts*°2θ] State	us Crystallite Size or	nly [Å 📥				
1	4.204	P	eak Lis	st include	00 54 401		24				х
2	8.859										
4	11.619		Quan	tification An	chor Scan Data	Pattern Lis	t Peak	List 🗶 Refine	ement C	ontrol Scan List	
5	12.500	Г	No.	Pos. [°20]	d-spacing	Height (c	Sha	Area (cts*°20)	Status	Crystallite Size only [Å	
6	17.807	H		4 20 42	01.01772	140.17	0.000	54.40	land.	24	
7	18.589		1	4.2042	21.01/73	146.17	0.600	54.48	Incl	24	
8 9	19.815		2	8.8595	9.98151	575.72	0.600	44.71	Incl	210	
10	20.839		3	9.1360	9.68002	57.13	0.600	5.32	Incl	133	
11	23.032	Γ	4	11.6197	7.61587	1872.05	0.600	145.37	Incl	207	
13	25.373	Γ	5	12.5004	7.08126	78.12	0.600	7.28	Incl	132	
14 15	26.609 26.866	F	6	17.8077	4,98097	154.38	0.600	9,59	Incl	2827	
16	27.834	F	7	18,5897	4,77315	15.21	0.600	5.67	Incl	24	
17	28.311	H		10.5051		13121	0.000	5101			
18	29.077		8	19.8153	4.48061	38.59	0.600	9.59	Incl	37	
20	30.925		9	20.7000	4.29106	1242.01	0.600	96.45	Incl	201	
21	31.081		10	20.8393	4.26271	800.38	0.600	49.72	Incl	2840	
22	33.328		11	23.0329	3.86146	139.34	0.600	21.64	Incl	63	
24	34.504	F	12	22 2584	2 90920	305 34	0.600	23 71	Incl	200	
25	34.899	H	12	23,3304	2.00039	505,54	0.000	25.71	met	200	
26	35.936		13	25.3734	3.51033	21.07	0.600	10.47	Incl	18	
27	37.339	۲	- 14	26.6098	3.34996	3035.81	0.600	188.59	Incl	2870	
29	39.4310	0	2.285	27 370.33 0.6	00 51.76 Incl.		75				

ant	ification A	ncho	or Scan Dat	a Pattern List	Peak List	X Refine	ment Co	ontrol Scan List							
о.	Pos. [°20]	d	spacing	Height [c S	iha Ar	ea [cts*°2θ]	Status	Crystallite Size or	nly [Å 📤						
1	4.204	2	21.01773	3 146.17	0.600	54.48	Incl		24						
2	8.859	ÎΡ	eak Lis	t	0.000		1000		210						х
3	9,130														
5	12,500	Quantification Anchor Scan Data Pattern List Peak List X Refinement Control Scan List													
6	17.807	Г	No	Por P2A	d	nacing	E F	leight (c	Sha	Area (ct	c**2A1	Statur	Covetallite S	ize oply [Å	
7	18.589	Ŀ	140.	F03. [20]	u-3	spacing		reight [c	5110	Area [et	3 20]	Status	crystanite 5	ize only [#	
8	19.815		1	4.20	42	21.017	73	146.17	0.600		54.48	Incl		24	
9	20.700		2	8.85	95	9.981	51	575.72	0.600		44.71	Incl		210	
10	20.835	H	2	0.12	60	0.690	0.2	67.12	0.600		6.22	le cl		122	
12	23,358		2	9.15	80	9,600	02	57.15	0.600		5.52	inc		100	
13	25.373		4	11.61	97	7.615	87	1872.05	0.600	1	145.37	Incl		207	
14	26.600		5	12.50	04	7.081	26	78.12	0.600		7.28	Incl		132	
15	26.823		6	17.00	77	4.000	07	154.20	0.000		0.50	la el		2027	
16	27.834		0	17.00	<i>''</i>	4,900	97	154,50	0.600		9.59	inci		2021	
18	29.077		7	18.58	97	4.773	15	15.21	0.600		5.67	Incl		24	
19	29.367		8	19.81	53	4.480	61	38.59	0.600		9.59	Incl		37	
20	30.925		0	20.70	00	4 201	06	1242.01	0.600		06.45	Incl		201	
21	31.081		3	20.70		4,291	00	1242.01	0.000		50.45	mu		201	
22	32.080		10	20.83	93	4.262	71	800.38	0.600		49.72	Incl		2840	
25 24	34,504		11	23.03	29	3.861	46	139.34	0.600		21.64	Incl		63	
25	34.899		12	23,35	84	3,808	39	305,34	0.600		23,71	Incl		200	
26	35.93€		12	20.00		2,000		200.04	0.000		10.17			200	
27	36.514		13	25.37	34	3.510	55	21.07	0.600		10.47	Incl		18	
28	37.339	ľ	14	26.60	07	3.348	31	2488.77	0.959		322.34	ncl		180	
20	40.254	_	2.2404	70.57	0.000	0.77	la al								

16. The program HighScore allows an automatic quantification considering all fases included in «Accepted Pattern».

Example of an automatic quantification considering all phases included in «Accepted Pattern».

In order to obtain the values (weight percent) of the semiquantification of each phase, we have to select «Pattern List» and the file of the corresponding phase. Below we see the semiquantification for calcium carbonate (calcite).

Pa	ttern	n List										ect Inspector		= x
¢	uant	ification	Anchor Sca	n Data	Pattern List 🛛 🗙	Peak List Refinem	ent Cor	ntrol Sca	n List		Se	lected object: Accepted	Pattern	
A	ссер	ted Re	f. Pattern: 00	-005-058	86						٩	Search		
П	No.	Visi	Ref. Code	0	Compound Na	Chemical Form	Score	Scale	Display	Co (Reference Code	@pp 00-005-0586	
۲	1	V	CDD 00-033	-0311	Calcium Sulfat	Ca S O4 !2 H2 O	46	0.312	BI	ue S		Display		
	2		CDD 01-078	-1252 \$	ilicon Oxide	Si O2	42	0.958	Li	me C		Visible	V	
F	3		1000 00-005	-0586 0	Calcium Carbo	Ca C O3	41	0.336	G	rav		Color	Gray	
	4		UCDD 01-075	0948 P	Potassium Alu	K AI3 Si3 O10 (23	0.325	M	ar		Manual Shift	· · · · · · · ·	
-	-	N.	01-015	-0540 [.	otassiani, nam	1010 515 515 616 (111	25	0.525				Manual Scale		
												Reset Pattern		
												Marker	Triangle	
												Search & Match		=
												Score		41
												Scale Factor		0.336
•				1111						•		Displacement [°2Th.]		0.000
S	elect	ed Can	didate: 01-08	83-0578	D Se	earch						Matched Lines		12
H							-					Total Lines		17
Н	No.	Ref. Co	ode	Mineral	Name て 🤉	S Compound Na	Chem	nical Form	nula S	Scal		Strong Unmatched Lines		0
H	247		1-089-4989			Manganese Tel.	. Mn I	e		1.		Spec. Displ. [µm]		0
Н	248		0-041-0406			Cadmium Bism	Cd Bi	2 Ge 06		1.		Delta d/d [%]		0.000
Н	249		1-084-0510			Silver Phosphate	Ag3 F	² 04		1.		Semi Quant [%]		22
H	250		0-038-0119			Ammonium Nio.	. ((NH	14)0.3 HO	0.7)1	1.		Names		
Н	251		1-078-2103			Iron Niobium F	. Fe (N	lb F6)		1.		Compound Name	Calcium Carbonate	
H	252		1-085-0593			Phosphorus Ni	(PN	CI2)4		1.		Mineral Name	Calcite, syn	
Н	253		0-013-0005			Manganese Ga	. Mn3	Ga2 Ge3	012	1.0		Chemical Name		
H	254		0-053-1276			Potassium Cop	K3 Cu	i P2 S7		1.		Common Name		
	255	ICDD 0	1-070-0702			Silver Phosphate	Ag3 F	04		1.		PDF Index Name	Calcium Carbonate	
	256	ICDD 0	0-046-0495			Thallium Cobal	. TI2 C	0 (P O3 F)2 !2	1.		Crystal Data Name		
Ļ	257	ICDD 0	0-046-0283			Lithium Rubidi	Li Rb	Zn O2		1. 🔻		ICSD Name		
•			1							•		Other Properties		-

We have to ensure that all selected files contain the RIR values in order to obtain an automatic quantification. We can obtain this information by selecting «Pattern List» and clicking on the selected file.

Author

The values of the «Reference Intensity Ratio» (RIR, similar to the reflective power), which are used by the program in order to perform the automatic quantification might vary for each file. Consequently, the quantification will vary depending on the selected files.

Gyps	um Patterns 9		Offset 🖌 Max offset 0.15 Convergence 0									
Set-Fil	Phase name	Q	Fract	FIR.	& W Unc Ab	m/rho	% W Xtal	% W Xtal+A	min %			
700982	Gypsum ·	1	0.683	1.90	14.5(0.3)	60.8	14.6(0.3)	14.1(0.3)	000.0			
700983	Gypsum ·	1	0.415	1.70	09.8(0.5)	60.8	09.9(0.5)	09.6(0.4)	000.0			
700984	Gypsum ·	1	0.682	1.70	16.2(0.3)	60.8	16.3(0.3)	15.8(0.3)	000.0			
720596	Gypsum ·	1	0.250	1.90	05.3(0.5)	60.8	05.3(0.5)	05.2(0.5)	000.0			
741433	Gypsum ·	1	0.682	1.60	17.2(0.3)	60.8	17.3(0.3)	16.8(0.3)	000.0			
741904	Gypsum ·	1	0.415	1.70	09.8(0.5)	60.8	09.9(0.5)	09.6(0.4)	000.0			
741905	Gypsum ·	1	0.415	1.90	08.8(0.5)	60.8	08.9(0.5)	08.6(0.4)	000.0			
761746	Gypsum ·	1	1.000	5.00	08.1(0.2)	60.8	07.5(0.2)	07.3(0.2)	000.0			

17. For a «semimanual» quantification, instead of measuring the height and calculating the absolute intensity as we have done in the case of the XRD exercises, we are going to use the number of counts corresponding to the area of the peak with the maximum intensity of each phase. If we place the mouse on top of the peak the program will mark the corresponding data in the «Peak List».

Semimanual quantification

For the quantification, we divide the number of counts corresponding to the area of each phase (peak of max. intensity) by the corresponding reflective power (R.P.). Note: Mineral names are included in English because identification programs use English names.

Phase	R.P.	d _{hkl} (Å)
Quartz	1.43	3.34
Calcite	1.05	3.03
Dolomite	1.03	2.88
Gypsum	0.70	7.56
Feldspars	0.98	~3.20
Strontianite	0.60	3.53
Celestite	0.52	2.97
Fluorite	2.00	3.16
Galena	1.50	2.96
Clays (mica, illite,		
kaolinite,		
smectite, ect.)	0.09	~4.50

18. For a semiquantitative analysis we create an EXCEL (or other spreadsheet software) document with the following columns: mineral name, d_{hkl} , reflective power, area counts, area counts divided by reflective power (AC/RP), weight percentage (wt%) and semiquantitative percentage (± 5 wt%). We simply have to enter the number of counts corresponding to the area of each mineral (red column), add all AC/RP values (green column), divide the AC/RP value of each mineral by the sum of AC/RP (blue column), and adjust the semiquantitative values by rounding to multiples of five.

Mineral	d _{hkl}	Reflective Power	Area Counts	AC/RP	Percentage (wt%)	Percentage semicuant. (wt%)
Phyllosilicates	4.49	0.09	512	(512/0.09 =) 5689	(5689/14039 =) 40	40
Quartz	3.34	1.43	11011	7700	55	55
Calcite	3.03	1.05	0	0	0	0
Dolomite	2.88	1.08	279	258	2	<5
Gypsum	7.05	0.70	0	0	0	0
Feldspars	3.21	1.03	404	392	3	<5
				Sum 14039		

19. We also have the possibility to present the results of an XRD analysis in a table, describing the abundance of each phase using the following terms: very abundant, abundant, less abundant and trace (see table). We have to consider that some minerals have very low reflective power, resulting in a relatively small peak despite a considerable amount of this mineral in the sample (for example smectites) or that the position of peaks of two minerals overlap (for example the 003 reflection of illite and 101 reflection of quartz), which may cause an underestimation of smectite or an overestimation of quartz if quantification is done by a «visual» estimate.

Sample	Phyllosilicates	Quartz	Calcite	Dolomite	Gypsum	Feldspars
Alhambra 1	+	+++	+	+	-	+
Alhambra 2	tr	++	++	+	-	+
Alhambra 3	+	+++	+	tr	tr	tr
Alhambra 4	++	++	+	tr	tr	tr
Alhambra 5	tr	++	++	+	+	-
Alhambra 6	-	++	++	-	tr	-

Example

+++ = very abundant

++ = abundant

+ = less abundant

tr = trace

- = not detected

20. For the presentation of the XRD data it is recommended to use a spreadsheet program such as EXCEL or ORIGIN and include the names of the minerals (official abbreviation *) and their d_{hkl} (see reference mineral files). To be able to open the files in these programs, you must convert them to text or xy using programs such as POWDLL.

*D.L. Whitney y B.W. Evans, Abbreviations of names of rock-forming minerals, Amer. Miner. 95 (2010) 185–187.