Poincaré Duality Angles on Riemannian Manifolds with Boundary

Clayton Shonkwiler

Department of Mathematics University of Pennsylvania

April 7, 2009

Realizing cohomology groups as spaces of differential forms

Let M^n be a compact Riemannian manifold with non-empty boundary ∂M .

de Rham's Theorem

de Rham's Theorem

Suppose M^n is a compact, oriented, smooth manifold. Then

 $H^p(M;\mathbb{R})\cong \mathcal{C}^p(M)/\mathcal{E}^p(M),$

where $C^{p}(M)$ is the space of closed p-forms on M and $\mathcal{E}^{p}(M)$ is the space of exact p-forms.

Riemannian metric

If *M* is Riemannian, the metric induces an L^2 inner product on $\Omega^p(M)$:

$$\langle \omega, \eta \rangle := \int_M \omega \wedge \star \eta.$$

When M is closed, the orthogonal complement of $\mathcal{E}^{p}(M)$ inside $\mathcal{C}^{p}(M)$ is

$$\mathcal{H}^{p}(M) := \{ \omega \in \Omega^{p}(M) : d\omega = 0, \delta \omega = 0 \}$$

Kodaira called this the space of *harmonic p-fields* on *M*.

Hodge's Theorem

Hodge's Theorem If M^n is a closed, oriented, smooth Riemannian manifold,

 $H^p(M;\mathbb{R})\cong \mathcal{H}^p(M).$

Hodge-Morrey-Friedrichs Decomposition

Define $i : \partial M \hookrightarrow M$ to be the natural inclusion.

The L^2 -orthogonal complement of the exact forms inside the space of closed forms is now:

$$\mathcal{H}^{p}_{N}(M) := \{ \omega \in \Omega^{p}(M) : d\omega = 0, \delta \omega = 0, i^{*} \star \omega = 0 \}.$$

Then

$$H^p(M;\mathbb{R})\cong \mathcal{H}^p_N(M).$$

Hodge-Morrey-Friedrichs Decomposition (continued)

The relative cohomology appears as

 $H^p(M, \partial M; \mathbb{R}) \cong \mathcal{H}^p_D(M).$

 $\mathcal{H}^{p}_{D}(M) := \{ \omega \in \Omega^{p}(M) : d\omega = 0, \delta \omega = 0, i^{*}\omega = 0 \}.$

Non-orthogonality

The concrete realizations of $H^p(M; \mathbb{R})$ and $H^p(M, \partial M; \mathbb{R})$ meet only at the origin:

```
\mathcal{H}^p_N(M)\cap\mathcal{H}^p_D(M)=\{0\}
```

...but they are not orthogonal!

Poincaré duality angles

Definition (DeTurck-Gluck)

The *Poincaré duality angles* of the Riemannian manifold M are the principal angles between the interior subspaces.

What do the Poincaré duality angles tell you?

Guess

If M is "almost" closed, the Poincaré duality angles of M should be small.

For example...

Consider \mathbb{CP}^2 with its usual Fubini-Study metric. Let $p \in \mathbb{CP}^2$. Then define

$$M_r := \mathbb{CP}^2 - B_r(p).$$

Topology of M_r

 ∂M_r is a 3-sphere.

 M_r is the D^2 -bundle over \mathbb{CP}^1 ($\simeq S^2(1/2)$) with Euler characteristic 1.

 M_r has absolute cohomology in dimensions 0 and 2.

 M_r has relative cohomology in dimensions 2 and 4.

Therefore, M_r has a single Poincaré duality angle θ_r between $\mathcal{H}^2_N(M_r)$ and $\mathcal{H}^2_D(M_r)$.

Find harmonic 2-fields

So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.

Such 2-forms must be isometry-invariant.

 $\operatorname{Isom}_0(M_r)=SU(2).$

Find closed and co-closed SU(2)-invariant forms on M_r satisfying Neumann and Dirichlet boundary conditions

The Poincaré duality angle for M_r

$$\cos\theta_r = \frac{1-\sin^4 r}{1+\sin^4 r}.$$

As $r \to 0$, the Poincaré duality angle $\theta_r \to 0$.

As
$$r \to \pi/2$$
, $\theta_r \to \pi/2$.

Generalizes to $\mathbb{CP}^n - B_r(p)$.

Poincaré duality angles of Grassmannians

Consider

$$N_r := G_2 \mathbb{R}^n - \nu_r (G_1 \mathbb{R}^{n-1}).$$

Theorem

- As $r \rightarrow 0$, all the Poincaré duality angles of N_r go to zero.
- As r approaches its maximum value of π/2, all the Poincaré duality angles of N_r go to π/2.

Conjecture

If M^n is a closed Riemannian manifold and N^k is a closed submanifold of codimension ≥ 2 , the Poincaré duality angles of

 $M - \nu_r(N)$

go to zero as $r \rightarrow 0$.

A question

What can you learn about the topology of M from knowledge of ∂M ?

Electrical Impedance Tomography

Induce potentials on the boundary of a region and determine the conductivity inside the region by measuring the current flux through the boundary.

The Voltage-to-Current map

Suppose f is a potential on the boundary of a region $M \subset \mathbb{R}^3$.

Then f extends to a potential u on M, where

$$\Delta u = 0, \quad u|_{\partial M} = f.$$

If γ is the conductivity on M, the current flux through ∂M is given by

$$(\gamma \nabla u) \cdot \nu = \gamma \frac{\partial u}{\partial \nu}$$

The Dirichlet-to-Neumann map

The map $\Lambda_{cl}: C^{\infty}(\partial M) \to C^{\infty}(\partial M)$ defined by

$$f\mapsto rac{\partial u}{\partial
u}$$

is the classical Dirichlet-to-Neumann map.

Theorem (Lee-Uhlmann)

If M^n is a compact, analytic Riemannian manifold with boundary, then M is determined up to isometry by Λ_{cl} .

Generalization to differential forms

Joshi–Lionheart and Belishev–Sharafutdinov generalized the classical Dirichlet-to-Neumann map to differential forms:

$$\Lambda:\Omega^p(\partial M)\to\Omega^{n-p-1}(\partial M)$$

Theorem (Belishev–Sharafutdinov)

The data $(\partial M, \Lambda)$ completely determines the cohomology groups of M.

Connection to Poincaré duality angles

Define the *Hilbert transform* $T := d\Lambda^{-1}$.

Theorem

If $\theta_1, \ldots, \theta_k$ are the Poincaré duality angles of M in dimension p, then the quantities

$$(-1)^{np+n+p}\cos^2\theta_i$$

are the non-zero eigenvalues of an appropriate restriction of T^2 .

Cup products

Belishev and Sharafutdinov posed the following question:

Can the multiplicative structure of cohomologies be recovered from our data $(\partial M, \Lambda)$? Till now, the authors cannot answer the question.

Theorem The mixed cup product

 $\cup: H^{p}(M;\mathbb{R}) \times H^{q}(M,\partial M;\mathbb{R}) \to H^{p+q}(M,\partial M;\mathbb{R})$

is completely determined by the data $(\partial M, \Lambda)$ when the relative class is restricted to come from the boundary subspace.

Some questions

- Poincaré duality angles for $G_4 \mathbb{R}^8 \nu_r (G_3 \mathbb{R}^7)$? Other "Grassmann manifolds with boundary"?
- What is the limiting behavior of the Poincaré duality angles as the manifold "closes up"?
- Can the full mixed cup product be recovered from (∂M, Λ)? What about other cup products?
- Can the L^2 inner product on $\mathcal{H}^p_N(M)$ and $\mathcal{H}^p_D(M)$ be recovered from $(\partial M, \Lambda)$?

Thanks!