Poincaré Duality Angles on Riemannian Manifolds with Boundary

Clayton Shonkwiler
Department of Mathematics
University of Pennsylvania

$$
\text { April 7, } 2009
$$

Realizing cohomology groups as spaces of differential forms

Let M^{n} be a compact Riemannian manifold with non-empty boundary ∂M.

de Rham's Theorem

de Rham's Theorem
Suppose M^{n} is a compact, oriented, smooth manifold. Then

$$
H^{p}(M ; \mathbb{R}) \cong \mathcal{C}^{p}(M) / \mathcal{E}^{p}(M)
$$

where $\mathcal{C}^{p}(M)$ is the space of closed p-forms on M and $\mathcal{E}^{p}(M)$ is the space of exact p-forms.

Riemannian metric

If M is Riemannian, the metric induces an L^{2} inner product on $\Omega^{p}(M)$:

$$
\langle\omega, \eta\rangle:=\int_{M} \omega \wedge \star \eta .
$$

When M is closed, the orthogonal complement of $\mathcal{E}^{p}(M)$ inside $\mathcal{C}^{p}(M)$ is

$$
\mathcal{H}^{p}(M):=\left\{\omega \in \Omega^{p}(M): d \omega=0, \delta \omega=0\right\}
$$

Kodaira called this the space of harmonic p-fields on M.

Hodge's Theorem

Hodge's Theorem
If M^{n} is a closed, oriented, smooth Riemannian manifold,

$$
H^{p}(M ; \mathbb{R}) \cong \mathcal{H}^{p}(M)
$$

Hodge-Morrey-Friedrichs Decomposition

Define $i: \partial M \hookrightarrow M$ to be the natural inclusion.
The L^{2}-orthogonal complement of the exact forms inside the space of closed forms is now:

$$
\mathcal{H}_{N}^{p}(M):=\left\{\omega \in \Omega^{p}(M): d \omega=0, \delta \omega=0, i^{*} \star \omega=0\right\} .
$$

Then

$$
H^{p}(M ; \mathbb{R}) \cong \mathcal{H}_{N}^{p}(M)
$$

Hodge-Morrey-Friedrichs Decomposition (continued)

The relative cohomology appears as

$$
\begin{gathered}
H^{P}(M, \partial M ; \mathbb{R}) \cong \mathcal{H}_{D}^{p}(M) \\
\mathcal{H}_{D}^{p}(M):=\left\{\omega \in \Omega^{p}(M): d \omega=0, \delta \omega=0, i^{*} \omega=0\right\} .
\end{gathered}
$$

Non-orthogonality

The concrete realizations of $H^{p}(M ; \mathbb{R})$ and $H^{p}(M, \partial M ; \mathbb{R})$ meet only at the origin:

$$
\mathcal{H}_{N}^{p}(M) \cap \mathcal{H}_{D}^{p}(M)=\{0\}
$$

...but they are not orthogonal!

Poincaré duality angles

Definition (DeTurck-Gluck)
The Poincaré duality angles of the Riemannian manifold M are the principal angles between the interior subspaces.

What do the Poincaré duality angles tell you?

Guess
If M is "almost" closed, the Poincaré duality angles of M should be small.

For example...

Consider $\mathbb{C P}^{2}$ with its usual Fubini-Study metric. Let $p \in \mathbb{C P}^{2}$. Then define

$$
M_{r}:=\mathbb{C P}^{2}-B_{r}(p)
$$

Topology of M_{r}

∂M_{r} is a 3-sphere.
M_{r} is the D^{2}-bundle over $\mathbb{C P}^{1}\left(\simeq S^{2}(1 / 2)\right)$ with Euler characteristic 1 .
M_{r} has absolute cohomology in dimensions 0 and 2 .
M_{r} has relative cohomology in dimensions 2 and 4.

Therefore, M_{r} has a single Poincaré duality angle θ_{r} between $\mathcal{H}_{N}^{2}\left(M_{r}\right)$ and $\mathcal{H}_{D}^{2}\left(M_{r}\right)$.

Find harmonic 2-fields

So the goal is to find closed and co-closed 2-forms on M_{r} which satisfy Neumann and Dirichlet boundary conditions.

Such 2-forms must be isometry-invariant.

$$
\operatorname{Isom}_{0}\left(M_{r}\right)=S U(2)
$$

Find closed and co-closed $S U(2)$-invariant forms on M_{r} satisfying Neumann and Dirichlet boundary conditions

The Poincaré duality angle for M_{r}

$$
\cos \theta_{r}=\frac{1-\sin ^{4} r}{1+\sin ^{4} r}
$$

As $r \rightarrow 0$, the Poincaré duality angle $\theta_{r} \rightarrow 0$.

As $r \rightarrow \pi / 2, \theta_{r} \rightarrow \pi / 2$.

Generalizes to $\mathbb{C} \mathbb{P}^{n}-B_{r}(p)$.

Poincaré duality angles of Grassmannians

Consider

$$
N_{r}:=G_{2} \mathbb{R}^{n}-\nu_{r}\left(G_{1} \mathbb{R}^{n-1}\right)
$$

Theorem

- As $r \rightarrow 0$, all the Poincaré duality angles of N_{r} go to zero.
- As r approaches its maximum value of $\pi / 2$, all the Poincaré duality angles of N_{r} go to $\pi / 2$.

A conjecture

Conjecture

If M^{n} is a closed Riemannian manifold and N^{k} is a closed submanifold of codimension ≥ 2, the Poincaré duality angles of

$$
M-\nu_{r}(N)
$$

go to zero as $r \rightarrow 0$.

A question

What can you learn about the topology of M from knowledge of ∂M ?

Electrical Impedance Tomography

Induce potentials on the boundary of a region and determine the conductivity inside the region by measuring the current flux through the boundary.

The Voltage-to-Current map

Suppose f is a potential on the boundary of a region $M \subset \mathbb{R}^{3}$.

Then f extends to a potential u on M, where

$$
\Delta u=0,\left.\quad u\right|_{\partial M}=f
$$

If γ is the conductivity on M, the current flux through ∂M is given by

$$
(\gamma \nabla u) \cdot \nu=\gamma \frac{\partial u}{\partial \nu}
$$

The Dirichlet-to-Neumann map

The map $\Lambda_{c l}: C^{\infty}(\partial M) \rightarrow C^{\infty}(\partial M)$ defined by

$$
f \mapsto \frac{\partial u}{\partial \nu}
$$

is the classical Dirichlet-to-Neumann map.
Theorem (Lee-Uhlmann)
If M^{n} is a compact, analytic Riemannian manifold with boundary, then M is determined up to isometry by $\Lambda_{c l}$.

Generalization to differential forms

Joshi-Lionheart and Belishev-Sharafutdinov generalized the classical Dirichlet-to-Neumann map to differential forms:

$$
\Lambda: \Omega^{p}(\partial M) \rightarrow \Omega^{n-p-1}(\partial M)
$$

Theorem (Belishev-Sharafutdinov)
The data $(\partial M, \Lambda)$ completely determines the cohomology groups of M.

Connection to Poincaré duality angles

Define the Hilbert transform $T:=d \wedge^{-1}$.

Theorem
If $\theta_{1}, \ldots, \theta_{k}$ are the Poincaré duality angles of M in dimension p, then the quantities

$$
(-1)^{n p+n+p} \cos ^{2} \theta_{i}
$$

are the non-zero eigenvalues of an appropriate restriction of T^{2}.

Cup products

Belishev and Sharafutdinov posed the following question:
Can the multiplicative structure of cohomologies be recovered from our data $(\partial M, \Lambda)$? Till now, the authors cannot answer the question.

Theorem

The mixed cup product

$$
\cup: H^{p}(M ; \mathbb{R}) \times H^{q}(M, \partial M ; \mathbb{R}) \rightarrow H^{p+q}(M, \partial M ; \mathbb{R})
$$

is completely determined by the data $(\partial M, \Lambda)$ when the relative class is restricted to come from the boundary subspace.

Some questions

- Poincaré duality angles for $G_{4} \mathbb{R}^{8}-\nu_{r}\left(G_{3} \mathbb{R}^{7}\right)$? Other "Grassmann manifolds with boundary"?
- What is the limiting behavior of the Poincaré duality angles as the manifold "closes up"?
- Can the full mixed cup product be recovered from $(\partial M, \Lambda)$? What about other cup products?
- Can the L^{2} inner product on $\mathcal{H}_{N}^{p}(M)$ and $\mathcal{H}_{D}^{p}(M)$ be recovered from $(\partial M, \Lambda)$?

Thanks!

