arXiv:0906.3217v1 [math.DG] 17 Jun 2009

On the three-dimensional Blaschke-Lebesgue
problem

Henri Anciaux®, Brendan Guilfoyle

Abstract

The width of a closed convex subset of Euclidean space is the distance between two
parallel supporting planes. The Blaschke-Lebesgue problem consists of minimizing the
volume in the class of convex sets of fixed constant width and is still open in dimension
n > 3. In this paper we describe a necessary condition that the minimizer of the Blaschke-
Lebesgue must satisfy in dimension n = 3: we prove that the smooth components of the
boundary of the minimizer have their smaller principal curvature constant, and therefore
are either spherical caps or pieces of tubes (canal surfaces).
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Introduction

The width of a convex body B in n-dimensional Euclidean space in the direction
is the distance between the two supporting planes of B which are orthogonal to .
When this distance is independent of «, B is said to have constant width.

The ratio Z(B) of the volume of a constant width body to the volume of the ball
of the same width is homothety invariant, as is the isoperimetric ratio. Moreover the
maximum of Z(B) is attained by round spheres, just as the minimum of the isoperi-
metric ratio. However, while the latter is not bounded from above, the infimum of 7
is strictly positive, since compactness properties of the space of convex sets ensures
the existence of a minimizer. It is known by the work of Blaschke and Lebesgue
that the Reuleaux triangle, obtained by taking the intersection of three discs cen-
tered at the vertices of an equilateral triangle, minimizes Z in dimension n = 2.
The determination of the minimizer of Z in any dimension is the Blaschke-Lebesgue
problem.

Recently several simpler solutions of the problem in dimension 2 have been given
(see [Ba],[Ha]), however the Blaschke-Lebesgue problem in dimension n > 3 appears
to be very difficult to solve and remains open. A crucial step in solving the Blaschke-
Lebesgue problem in dimension n = 2 consists of proving that the boundary of the
minimizer is made of arc of circles of radius equal to the width, hence the smooth
parts of the boundary have constant curvature.
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In this paper we give a property of the minimizer of the Blaschke-Lebesgue in
dimension n = 3 which generalizes the constant curvature condition observed in
dimension n = 2:

Main Theorem: Let B be a local minimizer of the Blaschke-Lebesque problem in
R3 with constant width 2w. The smooth parts of its boundary have their smaller
principal curvature constant and equal to 1/2w.

It is easily seen that the boundary of a constant width body in R?® cannot be
made only of spherical caps, so the minimizer of the Blaschke-Lebesgue problem
must have a more complicated geometry. On the other hand, K. Shiohama and
R. Takagi proved in [ST] that a non spherical surface with one constant principal
curvature must be a canal surface, i.e. the envelope of a one-parameter family of
spheres, or equivalently a tube over a curve (i.e. the set of points which lie at a fixed
distance from this curve). Thus the main theorem implies the following:

Corollary: Let B be a local minimizer of the Blaschke-Lebesque problem in R? with
constant width 2w. The smooth parts of its boundary are spherical caps or pieces of
tubes, both of them with radius equal to the width 2w of B.

Hence the problem is reduced to a kind of combinatoric one: minimize the volume
among the convex bodies whose boundary is made of spherical caps and pieces of
tubes, all of them of the same radius.

We observe that the constant width body having the best known ratio Z, Meiss-
ner body ([CG], [GK], [Bal]) satisfies this criterium: it is made of four spherical
caps centered at the vertices of a tetrahedron, and three tubes over three arc of cir-
cles. Therefore we cannot discard the possibility that it is the solution of problem,
although one might expect the minimizer to have tetrahedral symmetry. Another
interesting constant width body is the one obtained by rotation of the Reuleaux
triangle about an axis of symmetry. It is known that the latter minimizes the ra-
tio Z among constant width bodies with rotational symmetry (see [CCG|, [AG]).
It is interesting to note that this body satisfies our criterion as well: one part of
its boundary is a spherical part, and the other one is a tube over an arc of circle.
However it has a bigger ratio Z than Meissner’s, which in particular proves that the
solution of the Blaschke-Lebesgue problem does not have rotational symmetry.

As in [Ba|, [Ha] and [AG], our proof is based on the analysis of the support
function s which characterizes a convex body B of constant width 2w. The first
point consists of evaluating the volume of B and the area of its boundary in terms
of w and the function h = s —w (Theorem 2). Our formula allows us in particular to
prove easily the famous Blaschke formula, a functional relation between the volume,
the area and the width of B, and to recover the fact that the ratio Z is maximized
by round spheres. A crucial point is then the following observation, stated in [GK]:
flowing the boundary of a convex body along its inward unit normal vector field
preserves the constant width condition, as long as the evolving surface remains
convex. Moreover, the ratio Z decreases along the flow, so the minimizer of Z must
occur at the latest time such that convexity holds, and therefore must be singular.
This issue is easily controlled since the function h is invariant along the normal flow,



while the width 2w decreases linearly. Thus, there exists a positive number wq(h)
such that for any w > wq(h), the function s = h+w is the support function of some
convex body of constant width 2w. Hence, we can restrict the minimization process
to the class of support functions of the form s = h + wy(h), while all the necessary
information is carried by the function h. The main theorem is then obtained as
follows: assuming that the smaller principal curvature is not constant on some
smooth part of the boundary, we compute the second variation of Z for a suitable
local deformation of A to get a contradiction.

1 The geometry of constant width bodies

Let B be a convex body in R" and denote by s its support function, i.e. s(u) =
Sup, (U, z),Vu € S". Then the width w(u) of B in the direction u is related to
the support function by the following formula:

2w(u) = s(u) + s(—u),

where —u is the antipodal point of u in S™~'. It is known (see [Hol, [Ba]) that if B
has constant width it must be strictly convex; moreover it is proven in [Ho| that the
support function s of a constant width body is Ob!, i.e. it admits first derivatives
which are Lipschtiz continuous. By the Rademacher theorem, it follows that the
second derivatives are well defined almost everywhere and bounded. This fact will
be important later on since the geometry of the boundary of B will be expressed in
terms of the Hessian of h.

If B is a strictly convex body in R" whose support function s belongs to Ot
the following map

f: St - R
u  — s(u)u+ Vs(u)

is a parametrization of its boundary and wu is the Gauss map of dB.
Given an arbitrary strictly convex body B let w € R be the mean of its support
function s on S"7 %
Jon-1 s(u)dA

JondA

where dA denotes the canonical volume form on S”, and introduce the zero mean
map h := s — w.
Then B has constant width 2w if and only if the function A is odd, i.e.

w =

h(u) + h(—u) = 0.
The following inequality will be crucial for us:

Proposition 1 (Wirtinger inequality) Let h € C1(S"™1) with vanishing mean
and dA the volume element on S"~1. Then

1
h) = |2 = h2) dA >
£h) /@Ll(n—ﬂv' ) 20,

with equality if h is a first eigenfunction of the Laplacian on the sphere S™~1.
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This result is easily proved once the theory of spherical harmonics, generalizing
Fourier analysis to higher dimension, is developed (see [GW], p. 1288).

From now on, we restrict ourselves to the case of dimension 3. Our first step
consists of expressing the local geometry of the boundary of a convex body B in terms
of the data (h,w). We recall that the Hessian of h is the symmetric tensor defined
by Hess(h)(X,Y) = (VxVh,Y), where V denotes the Levi-Civita connection of
the canonical metric of S*. The two invariants of Hess(h) are its trace, which is the
well known Laplace-Beltrami operator A and its determinant, that we shall denote
in the following by H(h).

Theorem 1 The area element of OB, denoted by dA, is given by:
dA = (w* + aw + B)dA,

where we set

a:=2h+ Ah B:=h?+hAh+ H(h).
Moreover, its principal curvatures ki and ko, whenever they exist, take the following

form:
I 2w+ a+ /o — 40
12 = :

2(w? + aw + )

In the case where B has constant width, we deduce the following formulas for
its volume V(B) and the area of its boundary A(9B):

Theorem 2 Let B be a convex body of constant width 2w in R3. Then:

V(B) = i wé&(h),

A(OB) = 4mw* — E(h).

This allows us to recover the famous Blaschke formula, a functional relation
between the volume, the area and the width:

Corollary 1 (Blaschke formula) Let B be a convex body in R® of constant width
2w. Then:

V(B) = wA(OB) — gmﬁ.

The proofs of Theorem 1 and 2 are postponed at the end of the paper (Sections
4 and b5).



2 The Blaschke-Lebesgue problem

Let B be a convex body of constant width 2w and denote by B,, the ball of radius
w. Introduce the ratio

v(B) _ V(B)
V(B,) 4rwd/3’

1(B) =
By Theorem 2, we have

E(R)
Arw?/3

I(B) = Z(h,w) = 1

It follows from the Wirtinger inequality that the ratio Z(B) is less than or equal to 1
and the equality is attained when h is a first eigenfunction of the Laplacian. It is the
case of balls B = B,,. Moreover, for a given h, Z increases with respect to w. Hence
it reaches its minimum at the lowest value of w such that h 4+ w = s is the support
function of a convex body; we define wy(h) to be this crucial quantity. Increasing
(resp. decreasing) the value of w corresponds geometrically to flow the boundary of
B parallely to itself, i.e. along its outward (resp. inward) unit vector. Therefore the
map h corresponds to a one-parametre family of parallel surfaces, labelled by the
parametre w € [wy(h),00). The inward unit normal flow can be continued as long
as the surface is smooth. By Theorem 1, this is equivalent to the fact that the area
element dA is strictly positive. Hence, we deduce an explicit expression for wg(h):

wo(h) = inf {w € RT/w* + aw + >0 a.e. on S*}
and the convex body B corresponding to s = h 4+ wg(h) is always singular.

Remark 1 One can check that wo(h) = |[W(h)|] 1o g2y, where

mewyz_a+é“_ﬂ.

The directions u of S* where the area element vanishes corresponds precisely to
points f(u) of the boundary which are singular. The next theorem shows that in the
case of a local minimizer of Z, such situation actually occurs for almost every pair
of antipodal directions (u, —u). We point out that this result is roughly equivalent
to one of the main results of [BLO] (Theorem 6).

Theorem 3 Let (h,wo(h)) be a local minimizer of Z(h,w). Then for almost every
pair of antipodal points (u, —u) of S?, at one of the points u and —u, the area element
dA vanishes.

Proof. We proceed by contradiction assuming that there is an open subset A of S
such that (wo(h))? + awg(h) + 3 > 0 almost everywhere in AU (—A). Consider a
smooth map v such that v(u) 4+ v(—u) = 0,Vu € S and whose support is contained
in A and define the deformation h® := h + ev of h. For small ¢,

wo(he) = w(](h),



hence

E(h°) E(h) 0E(h,v) 62E(h,v) 9

w) wi) " ugm) T2 e TN
As h is a minimizer of Z, and thus a maximizer of £(h)/wZ(h), we must have both
dE(h,v) = 0 and 6*E(h,v) < 0. On the other hand the functional £ is quadratic, so
that 62E(h,v) = E(v), which is positive by the Wirtinger inequality (Proposition 1).
Finally, the support of v being contained in A, v cannot be a eigenfunction of the
Laplacian and we get the required contradiction.

<
2

3 Proof of the main theorem

We are now in position to prove our main result: assume that B is a local minimizer
of Z(B) and let h be the associated map. For sake of brevity we set w := wq(h) in
the following. Let A be an open subset of S? such that f(A) is a smooth part of
0B. Hence by Theorem 3, f(—A) is singular, i.e.

w? + a(—u)w + B(—u) = 0,Yu € A.

Since « is odd and 3 is even, it follows that w? — a(u)w + B(u) = 0, Yu € A.
Consequently

i _2w+oz:|:\/oz2—46_2w+od:\/a2—4aw+4w2
T taw+8) 2w+ aw + (aw — w?))

2wt adt|a— 2wl
B daw ’

so that ky = é and ky = ﬁ Hence the principal curvature ks is constant on A and
equal to the inverse of the width 2w of B. Finally, since a(u) > 0, we have

2w = —a(~u) + Vo (—u) — 46(-u) = a(u) + Vo (u) — 45(u) > a,

50 5o < é, that is k9 is the smaller curvature and the proof is complete.

4 The local geometry of 0B (proof of Theorem 1)

Let (x,%)(u) be an isothermic coordinate chart from an some dense subset of S* into
an open subset U of R? (for example the stereographic projection onto U = ]R2) and
denote by e” the conformal factor, i.e. € = |0,| = |0,|. In particular the area element
is given by dA = e"dxdy. The coefficients of the Hessian of & in the coordinates (x, y)
are:

a:=e*(Vy,Vh,o,),
b:=e > (Vy,Vh,0,) = e > (Vy,Vh,0,),
c:=e > (Vy,Vh,0,).

We recall that the boundary of B is parametrized by f(u) = s(u)u + Vs(u) =
s(u)u + Vh(u). In order to compute the first derivatives of f, we use the Gauss
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formula of the embedding of the sphere S? in R®, which relates the flat connection
D of R? to the Levi-Civita connection V on the sphere:

(DxY)(u) = (VxY)(u) + (X, Y)u.
It follows that
fo =50, + Vo, Vh = (s + a)d, + b0,

and
fy =80, +V5,Vh =00, + (5 + )0,

The trace a + ¢ = Ah and the determinant H(h) := ac — b* of the Hessian matrix
of h are intrinsic quantities, i.e. they depend only on the metric on S?, and not on
the choice of coordinates.

We then compute the coefficients of the first fundamental form of the immersion

f:
E = {fu. fo) = ((s + a)* + b*)e™, F = {fu, f,) = (25 +a+c)be™,

G = (fy, fy) = ((s +¢)> + b*)e*".
It follows that

VEG — F2e7% = (((s +a)? + ) ((s+c)* +b%) —4d(s+a+s+ 0)262)1/2

= (s"+s(a+c)+ac—b") = (w4 2h+a+c)w+h* + (a+c)h +ac — b?).
and we deduce the first part of Theorem 1:

dA =VEG — F2dxdy = VEG — F2e"*dA

- ((w2 + (2h + Ah)w + h? + hAh + H(h))dA.

Next we calculate the coefficients of the second fundamental form: since N(u) =
u, we have:

[:= <a:cN(u)> f:c> = <a’cu> f:c) = e2r(8 + CL),
m:= <890N(u)7 fy> = <890u7 fy> = 62Tb7
n = (9,N(u), f,) = (Oyu, fy) = € (s +¢).
Thus
IGHnE—-2mF =" ((s+a)((s +¢)* + %) + (s + ¢)((s + a)* + b*) — 26°(2s + a + ¢))

=" ((s+a)(s+c)2s+a+c)— b (25s+a+c))
= e (w® 4+ aw + B) (2w + )

and
In—m?*=¢e" ((s+c)(s+a)—b*) =" (W +aw+f).



Thus, at a point f(u) where dA does not vanish, the mean curvature and the Gaus-
sian curvature of 0B are given by

IG+nE —2mF 2w + «
2H = =
EG — F? w? + aw + (3
and
K In —m? _ 1 |
EG—-F? w+aw+ 0
so that
(2w + a)? — 4(w? + aw + B) a? —4p3

4(w? + aw + (3)? 4(w? + aw + (3)?

Hence the principal curvatures k; and ks of the immersion at the point f(u) are

2 + /o — 4
by — HA VIR = 20 roEver =45

2(w? 4+ aw + B)

5 Volume and area of 0B (proof of Theorem 2)

The only tricky part of the proof is the following lemma:
Lemma 1 If B has constant width,

H(h)dA = % |Vh|2dA.
SZ

SZ

Proof. Denoting by j the complex structure on S?, we have 50, = Oy, 1Oy = —0;.
The proof is based on the following formula for the curvature tensor on the sphere:

with X = 0,,Y = 0,,Z = Vh,W = jVh. On the one hand,

/U (X, Z)(Y, W) — (Y, Z)(X, W))dudy

= [ (00 VI G0r. V) = (0, V1) 0,5V h)) dady

:/(h§+h§)dxdy=/ |Vh|2dA.
U S?

On the other hand, using the fact that j is parallel, i.e. VxjY = 7V Y, we have

[ (@091, 59mdsdy = [ (V5,95,V0198) = (V5,Va, Vi j74) dody
U U

= / (—(Vo,Vh, Vo, jVh) + (Va,Vh, Vo, iVh))dzdy
U
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= / (—(Va,Vh, jVs,Vh) + (V,Vh, jVs,Vh))dzdy
U
9 / (Yo, Vh, jVo, Vh))dady
U
) / (b0, + cdy), (—bds + ad,))dzdy
U

=2 / (ac — b*)e* dxdy = 2 (h)dA,
U s?

hence the proof of the lemma is complete.

In order to calculate the volume of B, we use the divergence theorem. Recalling
that w is the unit outward vector of the smooth parts of 0B, and that f(u) =
s(u)u + Vh(u), we have

1 _ 1 _
V(B) = / (F(u), uhdA = = / s(u)dA
3 S2 3 SZ
= %/ (h 4+ w)(w® + aw + B)dA
S2
w? w? w )
=2 [ aa+Z | 3h+AR)dA+Z | (3R + 2hAh + H(h))dA

3 S2 3 S2 3 S2

+% / (h® + R2Ah + hH(h))dA.
S2

Since h has zero mean, the coefficient of w? vanishes. Moreover, the constant width
condition, i.e. the oddness of h, implies that all the cubic expressions of h and its
second derivatives are odd and hence have zero mean. Thus the constant term
vanishes. Finally, using Green formula and Lemma 1, we obtain:

s 2 1
V(B):%/S2dA+w/S2 <h2+ (_§+6) |Vh\2) dA

dmw3 1 9 9
=3 —w/82<§|Vh|—h>dA

3
_ 47‘(‘311) —wEh),

which is the required formula.
The computation of the area of 0B uses Lemma 1 as well and is straightforward:

A(OB) = /{)B A — /S (w? + (2 + Ah)w + (B + hAh + H(h))) dA

:w2A(SQ)+/ h2dA+/ |Vh\2dA—%/ |Vh[2dA
s? s? s?

= 47 — E(h).
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