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It’s my great pleasure to give a talk to you about our study.

Falcitelli-Farinola-Salamon (1994) said:

The theory of Kähler manifolds unites some of the most interesting fea-

tures of complex and Riemannian geometry and a vital branch of dif-

ferential geometry. However, the need for a wider understanding of the

more general class of almost Hermitian manifolds has been emphasized

by recent directions of research.
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It’s my purpose to:

(1) Survey: almost Hermitian, Kähler, almost quaternionic

Hermitian and quaternionic Kähler structures constructed on M × I,

where M is a manifold with almost contact metric structures and I

is an open interval.

(2) Application; the notion of a unitary-symmetric Kähler

manifold and its geometric properties.

(3) Investigation; almost Hermitian structures on the products

of two almost contact metric and Sasakian manifolds.
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1. Introduction:

Meaning of research; One can construct, by means of a natural

change of the product metric, almost Hemitian structures on product

manifolds of two almost contact metric manifolds. Since many almost

contact metric and Sasakian structures are now found, this technique

enables us to provide various kinds of almost Hermitian structures.

History; In the later half of 1950’s, Japanese geometers mainly

initiated to study certain types of almost Hermitian geometry, motivated

by finding out the nearly Kähler structure in S6 and the almost

Kähler structure on the tangent bundle of a Riemannian manifold.
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In 1960, Kotô established inclusion relations between various

classes. Unfortunately, in this early period, it was a weak point

for almost Hermitian geometry to hold two kinds of examples only,
mentioned above.

In 1971, Gray pointed out that nearly Kähler geometry

corresponds to weak holonomy group U(n). Consequently many

interesting theorems about the topology and geometry of nearly

Kähler manifolds were proved. Then from view point of weak

holonomy, Gray-Hervella (1980) gave a classification of almost

Hermitian manifolds in terms of the covariant derivatives of the
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fundamental forms. Falcitelli-Farinola-Salamon (1994) combined

the theory of Gray-Hervella and Tricceri-Vanhecke into a

representation-theoretic framework. In this direction, Cabrera

-Swann systematically have studied the interaction between these

classes when one has an almost hyper-Hermitian structure and in

general dimension found at most 167 different almost hyper-

Hermitian structures. However, these theories of classification are

rigorous but algebraic. Therefore it needs that explicit examples of

various type support now the bases of their theories.
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2. Preliminaries

The starting point was to write down the Kähler metric

of the complex space form in terms of the usual polar coordinate

Examples 3.1, 3.2).

The tools are almost contact metric and Sasakian structures

(φ, ξ, η, g).
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2.1 Almost contact metric and Sasakian structures

Let M be an odd-dimensional differentiable manifold.

Definition 2.1. An almost contact metric structure on M

is by definition a pair (Σ, g) of an almost contact structure

Σ = (φ, ξ, η) and a Riemannian metric g, where φ is a tensor

field of type (1,1), ξ is a vector field and η is a 1-form, satisfying

the following conditions : ∀ vector fields X and Y on M

(2.1) φξ = 0, η(φX) = 0, η(ξ) = 1, φ2X = −X + η(X)ξ,

(2.2) g(X,Y ) = g(φX, φY ) + η(X)η(Y ), g(X, ξ) = η(X).
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Definition 2.2. If (Σ, g) satisfies

(2.3) dη(X,Y ) = g(φX, Y )

∀vector fields X,Y on M , then (M, Σ, g) is called a contact

Riemannian manifold. Let M be an almost contact manifold and

define an almost complex structure J on M × R by

(2.4) J(X + f
d

dt
) = φX − fξ(X) + η(X)

d

dt

∀ vector field X of M . An almost contact structure is said to be normal

if J is integrable.
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Definition 2.3. An almost contact metric structure (Σ, g) is called

Sasakian if furthermore

(2.5) (∇Xφ)(Y ) = η(Y )X − g(X,Y )ξ

∀ vector fields X , Y on M .
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Definition 2.4. Suppose that a differentiable manifold admits three

almost contact structures (φ(p), ξ(p), η(p)), p=1,2,3 satisfying

(2.6) η(p)(ξ(q)) = δpq,

φ(p)ξ(q) = −φ(q)ξ(p) = ξ(r), η(p) ◦ φ(q) = −η(q) ◦ φ(p) = η(r),

φ(p)φ(q) − ξ(p) ⊗ η(q) = −φ(q)φ(p) + ξ(q) ⊗ η(p) = φ(r)

for ε(p, q, r) = 1 where ε(p, q, r) = 1 means that (p, q, r) is a cyclic

permutation of (1, 2, 3). Then (φ(p), ξ(p), η(p)), p = 1, 2, 3, is called

an almost contact 3-structure.
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Definition 2.5. A Riemannian metric g is said to be associated to the

3-structure if it satisfies

(2.7) g(φ(p)X,φ(p)Y ) = g(X,Y ) − η(p)(X)η(p)(Y ), p = 1, 2, 3

∀ vector fields X,Y on M . In such a manifold with an almost contact

3-structure there always exists a Riemannian metric g satisfying (2.7),

and (φ(p), ξ(p), η(p), g), p = 1, 2, 3 is called an almost contact metric

3-structure.
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Definition 2.6. An almost contact metric 3-structure (φ(p), ξ(p), η(p), g),

p = 1, 2, 3 is called a Sasakian 3-structure if each (φ(p), ξ(p), η(p), g)

is a Sasakian structure. Then ξ(1), ξ(2), ξ(3) are orthonormal vector fields,

satisfying

(2.8) [ξ(p), ξ(q)] = 2ξ(r)

for ε(p, q, r) = 1 . Such a manifold with a Sasakian 3-structure is called

a 3-Sasakian manifold, represented by M3S for simplicity.
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3. Almost Hermitian and Kähler structures on M × I and

unitary-symmetric Kähler manifolds

3.1 Almost Hermitian and Kähler structures on M × I

Let (M,φ, ξ, η, g) be an almost contact manifold of dimension 2p + 1

and I be R or an open interval. Then, we introduce an almost complex

structure J on the product manifold M × I, defined in such a way that

(3.1) J(X + T ) = φX +
1

λ
dt(T )ξ − λη(X)

d

dt

∀ vector field X of M, ∀vector field T of I, where λ is a positive (or

negative) function on M × I.
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Further, we define a Riemannian metric by

(3.2) G(X + T, Y + T ′) = αg(X,Y ) + βη(X)η(Y ) + dt2(T, T ′)

∀ vector fields X,Y of M , ∀ vector fields T, T ′ of I, where α, β are

functions on I, satisfying

(3.3) α > 0, α + β > 0.

Then it is easily seen that (J,G) is an almost Hermitian structure on

the product M × I if and only if their functions satisfy

(3.4) λ = ±
√

α + β.
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Then by summing up these results, we have the following propositions.

Proposition 3.1. Let (M,φ, ξ, η, g) be an almost contact metric

manifold. Let α = α(t), β = β(t) are functions on I, satisfying

(3.3). Then, (J,G) is an almost Hermitian structure on M ×

I. Moreover, (J,G) is is a Hermitian structure if and only if

(φ, ξ, η, g) is a normal almost contact metric structure.
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Proposition 3.2. Let (M,φ, ξ, η, g) be a contact Riemannian

manifold. Then the almost Hermitian structure constructed such as

Proposition 3.1 is almost Kählerian if and only if the functions

α and β satisfy

(3.5) β =
1

4
(α′)2 − α,

where we denote by α′ = dα
dt .
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Proposition 3.3 (Ejiri, Watanabe). Let (M,φ, ξ, η, g) be a Sasakian

manifold. Then the Hermitian structure constructed such as Propo-

sition 3.2 is Kählerian if and only if the function α is an in-

creasing function, satisfying (3.5).

If we put α = f2, then β = f2(f ′2 − 1)
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3.2 Application: Unitary-symmetric Kähler manifolds

Definition 3.1. A Kähler manifold (M,J, g) of complex dimension n

is said to be unitary-symmetric at a point m of M if the linear

isotropy group at m of automorphisms (i.e., holomorphic isometries) of

M is the unitary group U(n).
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Let us fix some notations for explaining some results. Let m ∈ M .

We define δ to be the distance from the origin O of the tangent space

Tm(M) at m to the fist tangential conjugate locus Qm. Define B̃δ =

{X ∈ Tm(M)||X| < δ}, where |X| =
√

gm(X,X). Then it is clear B̃δ

becomes a Riemannian manifold equipped with metric exp∗mg since the

exponential map at m expm : B̃δ → M is non-singular. Then Watanabe

(1988) have the following.
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Theorem 3.4. Let (M,J, g) be a complete, connected, simply-

conected Kähler manifold of complex dimension n ≥ 2 and m be

a point of M . Then the the following conditions (I) and (II)are

equivalent each other:

(I) (M,J, g) is unitary-symmetric at m.

(II) The metric exp∗mg and the fundamental form exp∗mΩ, pulled

back under the exponential mapping expm, are given by

(3.6)
exp∗mg = dr2 + f (r)2dΘ2 + f (r)2(f ′(r)2 − 1)η ⊗ η,

exp∗mΩ = 2f (r)f ′(r)η ∧ dr + f (r)2Ψ,

on the punctured ball B̃δ − {O} of radius δ in Tm(M),
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where f is a C∞ odd function on (−δ, δ) such that f ′(0) = df
dt(0) = 1.

Here we assume that δ is infinite when M is non-compact, and we

denote by (r, Θ) the usual polar coordinate system of Cn ≡ Tm(M),

by (dΘ2, φ, ξ.η) the standard Sasakian structure on the unit sphere

S2n−1 in Tm(M), and set Ψ(X,Y ) = dΘ2(φX, Y ).
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Example 3.1. Let (M,J, g) be a complex space form, endowed with

the canonical Kähler metric dσ2 of constant holomorphic curvature 4k.

Then, from Tachibana’s result,the Kähler metric is given, by using

the function f (r), in (II) of Theorem 3.4, as follows:

(1) for k = 0, M = Cn, f (r) = r,

(2) for k > 0, M = CPn, f (r) = 1√
k
sin

√
kr.

(3) for k < 0, M = CHn, f (r) = 1√
−k

sinh
√
−kr.

In fact, the Kähler metric dσ2 for the case (2) is give by

dσ2 = sin2rdΘ2 + sin2r(cos2r − 1)η ⊗ η + dr2.
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Example 3.2. Let us consider a Kähler metric g = (gαβ̄) in Cn, given

by the potential function

h(t) =

∫ t

0

1

s
log(1 + s)ds

for t = Σzαz̄α. Then it is complete and has positive curvature (Klem-

beck). By Itoh’s result, we have

exp∗0 g = dr2 + 2log(cosh r)dΘ2 + (tanh2 − 2log(cosh r))η ⊗ η,

exp∗0 Ω = 2(tanh r)η ∧ dr + 2log(cosh r)Ψ,

where exp∗0 is the differential of exponential mapping at the origin 0 of

Cn.
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Theorem 3.5. Let (ds2
can, Jcan) be the canonical Kähler structure

on the complex projective n-space CPn. Then, for a sufficient small

positive number ε there exists a one-parameter family of Kähler

structures (ds2
a, Jcan)(ε < a < ε) on CPn, satisfying

(1) For a = 0, ds2
a = ds2

can.

(2) For diffeent values a, b ∈ (−ε, ε) and for each λ > 0, ds2
a ̸= λds2

b.

(3)For any a (ε < a < ε), there is a point m of CPn and a constant

ℓ(a) such that (CPn, ds2
a) is a SCm manifold, that is, all geodesics

issuing from m are simple closed ones with length ℓ(a).
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3.3. Quaternionic Kähler structures on M3S × I

Definition 3.2. An almost hypercomplex structure on a manifold M

of dimension 4m is by definition a triple H = (J(p)), p = 1, 2, 3 of almost

complex structure, satisfying

(3.7) J(p)J(q) = J(r)

for ε(p, q, r) = 1(see Ishihara (1974), Alekseevsky-Marchiafava(1993) for

detail).

Definition 3.3 A Riemannian manifold is called a quaternionic

Kähler manifold if the holonomy group is a subgroup of Sp(n)·Sp(1).

Then it is known that in a quaternionic Kähler manifold there exist an
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almost hypercomplex structure J(p), p = 1, 2, 3 such that in any local

coodinate neighborhood U satisfies

(3.8)

∇XJ(1) = γ(X)J(2) − β(X)J(3),

∇XJ(2) = −γ(X)J(1) + α(X)J(3),

∇XJ(3) = β(X)J(1) − α(X)J(2)

for any vector field X on U , where ∇ is the Levi-Civita connection of

the Riemannian metric , and α, β, γ are certain local 1-forms defined in

U and vice versa. In particular, if all α, β, γ for each U are vanishing,

then the structure is called hyper-Kähler.



28

Let (φ(p), ξ(p), η(p), g), p = 1, 2, 3, be an almost contact metric 3-structure

on a manifold M of dimension 4m + 3. By I we denote R or some open

interval in R. For a positive function λ on I, we define an almost hyper-

complex structure J̃(p), p = 1, 2, 3, on M × I by (3.7), that is,

(3.8) J̃(p) =


φ(p) −λη(p)

λ−1ξ(p) 0

 , p = 1, 2, 3.
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Let α, β be real valued function on I, satisfying

(3.9) α(t) > 0, α(t) + β(t) > 0.

Then, we give a Riemannian metric on M × I by

(3.10) g̃ = α(t)g + β(t)
3∑

p=1

η(p) ⊗ η(p) + dt2

where dt2 is the usual metric on I. Then by (3.8) and (3.10) Nakashima-

Watanabe showed the following.



30

Proposition 3.6. Let (φ(p), ξ(p), η(p), g), p = 1, 2, 3 be an almost

contact metric 3-structure on a manifold M of dimension 4m + 3

and λ a function on I. Let α, β be real valued function on I, satisfy-

ing (3.9). (J̃(p), g̃), p = 1, 2, 3 is an almost quaternionic Hermitian

structure on M × I if and only if λ = ±
√

α + β.

Next, let (M,φ(p), ξ(p), η(p), g), p = 1, 2, 3 be a 3-Sasakian manifold of

dimension 4m+3 and α, β be real valued function on I, satisfying (3.15)

and λ =
√

α + β. A directly compute of ∇̃J̃(p), shows that the functions
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α and β

(3.11) 2
√

α + β =
dα

dt
, α

dβ

dt
= 4β

√
α + β,

then it is easily seen that (J̃(p), g̃), p = 1, 2, 3 is a quaternionic Kähler

structure. Moreover, putting α = f2 and hence β = f2(f ′ − 1), we see

that the metric (3.16) reduces to

(3.12) g̃ = f (t)2g + f2(f ′2 − 1)

3∑
p=1

η(p) ⊗ η(p) + dt2
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Proposition 3.7. Let (M,φ(p), ξ(p), η(p), g), p = 1, 2, 3 be a 3-Sasakian

manifold. An almost quaternionic Hermitian structure constructed

on M × I such as Proposition 3.6 is quaternionic Kähler if and only

if satisfies the ODE

(3.13) ff ′′ − (f ′)2 + 1 = 0.

with the conditions f > 0 and df
dt > 0 on I.
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Now, putting p = df
dt = f ′, we have f ′′ = pdp

df , from which (3.13) reduces

to

p2 − 1 = kf2,

where k is constant. Recall that p = f ′(t) and that f (t) > 0 and

f ′(t) > 0. Thus we have, up to a motion of parameter t, a generalization

of the result in Boyer-Galicki-Mann, since f ′ = 1 in the case k = 0.
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Theorem 3.8. Let (M,φ(p), ξ(p), η(p), g), p = 1, 2, 3 be a 3-Sasakian

manifold. Let f be a real valued function, satisfying the ODE

(3.13). Then we have

(1) If f (r) = r, then the product M × R+ with the cone metric in

(3.12) is hyper-Kähler.

(2) If f (r) = 1√
−k

sinh(
√
−kt), then the product M × R+ with the

cone metric in (3.12) is quaternionic Kähler, where k is a negative

constant.

(3) If f (t) = 1√
k
sin(

√
kt), the the product M × (0, π√

k
) with the met-

ric in (3,12) is quaternionic Kähler, where k is a positive constant.
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4. Almost Hermitian structures on various products

In this place, let us consider the product manifold M×M ′ of two almost

contact metric manifolds (M, Σ, g) and (M ′, Σ′, g′) respectively.

First, we introduce a class of almost complex structure J(ρ,σ)

on the product manifold M × M ′ :

(4.1)
J(X + X ′) = φX − {ρ

σ
η(X) +

ρ2 + σ2

σ
η′(X ′)}ξ

+φ′X ′ + {1

σ
η(X) +

ρ

σ
η′(X ′)}ξ′

for any vector fields X,Y of M and any vectors fields X ′, Y ′ of M ′,

where ρ, σ are functions on M × M ′ and further σ is a positive (or

negative) function.
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Next, we define a Riemannian metric G(α,β,γ,δ,µ) on M × M ′, by

(4.2) G(α,β,γ,δ,µ) = αg + βη ⊗ η + µ(η⊗ η′ + η′⊗ η) + γg′ + δη′⊗ η′

for any vector fields X,Y of M and any vector fields X ′, Y ′ of M ′, where

α, β, γ, δ and µ are functions on M × M ′, satisfying

(4.3) α > 0, α + β > 0, γ > 0, γ + δ > 0, (α + β)(γ + δ) > µ2.

Then it is easily seen from (2,1) and (2,2) that (J(ρ,σ), G(α,β,γ,δ,µ)) is

an almost Hermitian structure on the product M × M ′ if we define ρ

and σ by

(4.4) ρ =
µ

α + β
, σ = ±

√
(α + β)(γ + δ) − µ2

α + β
.
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In this section we denote the almost Hermitian structure (J(ρ,σ), G(α,β,γ,δ,µ))

simply by (J,G).

By a direct computation using (2.1) and (2,2) again, one can check that

the fundamental 2-form Ω of (J,G) is very simply as follows:

(4.5) Ω = αΨ + γΨ′ +
√

(α + β)(γ + δ) − µ2(η ∧ η′),

where we denote by Ψ(X,Y ) = g(φX, Y ) and Ψ′(X ′, Y ′) = g′(φ′X ′, Y ′)

for any vector fields X,Y of M and any vectors fields X ′, Y ′ of M ′, al-

though J and G are so complicatedly defined.
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Here, suppose that all α, β, γ, δ and µ in (4.2) are constants, satisfying

(4.3). So, if we define ρ and σ by (4.4), then the almost complex structure

J is integrable. Thus, we have a generalization of Caprusi’s result.

Theorem 4.1. Let us consider two normal almost contact met-

ric manifolds (M, Σ, g), (M, Σ, g). Suppose that all α, β, γ, δ and µ

in (4.2) are constants, satisfying (4.3). Then the Hermitian struc-

ture (J,G) on the product M × M ′ is a Kähler structure if and

only if both factors are cosymplectic.
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In particular, when α = 1, β = 0, γ = 1, δ = 0 and µ = 0, the almost

Hermitian metric (J,G) is a Hermitian structure which J is given by

Morimoto (1963) and G is product.
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4.1. Open question of Blair and Oubiña

It is natural to find out some conditions for almost Hermitian structures

defied on the product of two Sasakian manifolds to be Kählerian. This

is the open question due to Blair-Oubiña. But such a case, in general,

is incorrect as is seen from Calabi-Eckmann manifold, which is not

able to admit any Kähler metric.

Our motivation, that introduces (J,G) given in (4.1) and (4.2), is to

solve the open question of Blair and Oubiña and to construct almost

Hermitian structures of various type as many as possible.
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4.2 Almost Hermitian structures on the product M3S ×M ′

Let (φ(p), ξ(p), η(p), g), p = 1, 2, 3 be an almost contact metric 3-structure

on a manifold M of dimension 4m + 3 and (φ′, ξ′, η′, g′) an almost con-

tact metric structure on a manifold M ′. Then we define three kind of

almost complex structures

J(p), p = 1, 2, 3 on the product manifold M × M ′ : ∀ functios ρ, σ

(4.6)

J(p)(X + X ′) = φ(p)X − {ρ

σ
η(p)(X) +

ρ2 + σ2

σ
η′(X ′)}ξ(p)

+φ′X ′ + {1

σ
η(p)(X) +

ρ

σ
η′(X ′)}ξ′, p = 1, 2, 3.

for any vector field X of M3S and any vector field X ′ of M ′, where
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σ is a positive (or negative) function on M × M ′. Next, we define a

Riemannian metric on M × M ′, by

(4.7)

G(p) = αg+β
3∑

p=1

(η(p)⊗η(p))+µ
3∑

p=1

(η(p)⊗η′+η′⊗η(p))+γg′+δη′⊗η′.

p = 1, 2, 3 for any vector fields X,Y of M3S and any vector fields X ′, Y ′

of M ′, where α, β, γ, δ and µ are functions on M × M ′, satisfying the

conditions (4.3). Then one can see that for each p=1,2,3 (J(p), G(p))

given by (4.4) is an almost Hermitian structure on the product M3S ×

M ′. Then we ask the following two problems.
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Problem 4.1. How almost Hermitian geometry can one extend on

M3S ×M ′ with three kinds of almost Hermitian structures (J(p), G(p)),

p = 1, 2, 3 in contrast with quaternionic geometry ?

Problem 4.2. Let (φ(p), ξ(p), η(p), g), p = 1, 2, 3 be a Sasakian 3-

structure on a manifold M3S of dimension 4m + 3 and (φ′, ξ′, η′, g′)

a Sasakian structure on a manifold M ′ of dimension 2q + 1. Can one

construct quaternionic Kähler structures on M3S × M ′ when q is an

even number ?
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4.3 Almost Hermitian structures on the product M3S×M ′3S

Further, by extending Problem 4.2, we ask the following.

Problem 4.3. Let (M,φ(p), ξ(p), η(p), g), p = 1, 2, 3 be a 3-Sasakian

manifold M and (M,φ′
(q)

, ξ′
(q)

, η′
(q)

, g′), q = 1, 2, 3 another 3-Sasakian

manifold. How almost Hermitian geometry can one extend on M ×M ′

with nine kinds of almost complex structures ?
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On the other hand, it is known that there exists a homogeneous nearly

Kähler structure on S3 × S3. This structure on S3 × S3 is related to a

general construction due to Ledger and Obata: If G is any compact

simple Lie group, then G × G is a Riemannian 3-symmetric. As S3

admits a Sasakian 3-structure, we ask for the following.

Problem 4.4. Can one realize the homogeneous nearly Kähler struc-

ture on S3 × S3 in terms of Sasakian 3-structures on S3 ?

Problem 4.5. Can one construct the other non-homogeneous nearly

Kähler structure on S3 × S3 ?
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In particular, from Riemannian geometric point of view , we are very

interested in the following.

Problem 4.6. (The Hopf conjecture): Does S2 × S2 admit a

metric with positive sectional curvature ? Can one, by making use of

a similar change of metric to (4.7), construct a metric with positive

sectional curvature on S3 × S3 ?
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Thank you

Thank you for your kind attention !!


