Complete Flat Surfaces with two Isolated Singularities in \mathbb{H}^{3}.

Francisco Milán López

Joint work with Armando V. Corro and Antonio Martínez

Classical Results

Theorem (Volkov-Vladimirova (1971), Sasaki (1973))

The only complete examples of flat surfaces in \mathbb{H}^{3} (without singularities) are horospheres and hyperbolic cilinders.

Horosphere

Hyperbolic Cylinder

Classical Results

Up to now

The only known examples of complete flat surfaces in \mathbb{H}^{3} with isolated singularities are rotational ones.

Rotational flat surface

Problem

Existence and characterization of new examples of complete flat surfaces in \mathbb{H}^{3} with isolated singularities.

Solution with two isolated singularities and one end

- Singularities in a vertical line.
- Coordinates strongly related.

Main Schedule

(1) Recent Tools from Weierstrass representation
(2) Flat surfaces with n isolated singularities
(3) Rotational examples $(\mathrm{n}=1)$
(4) Solved Problem $(\mathrm{n}=2)$
(5) Unsolved Problem $(n>2)$
(6) Canonical examples $(\mathrm{n}=2)$
(7) Characterizations

Recent Tools

- From Bryant's representation for surfaces of mean curvature one in \mathbb{H}^{3} and our results about improper affine spheres, (Ferrer, Martínez, M, 1996):

Flat surfaces in \mathbb{H}^{3} admit a Weierstrass representation in terms of meromorphic data, (Gálvez, Martínez, M, 2000).

- Study of ends and singularities.

Recent Tools

- From Bryant's representation for surfaces of mean curvature one in \mathbb{H}^{3} and our results about improper affine spheres, (Ferrer, Martínez, M, 1996):

Flat surfaces in \mathbb{H}^{3} admit a Weierstrass representation in terms of meromorphic data, (Gálvez, Martínez, M, 2000).

- Study of ends and singularities.
- Generic behaviour and existence of complete examples with curves of singularities, (Kokubu, Rossman, Saji, Umehara, Yamada, Roitman)

Recent Tools

- From Bryant's representation for surfaces of mean curvature one in \mathbb{H}^{3} and our results about improper affine spheres, (Ferrer, Martínez, M, 1996):

Flat surfaces in \mathbb{H}^{3} admit a Weierstrass representation in terms of meromorphic data, (Gálvez, Martínez, M, 2000).

- Study of ends and singularities.
- Generic behaviour and existence of complete examples with curves of singularities, (Kokubu, Rossman, Saji, Umehara, Yamada, Roitman).
- Local classification of embedded isolated singularities, (Gálvez and Mira)

Recent Tools

- From Bryant's representation for surfaces of mean curvature one in \mathbb{H}^{3} and our results about improper affine spheres, (Ferrer, Martínez, M, 1996):

Flat surfaces in \mathbb{H}^{3} admit a Weierstrass representation in terms of meromorphic data, (Gálvez, Martínez, M, 2000).

- Study of ends and singularities.
- Generic behaviour and existence of complete examples with curves of singularities, (Kokubu, Rossman, Saji, Umehara, Yamada, Roitman).
- Local classification of embedded isolated singularities, (Gálvez and Mira).

Weierstrass representation

We consider the upper half-space model of \mathbb{H}^{3}, that is,

$$
\mathbb{R}_{+}^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{3}>0\right\}
$$

endowed with the metric

of constant curvature -1 and with ideal boundary

Weierstrass representation

We consider the upper half-space model of \mathbb{H}^{3}, that is,

$$
\mathbb{R}_{+}^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{3}>0\right\}
$$

endowed with the metric

$$
\langle,\rangle:=\frac{1}{x_{3}^{2}}\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

of constant curvature -1 and with ideal boundary

Weierstrass representation

We consider the upper half-space model of \mathbb{H}^{3}, that is,

$$
\mathbb{R}_{+}^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{3}>0\right\}
$$

endowed with the metric

$$
\langle,\rangle:=\frac{1}{x_{3}^{2}}\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

of constant curvature -1 and with ideal boundary

$$
\mathbb{C}_{\infty}=\left\{\left(x_{1}, x_{2}, 0\right): x_{1}, x_{2} \in \mathbb{R}\right\} \cup\{\infty\} \equiv \mathbb{S}^{2}
$$

Weierstrass representation

Let Σ be a $2-$ manifold and

$$
\psi: \Sigma \longrightarrow \mathbb{H}^{3}
$$

be a flat immersion. Then, the second fundamental form $d \sigma^{2}$ is definite. In fact, if the induced metric is given by

then

$$
d \sigma^{2}=\phi_{x x} d x^{2}+\phi_{y y} d y^{2}+2 \phi_{x y} d x d y
$$

From this Monge-Ampère equation we obtain holomorphic data for
the imnroner affine snheres and for the flat surfaces

Weierstrass representation

Let Σ be a 2 -manifold and

$$
\psi: \Sigma \longrightarrow \mathbb{H}^{3}
$$

be a flat immersion. Then, the second fundamental form $d \sigma^{2}$ is definite. In fact, if the induced metric is given by

$$
d s^{2}=d x^{2}+d y^{2}
$$

then

$$
d \sigma^{2}=\phi_{x x} d x^{2}+\phi_{y y} d y^{2}+2 \phi_{x y} d x d y
$$

with

$$
\phi_{x x} \phi_{y y}-\phi_{x y}^{2}=1
$$

From this Monge-Ampère equation we obtain holomorphic data for the improper affine spheres and for the flat surfaces.

Weierstrass representation

Let Σ be a 2 -manifold and

$$
\psi: \Sigma \longrightarrow \mathbb{H}^{3}
$$

be a flat immersion. Then, the second fundamental form $d \sigma^{2}$ is definite. In fact, if the induced metric is given by

$$
d s^{2}=d x^{2}+d y^{2}
$$

then

$$
d \sigma^{2}=\phi_{x x} d x^{2}+\phi_{y y} d y^{2}+2 \phi_{x y} d x d y
$$

with

$$
\phi_{x x} \phi_{y y}-\phi_{x y}^{2}=1
$$

From this Monge-Ampère equation we obtain holomorphic data for the improper affine spheres and for the flat surfaces.

Weierstrass representation

Theorem (Gálvez, Martínez, M (2000))

If we consider the Riemann surface $\left(\Sigma, d \sigma^{2}\right)$, then the hyperbolic Gauss maps $g, g_{*}: \Sigma \longrightarrow \mathbb{C}_{\infty} \equiv \mathbb{S}^{2}$ are holomorphic.

These maps associate each point $p \in \Sigma$, with the limit points of the geodesic at $\psi(p)$ orthogonal to $\psi(\Sigma)$

Weierstrass representation

Theorem (Gálvez, Martínez, M (2000))

If we consider the Riemann surface $\left(\Sigma, d \sigma^{2}\right)$, then the hyperbolic Gauss maps $g, g_{*}: \Sigma \longrightarrow \mathbb{C}_{\infty} \equiv \mathbb{S}^{2}$ are holomorphic.

These maps associate each point $p \in \Sigma$, with the limit points of the geodesic at $\psi(p)$ orthogonal to $\psi(\Sigma)$.

Weierstrass representation

- With these holomorphic data we obtained a conformal representation and different results for flat surfaces in \mathbb{H}^{3} :
- Description of classical examples.
- A complete end is conformal to a disk minus a point z_{0}. - g extends to z_{0} iff the associated ODE has a regular singularity - A regular end is embedded iff z_{0} is not a branch point of g

Weierstrass representation

- With these holomorphic data we obtained a conformal representation and different results for flat surfaces in \mathbb{H}^{3} :
- Description of classical examples.
- A complete end is conformal to a disk minus a point z_{0}.
- g extends to z_{0} iff the associated ODE has a regular singularity.
- A regular end is embedded iff z_{0} is not a branch point of g.
- Kokubu, Umehara and Yamada extended our representation to flat fronts, that is, flat surfaces with admissible singularities, $\left(\left(g, g_{*}\right): \Sigma \longrightarrow \mathbb{S}^{2} \times \mathbb{S}^{2}\right.$ is an immersion $)$, (2004) curves of singularities and studied their properties, (2005)

Weierstrass representation

- With these holomorphic data we obtained a conformal representation and different results for flat surfaces in \mathbb{H}^{3} :
- Description of classical examples.
- A complete end is conformal to a disk minus a point z_{0}.
- g extends to z_{0} iff the associated ODE has a regular singularity.
- A regular end is embedded iff z_{0} is not a branch point of g.
- Kokubu, Umehara and Yamada extended our representation to flat fronts, that is, flat surfaces with admissible singularities, $\left(\left(g, g_{*}\right): \Sigma \longrightarrow \mathbb{S}^{2} \times \mathbb{S}^{2}\right.$ is an immersion), (2004).
- With Rossman and Saji constructed complete examples with curves of singularities and studied their properties, (2005)

Weierstrass representation

- With these holomorphic data we obtained a conformal representation and different results for flat surfaces in \mathbb{H}^{3} :
- Description of classical examples.
- A complete end is conformal to a disk minus a point z_{0}.
- g extends to z_{0} iff the associated ODE has a regular singularity.
- A regular end is embedded iff z_{0} is not a branch point of g.
- Kokubu, Umehara and Yamada extended our representation to flat fronts, that is, flat surfaces with admissible singularities, $\left(\left(g, g_{*}\right): \Sigma \longrightarrow \mathbb{S}^{2} \times \mathbb{S}^{2}\right.$ is an immersion), (2004).
- With Rossman and Saji constructed complete examples with curves of singularities and studied their properties, (2005).

Weierstrass representation

Theorem (Kokubu, Umehara and Yamada (2004))

Let g and g_{*} be non-constant meromorphic functions on a Riemann surface Σ, such that $g(p) \neq g_{*}(p)$ for all $p \in \Sigma$,
(1) all the poles of the 1 -form $\frac{d g}{g-g_{*}}$ are of order 1 ,
(2) $\operatorname{Re} \int_{\gamma} \frac{d g}{g-g_{*}}=0$, for each loop γ on Σ and
(3) g and g_{*} have no common branch points.

If $\xi:=c \exp \int \frac{d g}{g-g_{*}}$, with $c \in \mathbb{C} \backslash\{0\}$.
Then, the map $\psi=\left(\psi_{1}, \psi_{2}, \psi_{3}\right): \Sigma \longrightarrow \mathbb{H}^{3}$ given by
is a singly-valued flat front. Conversely any non-totally umbilical
flat front can be constructed in this way.

Weierstrass representation

Theorem (Kokubu, Umehara and Yamada (2004))

Let g and g_{*} be non-constant meromorphic functions on a Riemann surface Σ, such that $g(p) \neq g_{*}(p)$ for all $p \in \Sigma$,
(1) all the poles of the 1 -form $\frac{d g}{g-g_{*}}$ are of order 1 ,
(2) $\operatorname{Re} \int_{\gamma} \frac{d g}{g-g_{*}}=0$, for each loop γ on Σ and
(3) g and g_{*} have no common branch points.

If $\xi:=c \exp \int \frac{d g}{g-g_{*}}$, with $c \in \mathbb{C} \backslash\{0\}$.
Then, the map $\psi=\left(\psi_{1}, \psi_{2}, \psi_{3}\right): \Sigma \longrightarrow \mathbb{H}^{3}$ given by

$$
\psi_{1}+\mathrm{i} \psi_{2}=g-\frac{|\xi|^{4}\left(g-g_{*}\right)}{|\xi|^{4}+\left|g-g_{*}\right|^{2}}, \quad \psi_{3}=\frac{|\xi|^{2}\left|g-g_{*}\right|^{2}}{|\xi|^{4}+\left|g-g_{*}\right|^{2}}
$$

is a singly-valued flat front. Conversely any non-totally umbilical flat front can be constructed in this way.

Weierstrass representation

From this theorem, one has:

- A harmonic function $u: \Sigma \backslash \mathcal{P}_{g} \longrightarrow \mathbb{R}$, given by

$$
u:=\operatorname{Re} \int \frac{d g}{g-g_{*}},
$$

where \mathcal{P}_{g} is the set of poles of g. (In our examples $\mathcal{P}_{g}=\emptyset$).

- A holomorphic function $F:=\frac{1}{g-g_{*}}$ on Σ, determined by

$$
d u+\mathrm{i} * d u=F d g,
$$

where $*$ denotes the standard conjugation operator. - g and $g-1 / F$ have no common branch points.

Weierstrass representation

From this theorem, one has:

- A harmonic function $u: \Sigma \backslash \mathcal{P}_{g} \longrightarrow \mathbb{R}$, given by

$$
u:=\operatorname{Re} \int \frac{d g}{g-g_{*}},
$$

where \mathcal{P}_{g} is the set of poles of g. (In our examples $\mathcal{P}_{g}=\emptyset$).

- A holomorphic function $F:=\frac{1}{g-g_{*}}$ on Σ, determined by

$$
d u+\mathrm{i} * d u=F d g,
$$

where $*$ denotes the standard conjugation operator.

- g and $g-1 / F$ have no common branch points.

Weierstrass representation

From this theorem, one has:

- A harmonic function $u: \Sigma \backslash \mathcal{P}_{g} \longrightarrow \mathbb{R}$, given by

$$
u:=\operatorname{Re} \int \frac{d g}{g-g_{*}},
$$

where \mathcal{P}_{g} is the set of poles of g. (In our examples $\mathcal{P}_{g}=\emptyset$).

- A holomorphic function $F:=\frac{1}{g-g_{*}}$ on Σ, determined by

$$
d u+\mathrm{i} * d u=F d g,
$$

where $*$ denotes the standard conjugation operator.

- g and $g-1 / F$ have no common branch points.

Thus, we can change the data $\left(g, g_{*}\right)$ by (g, u).

Weierstrass representation

From this theorem, one has:

- A harmonic function $u: \Sigma \backslash \mathcal{P}_{g} \longrightarrow \mathbb{R}$, given by

$$
u:=\operatorname{Re} \int \frac{d g}{g-g_{*}},
$$

where \mathcal{P}_{g} is the set of poles of g. (In our examples $\mathcal{P}_{g}=\emptyset$).

- A holomorphic function $F:=\frac{1}{g-g_{*}}$ on Σ, determined by

$$
d u+\mathrm{i} * d u=F d g,
$$

where $*$ denotes the standard conjugation operator.

- g and $g-1 / F$ have no common branch points.

Thus, we can change the data $\left(g, g_{*}\right)$ by (g, u).

Weierstrass representation

Theorem (Corro, Martínez, M (2010))

Let g be a non-constant meromorphic function on a Riemann surface Σ and u be a harmonic function as above.

$$
d s^{2}=\exp (-4 u)\left|\exp (4 u)\left(d F+F^{2} d g\right)-\overline{d g}\right|^{2}
$$

is a Riemannian metric, then the map $\psi=\left(\psi_{1}, \psi_{2}, \psi_{3}\right): \Sigma \longrightarrow \mathbb{H}^{3}$
is a well-defined flat immersion, with second fundamental form

And conversely.

Weierstrass representation

Theorem (Corro, Martínez, M (2010))

Let g be a non-constant meromorphic function on a Riemann surface Σ and u be a harmonic function as above. If

$$
d s^{2}=\exp (-4 u)\left|\exp (4 u)\left(d F+F^{2} d g\right)-\overline{d g}\right|^{2}
$$

is a Riemannian metric, then the map $\psi=\left(\psi_{1}, \psi_{2}, \psi_{3}\right): \Sigma \longrightarrow \mathbb{H}^{3}$,

$$
\psi_{1}+\mathrm{i} \psi_{2}=g-\psi_{3} \exp (2 u) \bar{F}, \quad \psi_{3}=\frac{\exp (2 u)}{1+\exp (4 u)|F|^{2}}
$$

is a well-defined flat immersion, with second fundamental form

Weierstrass representation

Theorem (Corro, Martínez, M (2010))

Let g be a non-constant meromorphic function on a Riemann surface Σ and u be a harmonic function as above. If

$$
d s^{2}=\exp (-4 u)\left|\exp (4 u)\left(d F+F^{2} d g\right)-\overline{d g}\right|^{2}
$$

is a Riemannian metric, then the map $\psi=\left(\psi_{1}, \psi_{2}, \psi_{3}\right): \Sigma \longrightarrow \mathbb{H}^{3}$,

$$
\psi_{1}+\mathrm{i} \psi_{2}=g-\psi_{3} \exp (2 u) \bar{F}, \quad \psi_{3}=\frac{\exp (2 u)}{1+\exp (4 u)|F|^{2}}
$$

is a well-defined flat immersion, with second fundamental form

$$
d \sigma^{2}=\exp (-4 u)|d g|^{2}-\exp (4 u)\left|d F+F^{2} d g\right|^{2}
$$

And conversely.

Weierstrass representation

Remark (Corro (2006))

The hyperbolic Gauss map g defines a horospheres congruence and $\exp (2 u) / 2$ is the radius function of each tangent horosphere to $\psi(\Sigma)$.

Flat surfaces with isolated singularities

Definition

Let Σ be a differentiable surface without boundary, $\psi: \Sigma \rightarrow \mathbb{H}^{3}$ a continuous map and $\mathcal{F}=\left\{p_{1}, \cdots, p_{n}\right\} \subset \Sigma$ a finite set. We say that ψ is a complete flat immersion with isolated singularities $\psi\left(p_{1}\right), \cdots, \psi\left(p_{n}\right)$, if ψ is a flat immersion in $\Sigma \backslash \mathcal{F}$, but ψ is not C^{1} at the points p_{1}, \cdots, p_{n}, and every divergent curve in Σ has infinite length for the induced (singular) metric.

- Around an (embedded) isolated singularity we have the conformal structure of an annulus (and a convex graph) (Gálvez and Mira (2005)).
- $d s^{2} \leq 2 \exp (-4 u)|d g|^{2}$ and from the classical result of Huber:

Flat surfaces with isolated singularities

Definition

Let Σ be a differentiable surface without boundary, $\psi: \Sigma \rightarrow \mathbb{H}^{3}$ a continuous map and $\mathcal{F}=\left\{p_{1}, \cdots, p_{n}\right\} \subset \Sigma$ a finite set. We say that ψ is a complete flat immersion with isolated singularities $\psi\left(p_{1}\right), \cdots, \psi\left(p_{n}\right)$, if ψ is a flat immersion in $\Sigma \backslash \mathcal{F}$, but ψ is not C^{1} at the points p_{1}, \cdots, p_{n}, and every divergent curve in Σ has infinite length for the induced (singular) metric.

- Around an (embedded) isolated singularity we have the conformal structure of an annulus (and a convex graph), (Gálvez and Mira (2005)).

Flat surfaces with isolated singularities

Definition

Let Σ be a differentiable surface without boundary, $\psi: \Sigma \rightarrow \mathbb{H}^{3}$ a continuous map and $\mathcal{F}=\left\{p_{1}, \cdots, p_{n}\right\} \subset \Sigma$ a finite set. We say that ψ is a complete flat immersion with isolated singularities $\psi\left(p_{1}\right), \cdots, \psi\left(p_{n}\right)$, if ψ is a flat immersion in $\Sigma \backslash \mathcal{F}$, but ψ is not C^{1} at the points p_{1}, \cdots, p_{n}, and every divergent curve in Σ has infinite length for the induced (singular) metric.

- Around an (embedded) isolated singularity we have the conformal structure of an annulus (and a convex graph), (Gálvez and Mira (2005)).
- $d s^{2} \leq 2 \exp (-4 u)|d g|^{2}$ and from the classical result of Huber:

Flat surfaces with isolated singularities

Proposition

Let $\psi: \Sigma \rightarrow \mathbb{H}^{3}$ be a complete flat immersion with isolated singularities $\psi\left(p_{1}\right), \cdots, \psi\left(p_{n}\right)$.
Then there is a compact Riemannian surface $\bar{\Sigma}, n$ disjoint discs $\mathcal{D}_{1}, \cdots, \mathcal{D}_{n} \subset \bar{\Sigma}$ and points $q_{1}, \cdots, q_{m} \in \bar{\Sigma} \backslash\left\{\mathcal{D}_{1} \cup \cdots \cup \mathcal{D}_{n}\right\}$ such that
endowed with the conformal structure induced by the second fundamental form has the conformal type of

Flat surfaces with isolated singularities

Proposition

Let $\psi: \Sigma \rightarrow \mathbb{H}^{3}$ be a complete flat immersion with isolated singularities $\psi\left(p_{1}\right), \cdots, \psi\left(p_{n}\right)$.
Then there is a compact Riemannian surface $\bar{\Sigma}, n$ disjoint discs $\mathcal{D}_{1}, \cdots, \mathcal{D}_{n} \subset \bar{\Sigma}$ and points $q_{1}, \cdots, q_{m} \in \bar{\Sigma} \backslash\left\{\mathcal{D}_{1} \cup \cdots \cup \mathcal{D}_{n}\right\}$ such that

$$
\Sigma \backslash\left\{p_{1}, \cdots, p_{n}\right\}
$$

endowed with the conformal structure induced by the second fundamental form has the conformal type of

$$
\bar{\Sigma} \backslash\left\{\mathcal{D}_{1} \cup \cdots \cup \mathcal{D}_{n} \cup\left\{q_{1}, \cdots, q_{m}\right\}\right\}
$$

The points q_{1}, \cdots, q_{m} are called the ends of ψ.

Flat surfaces with isolated singularities

Proposition

Each embedded complete end of a flat surface in \mathbb{H}^{3} is
biholomorphic to a punctured disc and the hyperbolic Gauss map g extends meromorphically to the punctured, that is, the end must be regular (and a convex graph).

Notes of the Proof

(Gálvez, Martínez, M (2000))
(Yu, Surfaces of constant mean curvature one in \mathbb{H}^{3} with irregular ends (2001))

Flat surfaces with isolated singularities

Proposition

Each embedded complete end of a flat surface in \mathbb{H}^{3} is biholomorphic to a punctured disc and the hyperbolic Gauss map g extends meromorphically to the punctured, that is, the end must be regular (and a convex graph).

Notes of the Proof

(Gálvez, Martínez, M (2000))

$$
\kappa=0 \sim O D E \sim H=1
$$

(Yu, Surfaces of constant mean curvature one in \mathbb{H}^{3} with irregular ends (2001))

Flat surfaces with isolated singularities

Theorem

If $\psi: \Sigma \rightarrow \mathbb{H}^{3}$ is a complete flat embedding with a finite number of isolated singularities, then ψ is globally convex.

Corollary
Every complete flat embedding $\psi: \Sigma \rightarrow \mathbb{H}^{3}$ with a finite number of isolated singularities and only one end is a graph over a finitely punctured horosphere and

Flat surfaces with isolated singularities

Theorem

If $\psi: \Sigma \rightarrow \mathbb{H}^{3}$ is a complete flat embedding with a finite number of isolated singularities, then ψ is globally convex.

Corollary
Every complete flat embedding $\psi: \Sigma \rightarrow \mathbb{H}^{3}$ with a finite number of isolated singularities and only one end is a graph over a finitely punctured horosphere and

$$
\Sigma \backslash\left\{p_{1}, \cdots, p_{n}\right\} \cong \mathbb{S}^{2} \backslash\left\{\mathcal{D}_{1} \cup \cdots \cup \mathcal{D}_{n} \cup\{q\}\right\} .
$$

Flat surfaces with isolated singularities

Consequence

The existence of complete flat embedding in \mathbb{H}^{3} with n isolated singularities and only one end is equivalent to the existence of the appropriate data $\left(g, g_{*}\right)$ or (g, u) on $\mathbb{C} \backslash\left\{\mathcal{D}_{1} \cup \cdots \cup \mathcal{D}_{n}\right\}$.

Flat surfaces with isolated singularities

First approach

As $d s^{2}=0$ on $\partial \mathcal{D}_{j}, j=1, \ldots, n$, one has

$$
\left|\frac{\exp (4 u)\left(d F+F^{2} d g\right)}{d g}\right|=1
$$

Then, we tried to recover (g, u) from meromorphic functions \widetilde{f}, \tilde{g} on $\mathbb{C} \backslash\left\{\mathcal{D}_{1} \cup \cdots \cup \mathcal{D}_{n}\right\}$ such that $\left|\frac{d \tilde{f}}{d \tilde{g}}\right|=1$ on the boundary. But the way is complicated.

> However, this idea gives directly the data for the regular solution of the Monge-Ampère equation $\phi_{x x} \phi_{y y}-\phi_{x y}^{2}=1$, in the plane minus n points, (Gálvez, Martínez, Mira (2005)).

Flat surfaces with isolated singularities

First approach

As $d s^{2}=0$ on $\partial \mathcal{D}_{j}, j=1, \ldots, n$, one has

$$
\left|\frac{\exp (4 u)\left(d F+F^{2} d g\right)}{d g}\right|=1 .
$$

Then, we tried to recover (g, u) from meromorphic functions $\widetilde{f}, \widetilde{g}$ on $\mathbb{C} \backslash\left\{\mathcal{D}_{1} \cup \cdots \cup \mathcal{D}_{n}\right\}$ such that $\left|\frac{d \widetilde{f}}{d \tilde{g}}\right|=1$ on the boundary. But the way is complicated.

However, this idea gives directly the data for the regular solution of the Monge-Ampère equation $\phi_{x x} \phi_{y y}-\phi_{x y}^{2}=1$, in the plane minus n points, (Gálvez, Martínez, Mira (2005)).

Rotational examples

The half hourglass is a flat complete embedding $\psi: \Sigma \longrightarrow \mathbb{H}^{3}$, with one isolated singularity and one end.
It has the elementary data

Rotational examples

The half hourglass is a flat complete embedding $\psi: \Sigma \longrightarrow \mathbb{H}^{3}$, with one isolated singularity and one end.
It has the elementary data

$$
g(z)=z, \quad g_{*}(z)=\frac{a+1}{a-1} z,
$$

Rotational examples

with

$$
z \in \Sigma=\mathbb{D}_{r}^{*}=\{z \in \mathbb{C} / 0<|z|<r\} \cong \mathbb{C} \backslash \mathcal{D}_{1}
$$

$$
\left.4 r^{2 a}=1-a^{2} \text { and } a \in\right] 0,1[.
$$

- The singularity is $\psi\left(\mathbb{S}_{r}\right)$, with $\mathbb{S}_{r}=\{z \in \mathbb{C} /|z|=r\}$

Rotational examples

with

$$
z \in \Sigma=\mathbb{D}_{r}^{*}=\{z \in \mathbb{C} / 0<|z|<r\} \cong \mathbb{C} \backslash \mathcal{D}_{1}
$$

$4 r^{2 a}=1-a^{2}$ and $\left.a \in\right] 0,1[$.

- The singularity is $\psi\left(\mathbb{S}_{r}\right)$, with $\mathbb{S}_{r}=\{z \in \mathbb{C} /|z|=r\}$.
- The end is $\psi(0)$.
- The function

Rotational examples

with

$$
z \in \Sigma=\mathbb{D}_{r}^{*}=\{z \in \mathbb{C} / 0<|z|<r\} \cong \mathbb{C} \backslash \mathcal{D}_{1}
$$

$4 r^{2 a}=1-a^{2}$ and $\left.a \in\right] 0,1[$.

- The singularity is $\psi\left(\mathbb{S}_{r}\right)$, with $\mathbb{S}_{r}=\{z \in \mathbb{C} /|z|=r\}$.
- The end is $\psi(0)$.
- The function

$$
R(z)=F(z) g(z)=\frac{g(z)}{g(z)-g_{*}(z)}
$$

is constant.

Rotational examples

with

$$
z \in \Sigma=\mathbb{D}_{r}^{*}=\{z \in \mathbb{C} / 0<|z|<r\} \cong \mathbb{C} \backslash \mathcal{D}_{1}
$$

$4 r^{2 a}=1-a^{2}$ and $\left.a \in\right] 0,1[$.

- The singularity is $\psi\left(\mathbb{S}_{r}\right)$, with $\mathbb{S}_{r}=\{z \in \mathbb{C} /|z|=r\}$.
- The end is $\psi(0)$.
- The function

$$
R(z)=F(z) g(z)=\frac{g(z)}{g(z)-g_{*}(z)}
$$

is constant.

Solved Problem

We find the data (g, u) from an aproppriate holomorphic function $R: \mathbb{A}_{r}^{*} \longrightarrow \mathbb{C}$, where

$$
\begin{gathered}
\mathbb{A}_{r}^{*}=\mathbb{A}_{r} \backslash\left\{z_{0}\right\} \cong \mathbb{C} \backslash \mathcal{D}_{1} \cup \mathcal{D}_{2} \\
\mathbb{A}_{r}=\{z \in \mathbb{C} / r<|z|<1\}
\end{gathered}
$$

$0<r<1$ and $z_{0} \in \mathbb{A}_{r}$.
In fact, if we want
with $c \in \mathbb{R}^{+} \backslash\{1\}$. Then, from our conformal representation,

Solved Problem

We find the data (g, u) from an aproppriate holomorphic function $R: \mathbb{A}_{r}^{*} \longrightarrow \mathbb{C}$, where

$$
\begin{gathered}
\mathbb{A}_{r}^{*}=\mathbb{A}_{r} \backslash\left\{z_{0}\right\} \cong \mathbb{C} \backslash \mathcal{D}_{1} \cup \mathcal{D}_{2} \\
\mathbb{A}_{r}=\{z \in \mathbb{C} / r<|z|<1\}
\end{gathered}
$$

$0<r<1$ and $z_{0} \in \mathbb{A}_{r}$.
In fact, if we want

$$
\psi\left(\mathbb{S}_{1}\right)=(0,0,1), \quad \psi\left(\mathbb{S}_{r}\right)=(0,0, c)
$$

with $c \in \mathbb{R}^{+} \backslash\{1\}$. Then, from our conformal representation,

Solved Problem

We find the data (g, u) from an aproppriate holomorphic function $R: \mathbb{A}_{r}^{*} \longrightarrow \mathbb{C}$, where

$$
\begin{gathered}
\mathbb{A}_{r}^{*}=\mathbb{A}_{r} \backslash\left\{z_{0}\right\} \cong \mathbb{C} \backslash \mathcal{D}_{1} \cup \mathcal{D}_{2} \\
\mathbb{A}_{r}=\{z \in \mathbb{C} / r<|z|<1\}
\end{gathered}
$$

$0<r<1$ and $z_{0} \in \mathbb{A}_{r}$.
In fact, if we want

$$
\psi\left(\mathbb{S}_{1}\right)=(0,0,1), \quad \psi\left(\mathbb{S}_{r}\right)=(0,0, c)
$$

with $c \in \mathbb{R}^{+} \backslash\{1\}$. Then, from our conformal representation,

$$
\psi_{1}+\mathrm{i} \psi_{2}=g-\psi_{3} \exp (2 u) \bar{F}, \quad \psi_{3}=\frac{\exp (2 u)}{1+\exp (4 u)|F|^{2}}
$$

Solved Problem

we need

$$
|g(z)|^{2}=\frac{R(z)}{1-R(z)}, \quad z \in \mathbb{S}_{1}
$$

and

$$
|g(z)|^{2}=\frac{c^{2} R(z)}{1-R(z)}, \quad z \in \mathbb{S}_{r},
$$

where R is the holomorphic function $F(g-0)$.

Solution

These conditions determine R, also $g \sim \sqrt{R / 1-R}$ and u from $F=R / g$. Thus, we are going to construct new examples that we will call canonical examples.

Solved Problem

we need

$$
|g(z)|^{2}=\frac{R(z)}{1-R(z)}, \quad z \in \mathbb{S}_{1}
$$

and

$$
|g(z)|^{2}=\frac{c^{2} R(z)}{1-R(z)}, \quad z \in \mathbb{S}_{r}
$$

where R is the holomorphic function $F(g-0)$.

Solution

These conditions determine R, also $g \sim \sqrt{R / 1-R}$ and u from $F=R / g$. Thus, we are going to construct new examples that we will call canonical examples.

Unsolved Problem

It is more difficult, because the singularities are not in the same vertical line $\{0\} \times \mathbb{R}^{+}$and one has different undetermined holomorphic functions

$$
R_{j}=F\left(g-c_{j}\right)
$$

with $c_{j} \in \mathbb{C}, j=1, \ldots, n$. (Each R_{j} is real only on $\partial \mathcal{D}_{j}$).

Possible Solution
Find a good combination of the above functions.

Unsolved Problem

It is more difficult, because the singularities are not in the same vertical line $\{0\} \times \mathbb{R}^{+}$and one has different undetermined holomorphic functions

$$
R_{j}=F\left(g-c_{j}\right)
$$

with $c_{j} \in \mathbb{C}, j=1, \ldots, n$. (Each R_{j} is real only on $\left.\partial \mathcal{D}_{j}\right)$.

Possible Solution

Find a good combination of the above functions.

Canonical examples

In this case, we can find explicitly an appropriate holomorphic function R and this is fundamental in the proofs.

We consider the annular Jacobi theta function in \mathbb{A}_{r} given by

Canonical examples

In this case, we can find explicitly an appropriate holomorphic function R and this is fundamental in the proofs.

We consider the annular Jacobi theta function in \mathbb{A}_{r} given by

$$
\vartheta_{1}(z)=\left(1-\frac{1}{z}\right) \prod_{k=1}^{\infty}\left(1-r^{2 k} z\right)\left(1-r^{2 k} / z\right)
$$

It satisfies

$\vartheta_{1}(z)=\overline{\vartheta_{1}(\bar{z})}=-r^{2} z \vartheta_{1}\left(r^{2} z\right)=-\frac{1}{z} \vartheta_{1}(1 / z), \quad \vartheta_{1}\left(z / r^{2}\right)=-z \vartheta_{1}(z)$
and by deriving

Canonical examples

In this case, we can find explicitly an appropriate holomorphic function R and this is fundamental in the proofs.

We consider the annular Jacobi theta function in \mathbb{A}_{r} given by

$$
\vartheta_{1}(z)=\left(1-\frac{1}{z}\right) \prod_{k=1}^{\infty}\left(1-r^{2 k} z\right)\left(1-r^{2 k} / z\right)
$$

It satisfies
$\vartheta_{1}(z)=\overline{\vartheta_{1}(\bar{z})}=-r^{2} z \vartheta_{1}\left(r^{2} z\right)=-\frac{1}{z} \vartheta_{1}(1 / z), \quad \vartheta_{1}\left(z / r^{2}\right)=-z \vartheta_{1}(z)$
and by deriving ...

Canonical examples

Thus, for any $\left.z_{j} \in\right]-1,-r[$, the classical holomorphic bijection $q_{j}: \mathbb{A}_{r} \backslash\left\{z_{j}\right\} \longrightarrow \mathbb{C} \backslash\left(I_{1} \cup I_{r}\right)$ given by

$$
q_{j}(z)=-\frac{\vartheta_{1}^{\prime}\left(z_{j} / z\right)}{z \vartheta_{1}\left(z_{j} / z\right)}-\frac{z \vartheta_{1}^{\prime}\left(z_{j} z\right)}{\vartheta_{1}\left(z_{j} z\right)},
$$

maps the circles \mathbb{S}_{1} and \mathbb{S}_{r}, onto two real intervals I_{1} and I_{r}, respectively.

Characterization (see Ahlfords)

q_{j} is the unique (up to real additive constants) holomorphic map in
$\mathbb{A}_{r} \backslash\left\{z_{j}\right\}$, which maps each boundary component of \mathbb{A}_{r} onto a real
interval and has a simple pole of residue 1 at $z_{j},\left(q_{j} \sim \frac{1}{z-z_{i}}\right)$

Canonical examples

Thus, for any $\left.z_{j} \in\right]-1,-r[$, the classical holomorphic bijection $q_{j}: \mathbb{A}_{r} \backslash\left\{z_{j}\right\} \longrightarrow \mathbb{C} \backslash\left(I_{1} \cup I_{r}\right)$ given by

$$
q_{j}(z)=-\frac{\vartheta_{1}^{\prime}\left(z_{j} / z\right)}{z \vartheta_{1}\left(z_{j} / z\right)}-\frac{z \vartheta_{1}^{\prime}\left(z_{j} z\right)}{\vartheta_{1}\left(z_{j} z\right)},
$$

maps the circles \mathbb{S}_{1} and \mathbb{S}_{r}, onto two real intervals I_{1} and I_{r}, respectively.

Characterization (see Ahlfords)

q_{j} is the unique (up to real additive constants) holomorphic map in $\mathbb{A}_{r} \backslash\left\{z_{j}\right\}$, which maps each boundary component of \mathbb{A}_{r} onto a real interval and has a simple pole of residue 1 at $z_{j},\left(q_{j} \sim \frac{1}{z-z_{j}}\right)$.

Canonical examples

Remark

If one takes $\left.z_{0} \in\right]-1,-r[$, then

$$
\left.q_{0}:\right] z_{0},-r\left[\cup \mathbb{S}_{r} \cup[r, 1] \cup \mathbb{S}_{1} \cup\right]-1, z_{0}[\longrightarrow \mathbb{R}
$$

Canonical examples

Definition

Given $\left.z_{0}, z_{1}, z_{2} \in\right]-1,-r\left[\right.$, we define $R: \mathbb{A}_{r} \backslash\left\{z_{0}\right\} \longrightarrow \mathbb{C}$ by

$$
R(z)=a q_{0}(z)+b
$$

where a and b are real constants, determined by $R\left(z_{1}\right)=1$, $R\left(z_{2}\right)=0$ and such that $0<R<1$ on $\partial \mathbb{A}_{r}$.

From the above characterization one has

where
$c_{1}=q_{1}\left(z_{0}\right)=q_{1}\left(z_{2}\right)+R^{\prime}\left(z_{1}\right), c_{2}=q_{2}\left(z_{0}\right)=q_{2}\left(z_{1}\right)-R^{\prime}\left(z_{2}\right) \in \mathbb{R}$

Canonical examples

Definition

Given $\left.z_{0}, z_{1}, z_{2} \in\right]-1,-r\left[\right.$, we define $R: \mathbb{A}_{r} \backslash\left\{z_{0}\right\} \longrightarrow \mathbb{C}$ by

$$
R(z)=a q_{0}(z)+b
$$

where a and b are real constants, determined by $R\left(z_{1}\right)=1$, $R\left(z_{2}\right)=0$ and such that $0<R<1$ on $\partial \mathbb{A}_{r}$.

From the above characterization one has

$$
\frac{R^{\prime}\left(z_{1}\right)}{R(z)-1}=q_{1}(z)-c_{1}, \frac{R^{\prime}\left(z_{2}\right)}{R(z)}=q_{2}(z)-c_{2}
$$

where

$$
c_{1}=q_{1}\left(z_{0}\right)=q_{1}\left(z_{2}\right)+R^{\prime}\left(z_{1}\right), \quad c_{2}=q_{2}\left(z_{0}\right)=q_{2}\left(z_{1}\right)-R^{\prime}\left(z_{2}\right) \in \mathbb{R} .
$$

Canonical examples

Proposition

If $\left.z_{0}, z_{1}, z_{2} \in\right]-1,-r[$ and $m \in \mathbb{R}$ satisfy
(C1) $m+c_{1} z_{1}-z_{1} R^{\prime}\left(z_{1}\right)=-z_{2} R^{\prime}\left(z_{2}\right)$,
(C2) $c_{1} z_{1}-c_{2} z_{2}-2=0$,
(C3) $z_{1} z_{2} r^{2(m+2)}=1$.
Then the functions $g: \mathbb{A}_{r} \longrightarrow \mathbb{C}$ and $u: \mathbb{A}_{r} \backslash\left\{z_{0}\right\} \longrightarrow \mathbb{R}$ given by

with $Q_{j}(z)=\frac{\vartheta_{1}\left(z_{j} / z\right)}{\vartheta_{1}\left(z_{j} z\right)}, \quad j=1,2$, are the data of a well-defined flat surface $\psi: \mathbb{A}_{r} \backslash\left\{z_{0}\right\} \rightarrow \mathbb{H}^{3}$, with $\psi\left(\mathbb{S}_{1}\right)$ and $\psi\left(\mathbb{S}_{r}\right)$ as isolated singularities

Canonical examples

Proposition

If $\left.z_{0}, z_{1}, z_{2} \in\right]-1,-r[$ and $m \in \mathbb{R}$ satisfy
(C1) $m+c_{1} z_{1}-z_{1} R^{\prime}\left(z_{1}\right)=-z_{2} R^{\prime}\left(z_{2}\right)$,
(C2) $c_{1} z_{1}-c_{2} z_{2}-2=0$,
(C3) $z_{1} z_{2} r^{2(m+2)}=1$.
Then the functions $g: \mathbb{A}_{r} \longrightarrow \mathbb{C}$ and $u: \mathbb{A}_{r} \backslash\left\{z_{0}\right\} \longrightarrow \mathbb{R}$ given by

$$
g(z)=\sqrt{\frac{R(z)}{1-R(z)} \frac{Q_{1}(z)}{Q_{2}(z)} z^{-2}}, \quad u(z)=\frac{1}{2} \log \left|\frac{Q_{1}(z)}{1-R(z)} z^{m}\right|
$$

with $Q_{j}(z)=\frac{\vartheta_{1}\left(z_{j} / z\right)}{\vartheta_{1}\left(z_{j} z\right)}, \quad j=1,2$, are the data of a well-defined flat surface $\psi: \mathbb{A}_{r} \backslash\left\{z_{0}\right\} \rightarrow \mathbb{H}^{3}$, with $\psi\left(\mathbb{S}_{1}\right)$ and $\psi\left(\mathbb{S}_{r}\right)$ as isolated singularities.

Canonical examples

Notes of the Proof

- As z_{j} is a simple zero of Q_{j}, g is a holomorphic function and $u(z)-\frac{1}{2} \log \left|z-z_{0}\right|$ is a harmonic function in \mathbb{A}_{r}.
- From (C1), (C2) and $d \log Q_{j}(z)=\frac{z_{j}}{z} q_{j}(z) d z$ we get
 is a holomorphic function in $\mathbb{A}_{r} \backslash\left\{z_{0}\right\}$

Canonical examples

Notes of the Proof

- As z_{j} is a simple zero of Q_{j}, g is a holomorphic function and $u(z)-\frac{1}{2} \log \left|z-z_{0}\right|$ is a harmonic function in \mathbb{A}_{r}.
- From (C1), (C2) and $d \log Q_{j}(z)=\frac{z_{j}}{z} q_{j}(z) d z$ we get

$$
d u+\mathrm{i} * d u=\frac{R}{g} d g \Rightarrow F=\frac{R}{g}
$$

is a holomorphic function in $\mathbb{A}_{r} \backslash\left\{z_{0}\right\}$.

- g and $g-1 / F$ have no common branch points, because $R^{\prime} \neq 0$ in \mathbb{A}_{r}.

Canonical examples

Notes of the Proof

- As z_{j} is a simple zero of Q_{j}, g is a holomorphic function and $u(z)-\frac{1}{2} \log \left|z-z_{0}\right|$ is a harmonic function in \mathbb{A}_{r}.
- From (C1), (C2) and $d \log Q_{j}(z)=\frac{z_{j}}{z} q_{j}(z) d z$ we get

$$
d u+\mathrm{i} * d u=\frac{R}{g} d g \Rightarrow F=\frac{R}{g}
$$

is a holomorphic function in $\mathbb{A}_{r} \backslash\left\{z_{0}\right\}$.

- g and $g-1 / F$ have no common branch points, because $R^{\prime} \neq 0$ in \mathbb{A}_{r}.
- $\psi\left(\mathbb{S}_{1}\right)=(0,0,1)$ and (C3) gives

Canonical examples

Notes of the Proof

- As z_{j} is a simple zero of Q_{j}, g is a holomorphic function and $u(z)-\frac{1}{2} \log \left|z-z_{0}\right|$ is a harmonic function in \mathbb{A}_{r}.
- From (C1), (C2) and $d \log Q_{j}(z)=\frac{z_{j}}{z} q_{j}(z) d z$ we get

$$
d u+\mathrm{i} * d u=\frac{R}{g} d g \Rightarrow F=\frac{R}{g}
$$

is a holomorphic function in $\mathbb{A}_{r} \backslash\left\{z_{0}\right\}$.

- g and $g-1 / F$ have no common branch points, because $R^{\prime} \neq 0$ in \mathbb{A}_{r}.
- $\psi\left(\mathbb{S}_{1}\right)=(0,0,1)$ and (C3) gives

$$
\psi\left(\mathbb{S}_{r}\right)=\left(0,0,\left|z_{1}\right| r^{m+1}\right)
$$

Canonical examples

Existence

For any $r \in] 0,1[$ and $s \in]-1,0[$, there exist

$$
m \in]-3,-2[
$$

and

$$
\left.z_{0}, z_{1}, z_{2} \in\right]-1,-r[,
$$

$z_{2}<z_{0}<z_{1}$, which satisfy the conditions (C1), (C2), (C3), with

$$
s=-z_{2} c_{2}=-z_{2} q_{2}\left(z_{0}\right) .
$$

In particular, for $s=-1 / 2$, there is a solution with $m=-5 / 2$ and $z_{0}^{2}=r=z_{1} z_{2}$.

Canonical examples

Notes of the Proof

The conditions can be written as
(C1) $m=2 h\left(r^{-2(m+2)}\right)-1-f_{0}\left(z_{2}\right)$,
(C2) $-2=f_{0}\left(z_{1}\right)-f_{0}\left(z_{2}\right)$,
(C3) $z_{1} z_{2}=r^{-2(m+2)}$,
with $h(z)=\frac{z \vartheta_{1}^{\prime}(z)}{\vartheta_{1}(z)}, \quad f_{0}(z)=h\left(z / z_{0}\right)+h\left(z z_{0}\right)$.

Canonical examples

Theorem

Each canonical example $\psi: \mathbb{A}_{r} \backslash\left\{z_{0}\right\} \longrightarrow \mathbb{H}^{3}$ is a complete flat embedding with two isolated singularities and one end.

Canonical examples

Notes of the Proof

- The holomorphic function g is one to one on $\partial \mathbb{A}_{r}$, (covering map with $g^{-1}(g(\widetilde{z}))=\{\tilde{z}\}$, for $\left.\tilde{z} \in\{ \pm 1, \pm r\}\right)$, and it is a diffemorphism on \mathbb{A}_{r}.
- Now

$$
p(z)=\left(\frac{Q_{1}(z)}{1-R(z)} z^{m}\right)^{2}\left(\frac{F^{\prime}(z)}{g^{\prime}(z)}+F^{2}(z)\right)
$$

verifies $|p(z)|=1$ on $\partial \mathbb{A}_{r} \Rightarrow|p(z)|<1$ on \mathbb{A}_{r},
$d s^{2}=\exp (-4 u) \overline{d g}-\left.p d g\right|^{2} \geq \exp (-4 u)|d g|^{2}\left(1-|p|^{2}\right)=d \sigma^{2}$
is positive definite, complete and $\psi\left(\mathbb{S}_{1}\right)$ and $\psi\left(\mathbb{S}_{r}\right)$ are their unique singularities.

Canonical examples

Notes of the Proof

- The holomorphic function g is one to one on $\partial \mathbb{A}_{r}$, (covering map with $g^{-1}(g(\widetilde{z}))=\{\widetilde{z}\}$, for $\left.\tilde{z} \in\{ \pm 1, \pm r\}\right)$, and it is a diffemorphism on \mathbb{A}_{r}.
- Now

$$
p(z)=\left(\frac{Q_{1}(z)}{1-R(z)} z^{m}\right)^{2}\left(\frac{F^{\prime}(z)}{g^{\prime}(z)}+F^{2}(z)\right)
$$

verifies $|p(z)|=1$ on $\partial \mathbb{A}_{r} \Rightarrow|p(z)|<1$ on \mathbb{A}_{r},
$d s^{2}=\exp (-4 u)|\overline{d g}-p d g|^{2} \geq \exp (-4 u)|d g|^{2}\left(1-|p|^{2}\right)=d \sigma^{2}$
is positive definite, complete and $\psi\left(\mathbb{S}_{1}\right)$ and $\psi\left(\mathbb{S}_{r}\right)$ are their unique singularities.

Canonical examples

Notes of the Proof

- The holomorphic function g is one to one on $\partial \mathbb{A}_{r}$, (covering map with $g^{-1}(g(\widetilde{z}))=\{\widetilde{z}\}$, for $\left.\tilde{z} \in\{ \pm 1, \pm r\}\right)$, and it is a diffemorphism on \mathbb{A}_{r}.
- Now

$$
p(z)=\left(\frac{Q_{1}(z)}{1-R(z)} z^{m}\right)^{2}\left(\frac{F^{\prime}(z)}{g^{\prime}(z)}+F^{2}(z)\right)
$$

verifies $|p(z)|=1$ on $\partial \mathbb{A}_{r} \Rightarrow|p(z)|<1$ on \mathbb{A}_{r},
$d s^{2}=\exp (-4 u)|\overline{d g}-p d g|^{2} \geq \exp (-4 u)|d g|^{2}\left(1-|p|^{2}\right)=d \sigma^{2}$
is positive definite, complete and $\psi\left(\mathbb{S}_{1}\right)$ and $\psi\left(\mathbb{S}_{r}\right)$ are their unique singularities.

- Only one embedded end $\psi\left(z_{0}\right)$ and ψ is an embedding.

Characterizations

Theorem ($\mathrm{n}=1$)

The revolution examples are the unique complete flat embedding in \mathbb{H}^{3} with only one isolated singularity and one end.

Theorem

Each complete flat embedding in \mathbb{H}^{3} with only two isolated singularities and one end must be congruent to one of the
canonical examples.

Characterizations

Theorem ($\mathrm{n}=1$)

The revolution examples are the unique complete flat embedding in \mathbb{H}^{3} with only one isolated singularity and one end.

Theorem ($\mathrm{n}=2$)

Each complete flat embedding in \mathbb{H}^{3} with only two isolated singularities and one end must be congruent to one of the canonical examples.

Characterizations

Notes of the Proofs

The conditions on the boundary and in z_{0} determine the above R, g and u.
In particular

has a simple pole in z_{0} and, up to isometries of \mathbb{H}^{3}, we can consider

Characterizations

Notes of the Proofs

The conditions on the boundary and in z_{0} determine the above R, g and u.
In particular

$$
d u+\mathrm{i} * d u=R \frac{d g}{g}
$$

has a simple pole in z_{0} and, up to isometries of \mathbb{H}^{3}, we can
consider
(1) The singularity and $\psi\left(z_{0}\right)$ in $\{0\} \times \mathbb{R}^{+} \Rightarrow R$ is constant, since $\frac{d g}{g}$ has the pole in z_{0}

Characterizations

Notes of the Proofs

The conditions on the boundary and in z_{0} determine the above R, g and u.
In particular

$$
d u+\mathrm{i} * d u=R \frac{d g}{g}
$$

has a simple pole in z_{0} and, up to isometries of \mathbb{H}^{3}, we can consider
(1) The singularity and $\psi\left(z_{0}\right)$ in $\{0\} \times \mathbb{R}^{+} \Rightarrow R$ is constant, since $\frac{d g}{g}$ has the pole in z_{0}.
(2) The two singularities in $\{0\} \times \mathbb{R}^{+} \Rightarrow R$ has the pole

Characterizations

Notes of the Proofs

The conditions on the boundary and in z_{0} determine the above R, g and u.
In particular

$$
d u+\mathrm{i} * d u=R \frac{d g}{g}
$$

has a simple pole in z_{0} and, up to isometries of \mathbb{H}^{3}, we can consider
(1) The singularity and $\psi\left(z_{0}\right)$ in $\{0\} \times \mathbb{R}^{+} \Rightarrow R$ is constant, since $\frac{d g}{g}$ has the pole in z_{0}.
(2) The two singularities in $\{0\} \times \mathbb{R}^{+} \Rightarrow R$ has the pole \ldots

Characterizations

Remark

There are not compact embedded flat surfaces, with less than three isolated singularities, because R is constant only for the revolution examples.

