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Classical Results

Theorem (Volkov-Vladimirova (1971), Sasaki (1973))

The only complete examples of flat surfaces in H3 (without
singularities) are horospheres and hyperbolic cilinders.

Horosphere Hyperbolic Cylinder



Classical Results

Up to now

The only known examples of complete flat surfaces in H3 with
isolated singularities are rotational ones.

Rotational flat surface Rotational flat surface



Problem

Existence and characterization of new examples of complete
flat surfaces in H3 with isolated singularities.



Solution with two isolated singularities and one end

Singularities in a vertical line.

Coordinates strongly related.
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Recent Tools

From Bryant’s representation for surfaces of mean curvature
one in H3 and our results about improper affine spheres,
(Ferrer, Mart́ınez, M, 1996):

Flat surfaces in H3 admit a Weierstrass representation in terms of
meromorphic data, (Gálvez, Mart́ınez, M, 2000).

Study of ends and singularities.

Generic behaviour and existence of complete examples with
curves of singularities, (Kokubu, Rossman, Saji, Umehara,
Yamada, Roitman).

Local classification of embedded isolated singularities, (Gálvez
and Mira).
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Weierstrass representation

We consider the upper half-space model of H3, that is,

R3
+ = {(x1, x2, x3) ∈ R3 : x3 > 0}

endowed with the metric

〈, 〉 :=
1

x2
3

(
dx2

1 + dx2
2 + dx2

3

)
,

of constant curvature −1 and with ideal boundary

C∞ = {(x1, x2, 0) : x1, x2 ∈ R} ∪ {∞} ≡ S2.
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Weierstrass representation

Let Σ be a 2−manifold and

ψ : Σ −→ H3

be a flat immersion. Then, the second fundamental form dσ2 is
definite. In fact, if the induced metric is given by

ds2 = dx2 + dy2

then
dσ2 = φxxdx2 + φyydy2 + 2φxydxdy

with
φxxφyy − φ2

xy = 1.

From this Monge-Ampère equation we obtain holomorphic data for
the improper affine spheres and for the flat surfaces.
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Weierstrass representation

Theorem (Gálvez, Mart́ınez, M (2000))

If we consider the Riemann surface (Σ, dσ2), then the hyperbolic
Gauss maps g , g∗ : Σ −→ C∞ ≡ S2 are holomorphic.

These maps associate each point p ∈ Σ, with the limit points of
the geodesic at ψ(p) orthogonal to ψ(Σ).
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Weierstrass representation

With these holomorphic data we obtained a conformal
representation and different results for flat surfaces in H3:

Description of classical examples.
A complete end is conformal to a disk minus a point z0.
g extends to z0 iff the associated ODE has a regular singularity.
A regular end is embedded iff z0 is not a branch point of g .

Kokubu, Umehara and Yamada extended our representation to
flat fronts, that is, flat surfaces with admissible singularities,
((g , g∗) : Σ −→ S2 × S2 is an immersion), (2004).

With Rossman and Saji constructed complete examples with
curves of singularities and studied their properties, (2005).
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Weierstrass representation

Theorem (Kokubu, Umehara and Yamada (2004))

Let g and g∗ be non-constant meromorphic functions on a
Riemann surface Σ, such that g(p) 6= g∗(p) for all p ∈ Σ,

1 all the poles of the 1-form dg
g−g∗

are of order 1,

2 Re
∫
γ

dg
g−g∗

= 0, for each loop γ on Σ and

3 g and g∗ have no common branch points.

If ξ := c exp
∫ dg

g−g∗
, with c ∈ C \ {0}.

Then, the map ψ = (ψ1, ψ2, ψ3) : Σ −→ H3 given by

ψ1 + iψ2 = g − |ξ|4(g − g∗)

|ξ|4 + |g − g∗|2
, ψ3 =

|ξ|2|g − g∗|2

|ξ|4 + |g − g∗|2

is a singly-valued flat front. Conversely any non-totally umbilical
flat front can be constructed in this way.
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Weierstrass representation

From this theorem, one has:

A harmonic function u : Σ\Pg −→ R, given by

u := Re
∫

dg

g − g∗
,

where Pg is the set of poles of g . (In our examples Pg = ∅).

A holomorphic function F := 1
g−g∗

on Σ, determined by

du + i ∗du = Fdg ,

where ∗ denotes the standard conjugation operator.

g and g − 1/F have no common branch points.

Thus, we can change the data (g , g∗) by (g , u).
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Weierstrass representation

Theorem (Corro, Mart́ınez, M (2010))

Let g be a non-constant meromorphic function on a Riemann
surface Σ and u be a harmonic function as above. If

ds2 = exp(−4u)
∣∣exp(4u)(dF + F 2dg)− dg

∣∣2
is a Riemannian metric, then the map ψ = (ψ1, ψ2, ψ3) : Σ −→ H3,

ψ1 + iψ2 = g − ψ3 exp(2u)F , ψ3 =
exp(2u)

1 + exp(4u)|F |2

is a well-defined flat immersion, with second fundamental form

dσ2 = exp(−4u) |dg |2 − exp(4u)
∣∣dF + F 2dg

∣∣2 .
And conversely.
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Weierstrass representation

Remark (Corro (2006))

The hyperbolic Gauss map g defines a horospheres congruence and
exp(2u)/2 is the radius function of each tangent horosphere to
ψ(Σ).



Flat surfaces with isolated singularities

Definition

Let Σ be a differentiable surface without boundary, ψ : Σ→ H3 a
continuous map and F = {p1, · · · , pn} ⊂ Σ a finite set. We say
that ψ is a complete flat immersion with isolated singularities
ψ(p1), · · · , ψ(pn), if ψ is a flat immersion in Σ \ F , but ψ is not
C 1 at the points p1, · · · , pn, and every divergent curve in Σ has
infinite length for the induced (singular) metric.

Around an (embedded) isolated singularity we have the
conformal structure of an annulus (and a convex graph),
(Gálvez and Mira (2005)).

ds2 ≤ 2 exp(−4u)|dg |2 and from the classical result of Huber:
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Flat surfaces with isolated singularities

Proposition

Let ψ : Σ→ H3 be a complete flat immersion with isolated
singularities ψ(p1), · · · , ψ(pn).
Then there is a compact Riemannian surface Σ, n disjoint discs
D1, · · · ,Dn ⊂ Σ and points q1, · · · , qm ∈ Σ \ {D1 ∪ · · · ∪ Dn}
such that

Σ \ {p1, · · · , pn}

endowed with the conformal structure induced by the second
fundamental form has the conformal type of

Σ \ {D1 ∪ · · · ∪ Dn ∪ {q1, · · · , qm}}.

The points q1, · · · , qm are called the ends of ψ.
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Flat surfaces with isolated singularities

Proposition

Each embedded complete end of a flat surface in H3 is
biholomorphic to a punctured disc and the hyperbolic Gauss map g
extends meromorphically to the punctured, that is, the end must
be regular (and a convex graph).

Notes of the Proof

(Gálvez, Mart́ınez, M (2000))

κ = 0 ∼ ODE ∼ H = 1

(Yu, Surfaces of constant mean curvature one in H3 with irregular
ends (2001))



Flat surfaces with isolated singularities

Proposition

Each embedded complete end of a flat surface in H3 is
biholomorphic to a punctured disc and the hyperbolic Gauss map g
extends meromorphically to the punctured, that is, the end must
be regular (and a convex graph).

Notes of the Proof

(Gálvez, Mart́ınez, M (2000))

κ = 0 ∼ ODE ∼ H = 1

(Yu, Surfaces of constant mean curvature one in H3 with irregular
ends (2001))



Flat surfaces with isolated singularities

Theorem

If ψ : Σ→ H3 is a complete flat embedding with a finite number
of isolated singularities, then ψ is globally convex.

Corollary

Every complete flat embedding ψ : Σ→ H3 with a finite number
of isolated singularities and only one end is a graph over a finitely
punctured horosphere and

Σ \ {p1, · · · , pn} ∼= S2 \ {D1 ∪ · · · ∪ Dn ∪ {q}}.
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Flat surfaces with isolated singularities

Consequence

The existence of complete flat embedding in H3 with n isolated
singularities and only one end is equivalent to the existence of the
appropriate data (g , g∗) or (g , u) on C \ {D1 ∪ · · · ∪ Dn}.



Flat surfaces with isolated singularities

First approach

As ds2 = 0 on ∂Dj , j = 1, . . . , n, one has∣∣∣∣exp(4u)(dF + F 2dg)

dg

∣∣∣∣ = 1.

Then, we tried to recover (g , u) from meromorphic functions f̃ , g̃

on C \ {D1 ∪ · · · ∪ Dn} such that
∣∣∣ df̃
dg̃

∣∣∣ = 1 on the boundary. But

the way is complicated.

However, this idea gives directly the data for the regular solution of
the Monge-Ampère equation φxxφyy − φ2

xy = 1, in the plane minus
n points, (Gálvez, Mart́ınez, Mira (2005)).
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Rotational examples (n = 1)

The half hourglass is a flat complete embedding ψ : Σ −→ H3,
with one isolated singularity and one end.
It has the elementary data

g(z) = z , g∗(z) =
a + 1

a− 1
z ,
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Rotational examples (n = 1)

with
z ∈ Σ = D∗r = {z ∈ C / 0 < |z | < r} ∼= C \ D1,

4r2a = 1− a2 and a ∈]0, 1[.

The singularity is ψ(Sr ), with Sr = {z ∈ C / |z | = r}.
The end is ψ(0).

The function

R(z) = F (z)g(z) =
g(z)

g(z)− g∗(z)

is constant.
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Solved Problem (n = 2)

We find the data (g , u) from an aproppriate holomorphic function
R : A∗r −→ C, where

A∗r = Ar \ {z0} ∼= C \ D1 ∪ D2,

Ar = {z ∈ C / r < |z | < 1},

0 < r < 1 and z0 ∈ Ar .

In fact, if we want

ψ(S1) = (0, 0, 1), ψ(Sr ) = (0, 0, c),

with c ∈ R+ \ {1}. Then, from our conformal representation,

ψ1 + iψ2 = g − ψ3 exp(2u)F , ψ3 =
exp(2u)

1 + exp(4u)|F |2
,
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Solved Problem (n = 2)

we need

|g(z)|2 =
R(z)

1− R(z)
, z ∈ S1

and

|g(z)|2 =
c2R(z)

1− R(z)
, z ∈ Sr ,

where R is the holomorphic function F (g − 0).

Solution

These conditions determine R, also g ∼
√

R/1− R and u from
F = R/g . Thus, we are going to construct new examples that we
will call canonical examples.
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Unsolved Problem (n > 2)

It is more difficult, because the singularities are not in the same
vertical line {0} × R+ and one has different undetermined
holomorphic functions

Rj = F (g − cj),

with cj ∈ C, j = 1, . . . , n. (Each Rj is real only on ∂Dj).

Possible Solution

Find a good combination of the above functions.
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Canonical examples (n = 2)

In this case, we can find explicitly an appropriate holomorphic
function R and this is fundamental in the proofs.

We consider the annular Jacobi theta function in Ar given by

ϑ1(z) =

(
1− 1

z

) ∞∏
k=1

(1− r2kz)(1− r2k/z).

It satisfies

ϑ1(z) = ϑ1(z) = −r2zϑ1(r2z) = −1

z
ϑ1(1/z), ϑ1(z/r2) = −zϑ1(z)

and by deriving . . .
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Canonical examples (n = 2)

Thus, for any zj ∈]− 1,−r [, the classical holomorphic bijection
qj : Ar \ {zj} −→ C \ (I1 ∪ Ir ) given by

qj(z) = −
ϑ′1(zj/z)

zϑ1(zj/z)
−

zϑ′1(zjz)

ϑ1(zjz)
,

maps the circles S1 and Sr , onto two real intervals I1 and Ir ,
respectively.

Characterization (see Ahlfords)

qj is the unique (up to real additive constants) holomorphic map in
Ar \ {zj}, which maps each boundary component of Ar onto a real
interval and has a simple pole of residue 1 at zj , (qj ∼ 1

z−zj
).
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Remark

If one takes z0 ∈]− 1,−r [, then

q0 : ]z0,−r [ ∪ Sr ∪ [r , 1] ∪ S1 ∪ ]− 1, z0[ −→ R.



Canonical examples (n = 2)

Definition

Given z0, z1, z2 ∈]− 1,−r [, we define R : Ar\{z0} −→ C by

R(z) = aq0(z) + b,

where a and b are real constants, determined by R(z1) = 1,
R(z2) = 0 and such that 0 < R < 1 on ∂Ar .

From the above characterization one has

R ′(z1)

R(z)− 1
= q1(z)− c1,

R ′(z2)

R(z)
= q2(z)− c2,

where

c1 = q1(z0) = q1(z2) +R ′(z1), c2 = q2(z0) = q2(z1)−R ′(z2) ∈ R.
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Canonical examples (n = 2)

Proposition

If z0, z1, z2 ∈]− 1,−r [ and m ∈ R satisfy

(C1) m + c1z1 − z1R
′(z1) = −z2R

′(z2),

(C2) c1z1 − c2z2 − 2 = 0,

(C3) z1z2r
2(m+2) = 1.

Then the functions g : Ar −→ C and u : Ar \ {z0} −→ R given by

g(z) =

√
R(z)

1− R(z)

Q1(z)

Q2(z)
z−2, u(z) =

1

2
log

∣∣∣∣ Q1(z)

1− R(z)
zm

∣∣∣∣
with Qj(z) =

ϑ1(zj/z)
ϑ1(zjz) , j = 1, 2, are the data of a well-defined flat

surface ψ : Ar \ {z0} → H3, with ψ(S1) and ψ(Sr ) as isolated
singularities.
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Canonical examples (n = 2)

Notes of the Proof

As zj is a simple zero of Qj , g is a holomorphic function and
u(z)− 1

2 log |z − z0| is a harmonic function in Ar .

From (C1), (C2) and d log Qj(z) =
zj

z qj(z)dz we get

du + i ∗du =
R

g
dg ⇒ F =

R

g

is a holomorphic function in Ar \ {z0}.
g and g − 1/F have no common branch points, because
R ′ 6= 0 in Ar .

ψ(S1) = (0, 0, 1) and (C3) gives

ψ(Sr ) = (0, 0, |z1|rm+1).
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Canonical examples (n = 2)

Existence

For any r ∈ ]0, 1[ and s ∈ ]− 1, 0[, there exist

m ∈ ]− 3,−2[

and
z0, z1, z2 ∈ ]− 1,−r [,

z2 < z0 < z1, which satisfy the conditions (C1), (C2), (C3), with

s = −z2c2 = −z2q2(z0).

In particular, for s = −1/2, there is a solution with m = −5/2 and
z2
0 = r = z1z2.



Canonical examples (n = 2)

Notes of the Proof

The conditions can be written as

(C1) m = 2h(r−2(m+2))− 1− f0(z2),

(C2) −2 = f0(z1)− f0(z2),

(C3) z1z2 = r−2(m+2),

with h(z) =
zϑ′1(z)
ϑ1(z) , f0(z) = h(z/z0) + h(zz0).



Canonical examples (n = 2)

Theorem

Each canonical example ψ : Ar \ {z0} −→ H3 is a complete flat
embedding with two isolated singularities and one end.



Canonical examples (n = 2)

Notes of the Proof

The holomorphic function g is one to one on ∂Ar , (covering
map with g−1(g(z̃)) = {z̃}, for z̃ ∈ {±1,±r}), and it is a
diffemorphism on Ar .

Now

p(z) =

(
Q1(z)

1− R(z)
zm

)2(F ′(z)

g ′(z)
+ F 2(z)

)
verifies |p(z)| = 1 on ∂Ar ⇒ |p(z)| < 1 on Ar ,

ds2 = exp(−4u)|dg−p dg |2 ≥ exp(−4u)|dg |2(1−|p|2) = dσ2

is positive definite, complete and ψ(S1) and ψ(Sr ) are their
unique singularities.

Only one embedded end ψ(z0) and ψ is an embedding.
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Characterizations

Theorem (n = 1)

The revolution examples are the unique complete flat embedding in
H3 with only one isolated singularity and one end.

Theorem (n = 2)

Each complete flat embedding in H3 with only two isolated
singularities and one end must be congruent to one of the
canonical examples.
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Characterizations

Notes of the Proofs

The conditions on the boundary and in z0 determine the above R,
g and u.
In particular

du + i ∗du = R
dg

g

has a simple pole in z0 and, up to isometries of H3, we can
consider

1 The singularity and ψ(z0) in {0} × R+ ⇒ R is constant,
since dg

g has the pole in z0.

2 The two singularities in {0} × R+ ⇒ R has the pole . . .
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Characterizations

Remark

There are not compact embedded flat surfaces, with less than
three isolated singularities, because R is constant only for the
revolution examples.
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