Complete Flat Surfaces with two Isolated Singularities in \mathbb{H}^3 .

Francisco Milán López

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへの

Joint work with Armando V. Corro and Antonio Martínez

Theorem (Volkov-Vladimirova (1971), Sasaki (1973))

The only complete examples of flat surfaces in \mathbb{H}^3 (without singularities) are horospheres and hyperbolic cilinders.

Hyperbolic Cylinder

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへの

Up to now

The only known examples of complete flat surfaces in \mathbb{H}^3 with isolated singularities are rotational ones.

Rotational flat surface

◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● ����

Existence and characterization of new examples of complete flat surfaces in \mathbb{H}^3 with isolated singularities.

Solution with two isolated singularities and one end

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへの

- Singularities in a vertical line.
- Coordinates strongly related.

Main Schedule

1 Recent Tools from Weierstrass representation

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへの

- 2 Flat surfaces with n isolated singularities
- 3 Rotational examples (n = 1)
- 4 Solved Problem (n = 2)
- **5** Unsolved Problem (n > 2)
- 6 Canonical examples (n = 2)

7 Characterizations

 From Bryant's representation for surfaces of mean curvature one in ℍ³ and our results about improper affine spheres, (Ferrer, Martínez, M, 1996):

- Study of ends and singularities.
- Generic behaviour and existence of complete examples with curves of singularities, (Kokubu, Rossman, Saji, Umehara, Yamada, Roitman).
- Local classification of embedded isolated singularities, (Gálvez and Mira).

 From Bryant's representation for surfaces of mean curvature one in ℍ³ and our results about improper affine spheres, (Ferrer, Martínez, M, 1996):

- Study of ends and singularities.
- Generic behaviour and existence of complete examples with curves of singularities, (Kokubu, Rossman, Saji, Umehara, Yamada, Roitman).
- Local classification of embedded isolated singularities, (Gálvez and Mira).

Recent Tools

 From Bryant's representation for surfaces of mean curvature one in ℍ³ and our results about improper affine spheres, (Ferrer, Martínez, M, 1996):

- Study of ends and singularities.
- Generic behaviour and existence of complete examples with curves of singularities, (Kokubu, Rossman, Saji, Umehara, Yamada, Roitman).
- Local classification of embedded isolated singularities, (Gálvez and Mira).

 From Bryant's representation for surfaces of mean curvature one in ℍ³ and our results about improper affine spheres, (Ferrer, Martínez, M, 1996):

- Study of ends and singularities.
- Generic behaviour and existence of complete examples with curves of singularities, (Kokubu, Rossman, Saji, Umehara, Yamada, Roitman).
- Local classification of embedded isolated singularities, (Gálvez and Mira).

We consider the upper half-space model of \mathbb{H}^3 , that is,

$$\mathbb{R}^3_+ = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 > 0\}$$

endowed with the metric

$$\langle , \rangle := \frac{1}{x_3^2} \left(dx_1^2 + dx_2^2 + dx_3^2 \right),$$

of constant curvature -1 and with ideal boundary

 $\mathbb{C}_\infty = \{(x_1, x_2, 0): x_1, x_2 \in \mathbb{R}\} \cup \{\infty\} \equiv \mathbb{S}^2.$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

We consider the upper half-space model of \mathbb{H}^3 , that is,

$$\mathbb{R}^3_+ = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 > 0\}$$

endowed with the metric

$$\langle,\rangle := rac{1}{x_3^2} \left(dx_1^2 + dx_2^2 + dx_3^2 \right),$$

of constant curvature -1 and with ideal boundary

 $\mathbb{C}_{\infty} = \{(x_1, x_2, 0) : x_1, x_2 \in \mathbb{R}\} \cup \{\infty\} \equiv \mathbb{S}^2$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

We consider the upper half-space model of \mathbb{H}^3 , that is,

$$\mathbb{R}^3_+ = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 > 0\}$$

endowed with the metric

$$\langle,\rangle := \frac{1}{x_3^2} \left(dx_1^2 + dx_2^2 + dx_3^2 \right),$$

of constant curvature -1 and with ideal boundary

$$\mathbb{C}_{\infty} = \{(x_1, x_2, \mathbf{0}) : x_1, x_2 \in \mathbb{R}\} \cup \{\infty\} \equiv \mathbb{S}^2.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三里 - わへで

Let Σ be a 2-manifold and

$$\psi: \Sigma \longrightarrow \mathbb{H}^3$$

be a flat immersion. Then, the second fundamental form $d\sigma^2$ is definite. In fact, if the induced metric is given by

$$ds^2 = dx^2 + dy^2$$

then

$$d\sigma^2 = \phi_{xx} dx^2 + \phi_{yy} dy^2 + 2\phi_{xy} dx dy$$

with

$$\phi_{xx}\phi_{yy}-\phi_{xy}^2=1.$$

From this Monge-Ampère equation we obtain holomorphic data for the improper affine spheres and for the flat surfaces. Let Σ be a 2-manifold and

$$\psi: \Sigma \longrightarrow \mathbb{H}^3$$

be a flat immersion. Then, the second fundamental form $d\sigma^2$ is definite. In fact, if the induced metric is given by

$$ds^2 = dx^2 + dy^2$$

then

$$d\sigma^2 = \phi_{xx} dx^2 + \phi_{yy} dy^2 + 2\phi_{xy} dx dy$$

with

$$\phi_{xx}\phi_{yy}-\phi_{xy}^2=1.$$

From this Monge-Ampère equation we obtain holomorphic data for the improper affine spheres and for the flat surfaces.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Let Σ be a 2-manifold and

$$\psi: \Sigma \longrightarrow \mathbb{H}^3$$

be a flat immersion. Then, the second fundamental form $d\sigma^2$ is definite. In fact, if the induced metric is given by

$$ds^2 = dx^2 + dy^2$$

then

$$d\sigma^2 = \phi_{xx} dx^2 + \phi_{yy} dy^2 + 2\phi_{xy} dx dy$$

with

$$\phi_{xx}\phi_{yy}-\phi_{xy}^2=1.$$

From this Monge-Ampère equation we obtain holomorphic data for the improper affine spheres and for the flat surfaces.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Theorem (Gálvez, Martínez, M (2000))

If we consider the Riemann surface $(\Sigma, d\sigma^2)$, then the hyperbolic Gauss maps $g, g_* : \Sigma \longrightarrow \mathbb{C}_{\infty} \equiv \mathbb{S}^2$ are holomorphic.

These maps associate each point $p \in \Sigma$, with the limit points of the geodesic at $\psi(p)$ orthogonal to $\psi(\Sigma)$.

Theorem (Gálvez, Martínez, M (2000))

If we consider the Riemann surface $(\Sigma, d\sigma^2)$, then the hyperbolic Gauss maps $g, g_* : \Sigma \longrightarrow \mathbb{C}_{\infty} \equiv \mathbb{S}^2$ are holomorphic.

These maps associate each point $p \in \Sigma$, with the limit points of the geodesic at $\psi(p)$ orthogonal to $\psi(\Sigma)$.

- With these holomorphic data we obtained a conformal representation and different results for flat surfaces in \mathbb{H}^3 :
 - Description of classical examples.
 - A complete end is conformal to a disk minus a point z_0 .
 - g extends to z₀ iff the associated ODE has a regular singularity.
 - A regular end is embedded iff z_0 is not a branch point of g.
- Kokubu, Umehara and Yamada extended our representation to flat fronts, that is, flat surfaces with admissible singularities, $((g, g_*) : \Sigma \longrightarrow \mathbb{S}^2 \times \mathbb{S}^2$ is an immersion), (2004).
- With Rossman and Saji constructed complete examples with curves of singularities and studied their properties, (2005).

- With these holomorphic data we obtained a conformal representation and different results for flat surfaces in H³:
 - Description of classical examples.
 - A complete end is conformal to a disk minus a point z_0 .
 - g extends to z_0 iff the associated ODE has a regular singularity.
 - A regular end is embedded iff z_0 is not a branch point of g.
- Kokubu, Umehara and Yamada extended our representation to flat fronts, that is, flat surfaces with admissible singularities, ((g,g_{*}) : Σ → S² × S² is an immersion), (2004).
- With Rossman and Saji constructed complete examples with curves of singularities and studied their properties, (2005).

- With these holomorphic data we obtained a conformal representation and different results for flat surfaces in \mathbb{H}^3 :
 - Description of classical examples.
 - A complete end is conformal to a disk minus a point z_0 .
 - g extends to z_0 iff the associated ODE has a regular singularity.
 - A regular end is embedded iff z_0 is not a branch point of g.
- Kokubu, Umehara and Yamada extended our representation to flat fronts, that is, flat surfaces with admissible singularities, $((g, g_*) : \Sigma \longrightarrow \mathbb{S}^2 \times \mathbb{S}^2$ is an immersion), (2004).
- With Rossman and Saji constructed complete examples with curves of singularities and studied their properties, (2005).

- With these holomorphic data we obtained a conformal representation and different results for flat surfaces in \mathbb{H}^3 :
 - Description of classical examples.
 - A complete end is conformal to a disk minus a point z_0 .
 - g extends to z_0 iff the associated ODE has a regular singularity.
 - A regular end is embedded iff z_0 is not a branch point of g.
- Kokubu, Umehara and Yamada extended our representation to flat fronts, that is, flat surfaces with admissible singularities, $((g, g_*) : \Sigma \longrightarrow \mathbb{S}^2 \times \mathbb{S}^2$ is an immersion), (2004).
- With Rossman and Saji constructed complete examples with curves of singularities and studied their properties, (2005).

Theorem (Kokubu, Umehara and Yamada (2004))

Let g and g_* be non-constant meromorphic functions on a Riemann surface Σ , such that $g(p) \neq g_*(p)$ for all $p \in \Sigma$, • all the poles of the 1-form $\frac{dg}{g-g_*}$ are of order 1, **2** Re $\int_{\gamma} \frac{dg}{g - g_*} = 0$, for each loop γ on Σ and 3 g and g_* have no common branch points. If $\xi := c \exp \int \frac{dg}{\sigma - \sigma_*}$, with $c \in \mathbb{C} \setminus \{0\}$.

is a singly-valued flat front. Conversely any non-totally umbilical flat front can be constructed in this way.

Theorem (Kokubu, Umehara and Yamada (2004))

Let g and g_* be non-constant meromorphic functions on a Riemann surface Σ , such that $g(p) \neq g_*(p)$ for all $p \in \Sigma$, all the poles of the 1-form $\frac{dg}{g-g_*}$ are of order 1, Re $\int_{\gamma} \frac{dg}{g-g_*} = 0$, for each loop γ on Σ and g and g_* have no common branch points. If $\xi := c \exp \int \frac{dg}{g-g_*}$, with $c \in \mathbb{C} \setminus \{0\}$. Then, the map $\psi = (\psi_1, \psi_2, \psi_3) : \Sigma \longrightarrow \mathbb{H}^3$ given by

$$\psi_1 + i \psi_2 = g - \frac{|\xi|^4 (g - g_*)}{|\xi|^4 + |g - g_*|^2}, \qquad \psi_3 = \frac{|\xi|^2 |g - g_*|^2}{|\xi|^4 + |g - g_*|^2}$$

is a singly-valued flat front. Conversely any non-totally umbilical flat front can be constructed in this way.

From this theorem, one has:

• A harmonic function $u: \Sigma \setminus \mathcal{P}_g \longrightarrow \mathbb{R}$, given by

$$u:=\operatorname{Re}\int\frac{dg}{g-g_*},$$

where \mathcal{P}_g is the set of poles of g. (In our examples $\mathcal{P}_g = \emptyset$). • A holomorphic function $F := \frac{1}{g-g_*}$ on Σ , determined by

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへの

where * denotes the standard *conjugation* operator.

• g and g - 1/F have no common branch points.

From this theorem, one has:

• A harmonic function $u: \Sigma \setminus \mathcal{P}_g \longrightarrow \mathbb{R}$, given by

$$u:=\operatorname{Re}\int\frac{dg}{g-g_*},$$

where \mathcal{P}_g is the set of poles of g. (In our examples $\mathcal{P}_g = \emptyset$).

• A holomorphic function $F := \frac{1}{g-g_*}$ on Σ , determined by

$$du + i * du = Fdg$$

- 日本 - 4 日本 - 4 日本 - 日本

where * denotes the standard *conjugation* operator.

• g and g - 1/F have no common branch points.

From this theorem, one has:

• A harmonic function $u: \Sigma \setminus \mathcal{P}_g \longrightarrow \mathbb{R}$, given by

$$u:=\operatorname{Re}\int\frac{dg}{g-g_*},$$

where \mathcal{P}_g is the set of poles of g. (In our examples $\mathcal{P}_g = \emptyset$).

• A holomorphic function $F := \frac{1}{g-g_*}$ on Σ , determined by

$$du + i * du = Fdg$$

- 日本 - 1 日本 - 日本 - 日本

where * denotes the standard *conjugation* operator.

• g and g - 1/F have no common branch points.

From this theorem, one has:

• A harmonic function $u: \Sigma \setminus \mathcal{P}_g \longrightarrow \mathbb{R}$, given by

$$u:=\operatorname{Re}\int\frac{dg}{g-g_*},$$

where \mathcal{P}_g is the set of poles of g. (In our examples $\mathcal{P}_g = \emptyset$).

• A holomorphic function $F := \frac{1}{g-g_*}$ on Σ , determined by

$$du + i * du = Fdg$$

where * denotes the standard *conjugation* operator.

• g and g - 1/F have no common branch points.

Theorem (Corro, Martínez, M (2010))

Let g be a non-constant meromorphic function on a Riemann surface Σ and u be a harmonic function as above. If

 $ds^{2} = \exp(-4u) \left| \exp(4u)(dF + F^{2}dg) - \overline{dg} \right|$

is a Riemannian metric, then the map $\psi=(\psi_1,\psi_2,\psi_3):\Sigma\longrightarrow\mathbb{H}^3,$

$$\psi_1 + \mathrm{i}\,\psi_2 = g - \psi_3 \exp(2u)\overline{F}, \qquad \psi_3 = \frac{\exp(2u)}{1 + \exp(4u)|F|^2}$$

is a well-defined flat immersion, with second fundamental form

$$d\sigma^{2} = \exp(-4u) |dg|^{2} - \exp(4u) |dF + F^{2}dg|^{2}$$
.

And conversely.

Theorem (Corro, Martínez, M (2010))

Let g be a non-constant meromorphic function on a Riemann surface Σ and u be a harmonic function as above. If

$$ds^{2} = \exp(-4u) \left| \exp(4u)(dF + F^{2}dg) - \overline{dg} \right|^{2}$$

is a Riemannian metric, then the map $\psi = (\psi_1, \psi_2, \psi_3): \Sigma \longrightarrow \mathbb{H}^3$,

$$\psi_1 + \mathrm{i}\,\psi_2 = g - \psi_3 \exp(2u)\overline{F}, \qquad \psi_3 = \frac{\exp(2u)}{1 + \exp(4u)|F|^2}$$

is a well-defined flat immersion, with second fundamental form

$$d\sigma^{2} = \exp(-4u) |dg|^{2} - \exp(4u) |dF + F^{2}dg|^{2}$$
.

And conversely.

Theorem (Corro, Martínez, M (2010))

Let g be a non-constant meromorphic function on a Riemann surface Σ and u be a harmonic function as above. If

$$ds^{2} = \exp(-4u) \left| \exp(4u)(dF + F^{2}dg) - \overline{dg} \right|^{2}$$

is a Riemannian metric, then the map $\psi = (\psi_1, \psi_2, \psi_3): \Sigma \longrightarrow \mathbb{H}^3$,

$$\psi_1 + \mathrm{i}\,\psi_2 = g - \psi_3 \exp(2u)\overline{F}, \qquad \psi_3 = \frac{\exp(2u)}{1 + \exp(4u)|F|^2}$$

is a well-defined flat immersion, with second fundamental form

$$d\sigma^{2} = \exp(-4u) \left| dg \right|^{2} - \exp(4u) \left| dF + F^{2} dg \right|^{2}$$

And conversely.

Remark (Corro (2006))

The hyperbolic Gauss map g defines a horospheres congruence and $\exp(2u)/2$ is the radius function of each tangent horosphere to $\psi(\Sigma)$.

Definition

Let Σ be a differentiable surface without boundary, $\psi : \Sigma \to \mathbb{H}^3$ a continuous map and $\mathcal{F} = \{p_1, \cdots, p_n\} \subset \Sigma$ a finite set. We say that ψ is a complete flat immersion with isolated singularities $\psi(p_1), \cdots, \psi(p_n)$, if ψ is a flat immersion in $\Sigma \setminus \mathcal{F}$, but ψ is not C^1 at the points p_1, \cdots, p_n , and every divergent curve in Σ has infinite length for the induced (singular) metric.

- Around an (embedded) isolated singularity we have the conformal structure of an annulus (and a convex graph), (Gálvez and Mira (2005)).
- $ds^2 \leq 2 \exp(-4u)|dg|^2$ and from the classical result of Huber:

Definition

Let Σ be a differentiable surface without boundary, $\psi : \Sigma \to \mathbb{H}^3$ a continuous map and $\mathcal{F} = \{p_1, \cdots, p_n\} \subset \Sigma$ a finite set. We say that ψ is a complete flat immersion with isolated singularities $\psi(p_1), \cdots, \psi(p_n)$, if ψ is a flat immersion in $\Sigma \setminus \mathcal{F}$, but ψ is not C^1 at the points p_1, \cdots, p_n , and every divergent curve in Σ has infinite length for the induced (singular) metric.

- Around an (embedded) isolated singularity we have the conformal structure of an annulus (and a convex graph), (Gálvez and Mira (2005)).
- $ds^2 \leq 2 \exp(-4u)|dg|^2$ and from the classical result of Huber:

Definition

Let Σ be a differentiable surface without boundary, $\psi : \Sigma \to \mathbb{H}^3$ a continuous map and $\mathcal{F} = \{p_1, \cdots, p_n\} \subset \Sigma$ a finite set. We say that ψ is a complete flat immersion with isolated singularities $\psi(p_1), \cdots, \psi(p_n)$, if ψ is a flat immersion in $\Sigma \setminus \mathcal{F}$, but ψ is not C^1 at the points p_1, \cdots, p_n , and every divergent curve in Σ has infinite length for the induced (singular) metric.

- Around an (embedded) isolated singularity we have the conformal structure of an annulus (and a convex graph), (Gálvez and Mira (2005)).
- $ds^2 \leq 2 \exp(-4u)|dg|^2$ and from the classical result of Huber:

Proposition

Let $\psi: \Sigma \to \mathbb{H}^3$ be a complete flat immersion with isolated singularities $\psi(p_1), \cdots, \psi(p_n)$. Then there is a compact Riemannian surface $\overline{\Sigma}$, *n* disjoint discs $\mathcal{D}_1, \cdots, \mathcal{D}_n \subset \overline{\Sigma}$ and points $q_1, \cdots, q_m \in \overline{\Sigma} \setminus \{\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_n\}$ such that

 $\Sigma \setminus \{p_1, \cdots, p_n\}$

endowed with the conformal structure induced by the second fundamental form has the conformal type of

 $\overline{\Sigma} \setminus \{\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_n \cup \{q_1, \cdots, q_m\}\}.$

The points q_1, \cdots, q_m are called the ends of ψ .
Proposition

Let $\psi: \Sigma \to \mathbb{H}^3$ be a complete flat immersion with isolated singularities $\psi(p_1), \cdots, \psi(p_n)$. Then there is a compact Riemannian surface $\overline{\Sigma}$, *n* disjoint discs $\mathcal{D}_1, \cdots, \mathcal{D}_n \subset \overline{\Sigma}$ and points $q_1, \cdots, q_m \in \overline{\Sigma} \setminus \{\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_n\}$ such that

 $\Sigma \setminus \{p_1, \cdots, p_n\}$

endowed with the conformal structure induced by the second fundamental form has the conformal type of

$$\overline{\Sigma} \setminus \{\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_n \cup \{q_1, \cdots, q_m\}\}.$$

The points q_1, \dots, q_m are called the ends of ψ .

Proposition

Each embedded complete end of a flat surface in \mathbb{H}^3 is biholomorphic to a punctured disc and the hyperbolic Gauss map gextends meromorphically to the punctured, that is, the end must be regular (and a convex graph).

Notes of the Proof

(Gálvez, Martínez, M (2000))

$$\kappa = 0 \sim ODE \sim H = 1$$

(Yu, Surfaces of constant mean curvature one in \mathbb{H}^3 with irregular ends (2001))

Proposition

Each embedded complete end of a flat surface in \mathbb{H}^3 is biholomorphic to a punctured disc and the hyperbolic Gauss map gextends meromorphically to the punctured, that is, the end must be regular (and a convex graph).

Notes of the Proof

(Gálvez, Martínez, M (2000))

$$\kappa = 0 \sim \textit{ODE} \sim \textit{H} = 1$$

(Yu, Surfaces of constant mean curvature one in \mathbb{H}^3 with irregular ends (2001))

Theorem

If $\psi : \Sigma \to \mathbb{H}^3$ is a complete flat embedding with a finite number of isolated singularities, then ψ is globally convex.

Corollary

Every complete flat embedding $\psi: \Sigma \to \mathbb{H}^3$ with a finite number of isolated singularities and only one end is a graph over a finitely punctured horosphere and

 $\Sigma \setminus \{p_1, \cdots, p_n\} \cong \mathbb{S}^2 \setminus \{\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_n \cup \{q\}\}.$

Theorem

If $\psi : \Sigma \to \mathbb{H}^3$ is a complete flat embedding with a finite number of isolated singularities, then ψ is globally convex.

Corollary

Every complete flat embedding $\psi:\Sigma\to\mathbb{H}^3$ with a finite number of isolated singularities and only one end is a graph over a finitely punctured horosphere and

$$\Sigma \setminus \{p_1, \cdots, p_n\} \cong \mathbb{S}^2 \setminus \{\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_n \cup \{q\}\}.$$

Consequence

The existence of complete flat embedding in \mathbb{H}^3 with *n* isolated singularities and only one end is equivalent to the existence of the appropriate data (g, g_*) or (g, u) on $\mathbb{C} \setminus \{\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_n\}$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへの

First approach

As $ds^2 = 0$ on ∂D_j , $j = 1, \ldots, n$, one has

$$\frac{\exp(4u)(dF+F^2dg)}{dg}\bigg|=1.$$

Then, we tried to recover (g, u) from meromorphic functions \tilde{f}, \tilde{g} on $\mathbb{C} \setminus \{\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_n\}$ such that $\left|\frac{d\tilde{f}}{d\tilde{g}}\right| = 1$ on the boundary. But the way is complicated.

However, this idea gives directly the data for the regular solution of the Monge-Ampère equation $\phi_{xx}\phi_{yy} - \phi_{xy}^2 = 1$, in the plane minus n points, (Gálvez, Martínez, Mira (2005)).

First approach

As $ds^2 = 0$ on ∂D_j , $j = 1, \ldots, n$, one has

$$\frac{\exp(4u)(dF+F^2dg)}{dg}\bigg|=1.$$

Then, we tried to recover (g, u) from meromorphic functions \tilde{f}, \tilde{g} on $\mathbb{C} \setminus \{\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_n\}$ such that $\left|\frac{d\tilde{f}}{d\tilde{g}}\right| = 1$ on the boundary. But the way is complicated.

However, this idea gives directly the data for the regular solution of the Monge-Ampère equation $\phi_{xx}\phi_{yy} - \phi_{xy}^2 = 1$, in the plane minus n points, (Gálvez, Martínez, Mira (2005)).

The half hourglass is a flat complete embedding $\psi : \Sigma \longrightarrow \mathbb{H}^3$, with one isolated singularity and one end.

It has the elementary data

$$g(z) = z, \ g_*(z) = \frac{a+1}{a-1}z$$

200

The half hourglass is a flat complete embedding $\psi : \Sigma \longrightarrow \mathbb{H}^3$, with one isolated singularity and one end. It has the elementary data

$$g(z) = z, \ g_*(z) = \frac{a+1}{a-1}z$$

with

$$z \in \Sigma = \mathbb{D}_r^* = \{z \in \mathbb{C} \mid 0 < |z| < r\} \cong \mathbb{C} \setminus \mathcal{D}_1,$$

 $4r^{2a} = 1 - a^2$ and $a \in]0, 1[$.

- The singularity is $\psi(\mathbb{S}_r)$, with $\mathbb{S}_r = \{z \in \mathbb{C} \mid |z| = r\}$.
- The end is $\psi(0)$.
- The function

$$R(z) = F(z)g(z) = \frac{g(z)}{g(z) - g_*(z)}$$

(日) (日) (日) (日) (日) (日) (日) (日)

with

$$z \in \Sigma = \mathbb{D}_r^* = \{z \in \mathbb{C} \mid 0 < |z| < r\} \cong \mathbb{C} \setminus \mathcal{D}_1,$$

 $4r^{2a} = 1 - a^2$ and $a \in]0, 1[$.

The singularity is ψ(S_r), with S_r = {z ∈ C / |z| = r}.
The end is ψ(0).

• The function

$$R(z) = F(z)g(z) = \frac{g(z)}{g(z) - g_*(z)}$$

(日) (日) (日) (日) (日) (日) (日) (日)

with

$$z \in \Sigma = \mathbb{D}_r^* = \{z \in \mathbb{C} \mid 0 < |z| < r\} \cong \mathbb{C} \setminus \mathcal{D}_1,$$

 $4r^{2a} = 1 - a^2$ and $a \in]0, 1[$.

- The singularity is $\psi(\mathbb{S}_r)$, with $\mathbb{S}_r = \{z \in \mathbb{C} \mid |z| = r\}$.
- The end is $\psi(0)$.

• The function

$$R(z) = F(z)g(z) = \frac{g(z)}{g(z) - g_*(z)}$$

(日) (日) (日) (日) (日) (日) (日) (日)

with

$$z \in \Sigma = \mathbb{D}_r^* = \{z \in \mathbb{C} \mid 0 < |z| < r\} \cong \mathbb{C} \setminus \mathcal{D}_1,$$

 $4r^{2a} = 1 - a^2$ and $a \in]0, 1[$.

- The singularity is $\psi(\mathbb{S}_r)$, with $\mathbb{S}_r = \{z \in \mathbb{C} \mid |z| = r\}$.
- The end is $\psi(0)$.
- The function

$$R(z) = F(z)g(z) = \frac{g(z)}{g(z) - g_*(z)}$$

(日) (日) (日) (日) (日) (日) (日) (日)

We find the data (g, u) from an aproppriate holomorphic function $R : \mathbb{A}_r^* \longrightarrow \mathbb{C}$, where

$$\mathbb{A}_r^* = \mathbb{A}_r \setminus \{z_0\} \cong \mathbb{C} \setminus \mathcal{D}_1 \cup \mathcal{D}_2,$$

$$\mathbb{A}_r = \{z \in \mathbb{C} / r < |z| < 1\},\$$

0 < r < 1 and $z_0 \in \mathbb{A}_r$.

In fact, if we want

$$\psi(\mathbb{S}_1) = (0, 0, 1), \ \psi(\mathbb{S}_r) = (0, 0, c),$$

with $c \in \mathbb{R}^+ \setminus \{1\}$. Then, from our conformal representation,

$$\psi_1 + \mathrm{i}\,\psi_2 = g - \psi_3 \exp(2u)\overline{F}, \qquad \psi_3 = \frac{\exp(2u)}{1 + \exp(4u)|F|^2},$$

We find the data (g, u) from an aproppriate holomorphic function $R : \mathbb{A}_r^* \longrightarrow \mathbb{C}$, where

$$\mathbb{A}_r^* = \mathbb{A}_r \setminus \{z_0\} \cong \mathbb{C} \setminus \mathcal{D}_1 \cup \mathcal{D}_2,$$

$$\mathbb{A}_r = \{z \in \mathbb{C} / r < |z| < 1\},\$$

0 < r < 1 and $z_0 \in \mathbb{A}_r$.

In fact, if we want

$$\psi(\mathbb{S}_1) = (0, 0, 1), \ \psi(\mathbb{S}_r) = (0, 0, c),$$

with $c \in \mathbb{R}^+ \setminus \{1\}$. Then, from our conformal representation,

$$\psi_1 + \mathrm{i}\,\psi_2 = g - \psi_3 \exp(2u)\overline{F}, \qquad \psi_3 = \frac{\exp(2u)}{1 + \exp(4u)|F|^2},$$

We find the data (g, u) from an aproppriate holomorphic function $R : \mathbb{A}_r^* \longrightarrow \mathbb{C}$, where

$$\mathbb{A}_r^* = \mathbb{A}_r \setminus \{z_0\} \cong \mathbb{C} \setminus \mathcal{D}_1 \cup \mathcal{D}_2,$$

$$\mathbb{A}_r = \{z \in \mathbb{C} / r < |z| < 1\},\$$

0 < r < 1 and $z_0 \in \mathbb{A}_r$.

In fact, if we want

$$\psi(\mathbb{S}_1) = (0, 0, 1), \ \psi(\mathbb{S}_r) = (0, 0, c),$$

with $c \in \mathbb{R}^+ \setminus \{1\}$. Then, from our conformal representation,

$$\psi_1 + \mathrm{i}\,\psi_2 = g - \psi_3 \exp(2u)\overline{F}, \qquad \psi_3 = \frac{\exp(2u)}{1 + \exp(4u)|F|^2},$$

Solved Problem (n = 2)

we need

$$|g(z)|^2=rac{R(z)}{1-R(z)}, \ \ z\in \mathbb{S}_1$$

and

$$|g(z)|^2 = \frac{c^2 R(z)}{1 - R(z)}, \ z \in \mathbb{S}_r,$$

where R is the holomorphic function F(g - 0).

Solution

These conditions determine R, also $g \sim \sqrt{R/1 - R}$ and u from F = R/g. Thus, we are going to construct new examples that we will call canonical examples.

Solved Problem (n = 2)

we need

$$|g(z)|^2=rac{R(z)}{1-R(z)}, \ \ z\in \mathbb{S}_1$$

and

$$|g(z)|^2 = \frac{c^2 R(z)}{1 - R(z)}, \ z \in \mathbb{S}_r,$$

where *R* is the holomorphic function F(g - 0).

Solution

These conditions determine R, also $g \sim \sqrt{R/1 - R}$ and u from F = R/g. Thus, we are going to construct new examples that we will call canonical examples.

It is more difficult, because the singularities are not in the same vertical line $\{0\}\times \mathbb{R}^+$ and one has different undetermined holomorphic functions

$$R_j = F(g - c_j),$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへの

with $c_j \in \mathbb{C}$, j = 1, ..., n. (Each R_j is real only on ∂D_j).

Possible Solution

Find a good combination of the above functions.

It is more difficult, because the singularities are not in the same vertical line $\{0\}\times \mathbb{R}^+$ and one has different undetermined holomorphic functions

$$R_j = F(g - c_j),$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへの

with $c_j \in \mathbb{C}$, j = 1, ..., n. (Each R_j is real only on ∂D_j).

Possible Solution

Find a good combination of the above functions.

In this case, we can find explicitly an appropriate holomorphic function R and this is fundamental in the proofs.

We consider the annular Jacobi theta function in \mathbb{A}_r given by

$$\vartheta_1(z) = \left(1 - \frac{1}{z}\right) \prod_{k=1}^{\infty} (1 - r^{2k}z)(1 - r^{2k}/z).$$

It satisfies

$$\vartheta_1(z) = \overline{\vartheta_1(\overline{z})} = -r^2 z \vartheta_1(r^2 z) = -\frac{1}{z} \vartheta_1(1/z), \quad \vartheta_1(z/r^2) = -z \vartheta_1(z)$$

and by deriving ...

In this case, we can find explicitly an appropriate holomorphic function R and this is fundamental in the proofs.

We consider the annular Jacobi theta function in \mathbb{A}_r given by

$$\vartheta_1(z) = \left(1 - \frac{1}{z}\right) \prod_{k=1}^{\infty} (1 - r^{2k}z)(1 - r^{2k}/z).$$

It satisfies

 $\vartheta_1(z) = \overline{\vartheta_1(\overline{z})} = -r^2 z \vartheta_1(r^2 z) = -\frac{1}{z} \vartheta_1(1/z), \quad \vartheta_1(z/r^2) = -z \vartheta_1(z)$

and by deriving ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In this case, we can find explicitly an appropriate holomorphic function R and this is fundamental in the proofs.

We consider the annular Jacobi theta function in \mathbb{A}_r given by

$$\vartheta_1(z) = \left(1 - \frac{1}{z}\right) \prod_{k=1}^{\infty} (1 - r^{2k}z)(1 - r^{2k}/z).$$

It satisfies

$$\vartheta_1(z) = \overline{\vartheta_1(\overline{z})} = -r^2 z \vartheta_1(r^2 z) = -\frac{1}{z} \vartheta_1(1/z), \ \vartheta_1(z/r^2) = -z \vartheta_1(z)$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへの

and by deriving ...

Thus, for any $z_j \in]-1, -r[$, the classical holomorphic bijection $q_j : \mathbb{A}_r \setminus \{z_j\} \longrightarrow \mathbb{C} \setminus (I_1 \cup I_r)$ given by

$$q_j(z) = -rac{artheta_1'(z_j/z)}{zartheta_1(z_j/z)} - rac{zartheta_1'(z_jz)}{artheta_1(z_jz)},$$

maps the circles S_1 and S_r , onto two real intervals l_1 and l_r , respectively.

Characterization (see Ahlfords)

 q_j is the unique (up to real additive constants) holomorphic map in $\mathbb{A}_r \setminus \{z_j\}$, which maps each boundary component of \mathbb{A}_r onto a real interval and has a simple pole of residue 1 at z_j , $(q_j \sim \frac{1}{z-z_j})$.

Thus, for any $z_j \in]-1, -r[$, the classical holomorphic bijection $q_j : \mathbb{A}_r \setminus \{z_j\} \longrightarrow \mathbb{C} \setminus (I_1 \cup I_r)$ given by

$$q_j(z) = -rac{artheta_1'(z_j/z)}{zartheta_1(z_j/z)} - rac{zartheta_1'(z_jz)}{artheta_1(z_jz)},$$

maps the circles S_1 and S_r , onto two real intervals I_1 and I_r , respectively.

Characterization (see Ahlfords)

 q_j is the unique (up to real additive constants) holomorphic map in $\mathbb{A}_r \setminus \{z_j\}$, which maps each boundary component of \mathbb{A}_r onto a real interval and has a simple pole of residue 1 at z_j , $(q_j \sim \frac{1}{z-z_i})$.

Remark

If one takes $z_0 \in]-1, -r[$, then

 $q_0:]z_0, -r[\cup \mathbb{S}_r \cup [r, 1] \cup \mathbb{S}_1 \cup] - 1, z_0[\longrightarrow \mathbb{R}.$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Definition

Given
$$z_0, z_1, z_2 \in]-1, -r[$$
, we define $R : \mathbb{A}_r \setminus \{z_0\} \longrightarrow \mathbb{C}$ by

$$R(z) = aq_0(z) + b,$$

where a and b are real constants, determined by $R(z_1) = 1$, $R(z_2) = 0$ and such that 0 < R < 1 on $\partial \mathbb{A}_r$.

From the above characterization one has

$$rac{R'(z_1)}{R(z)-1} = q_1(z) - c_1, \ \ rac{R'(z_2)}{R(z)} = q_2(z) - c_2$$

where

 $c_1 = q_1(z_0) = q_1(z_2) + R'(z_1), \ \ c_2 = q_2(z_0) = q_2(z_1) - R'(z_2) \in \mathbb{R}.$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへの

Definition

Given
$$z_0, z_1, z_2 \in]-1, -r[$$
, we define $R : \mathbb{A}_r \setminus \{z_0\} \longrightarrow \mathbb{C}$ by

$$R(z) = aq_0(z) + b,$$

where a and b are real constants, determined by $R(z_1) = 1$, $R(z_2) = 0$ and such that 0 < R < 1 on $\partial \mathbb{A}_r$.

From the above characterization one has

$$rac{R'(z_1)}{R(z)-1} = q_1(z) - c_1, \ \ rac{R'(z_2)}{R(z)} = q_2(z) - c_2,$$

where

$$c_1=q_1(z_0)=q_1(z_2)+R'(z_1), \ \ c_2=q_2(z_0)=q_2(z_1)-R'(z_2)\in\mathbb{R}.$$

Proposition

If
$$z_0, z_1, z_2 \in]-1, -r[$$
 and $m \in \mathbb{R}$ satisfy
(C1) $m + c_1 z_1 - z_1 R'(z_1) = -z_2 R'(z_2),$
(C2) $c_1 z_1 - c_2 z_2 - 2 = 0,$
(C3) $z_1 z_2 r^{2(m+2)} = 1.$

Then the functions $g : \mathbb{A}_r \longrightarrow \mathbb{C}$ and $u : \mathbb{A}_r \setminus \{z_0\} \longrightarrow \mathbb{R}$ given by

$$g(z) = \sqrt{\frac{R(z)}{1 - R(z)}} \frac{Q_1(z)}{Q_2(z)} z^{-2}, \quad u(z) = \frac{1}{2} \log \left| \frac{Q_1(z)}{1 - R(z)} z^m \right|^2$$

with $Q_j(z) = \frac{\vartheta_1(z_j/z)}{\vartheta_1(z_jz)}$, j = 1, 2, are the data of a well-defined flat surface $\psi : \mathbb{A}_r \setminus \{z_0\} \to \mathbb{H}^3$, with $\psi(\mathbb{S}_1)$ and $\psi(\mathbb{S}_r)$ as isolated singularities.

Proposition

If
$$z_0, z_1, z_2 \in]-1, -r[$$
 and $m \in \mathbb{R}$ satisfy
(C1) $m + c_1 z_1 - z_1 R'(z_1) = -z_2 R'(z_2),$
(C2) $c_1 z_1 - c_2 z_2 - 2 = 0,$
(C3) $z_1 z_2 r^{2(m+2)} = 1.$

Then the functions $g: \mathbb{A}_r \longrightarrow \mathbb{C}$ and $u: \mathbb{A}_r \setminus \{z_0\} \longrightarrow \mathbb{R}$ given by

$$g(z) = \sqrt{\frac{R(z)}{1-R(z)}} \frac{Q_1(z)}{Q_2(z)} z^{-2}, \quad u(z) = \frac{1}{2} \log \left| \frac{Q_1(z)}{1-R(z)} z^m \right|^2$$

with $Q_j(z) = \frac{\vartheta_1(z_j/z)}{\vartheta_1(z_jz)}$, j = 1, 2, are the data of a well-defined flat surface $\psi : \mathbb{A}_r \setminus \{z_0\} \to \mathbb{H}^3$, with $\psi(\mathbb{S}_1)$ and $\psi(\mathbb{S}_r)$ as isolated singularities.

Notes of the Proof

- As z_j is a simple zero of Q_j , g is a holomorphic function and $u(z) \frac{1}{2} \log |z z_0|$ is a harmonic function in \mathbb{A}_r .
- From (C1), (C2) and $d \log Q_j(z) = \frac{z_j}{z} q_j(z) dz$ we get

$$du + i * du = \frac{R}{g} dg \Rightarrow F = \frac{R}{g}$$

is a holomorphic function in $\mathbb{A}_r \setminus \{z_0\}$.

- g and g 1/F have no common branch points, because $R' \neq 0$ in \mathbb{A}_r .
- $\psi(\mathbb{S}_1)=(0,0,1)$ and (C3) gives

 $\psi(\mathbb{S}_r) = (0, 0, |z_1|r^{m+1}).$

Notes of the Proof

- As z_j is a simple zero of Q_j , g is a holomorphic function and $u(z) \frac{1}{2} \log |z z_0|$ is a harmonic function in \mathbb{A}_r .
- From (C1), (C2) and $d \log Q_j(z) = \frac{z_j}{z} q_j(z) dz$ we get

$$du + i * du = \frac{R}{g} dg \Rightarrow F = \frac{R}{g}$$

- is a holomorphic function in $\mathbb{A}_r \setminus \{z_0\}$.
- g and g 1/F have no common branch points, because $R' \neq 0$ in \mathbb{A}_r .
- $\psi(\mathbb{S}_1)=(0,0,1)$ and (C3) gives

 $\psi(\mathbb{S}_r) = (0, 0, |z_1|r^{m+1}).$

Notes of the Proof

- As z_j is a simple zero of Q_j , g is a holomorphic function and $u(z) \frac{1}{2} \log |z z_0|$ is a harmonic function in \mathbb{A}_r .
- From (C1), (C2) and $d \log Q_j(z) = \frac{z_j}{z} q_j(z) dz$ we get

$$du + i * du = \frac{R}{g} dg \Rightarrow F = \frac{R}{g}$$

is a holomorphic function in $\mathbb{A}_r \setminus \{z_0\}$.

• g and g - 1/F have no common branch points, because $R' \neq 0$ in \mathbb{A}_r .

• $\psi(S_1) = (0, 0, 1)$ and (C3) gives

 $\psi(\mathbb{S}_r) = (0, 0, |z_1|r^{m+1}).$

Notes of the Proof

- As z_j is a simple zero of Q_j , g is a holomorphic function and $u(z) \frac{1}{2} \log |z z_0|$ is a harmonic function in \mathbb{A}_r .
- From (C1), (C2) and $d \log Q_j(z) = \frac{z_j}{z} q_j(z) dz$ we get

$$du + i * du = \frac{R}{g} dg \Rightarrow F = \frac{R}{g}$$

is a holomorphic function in $\mathbb{A}_r \setminus \{z_0\}$.

- g and g 1/F have no common branch points, because $R' \neq 0$ in \mathbb{A}_r .
- $\psi(\mathbb{S}_1) = (0,0,1)$ and (C3) gives

$$\psi(\mathbb{S}_r) = (0, 0, |z_1|r^{m+1}).$$

Existence

For any $r \in]0,1[$ and $s \in]-1,0[$, there exist

 $m \in]-3,-2[$

and

$$z_0, z_1, z_2 \in]-1, -r[,$$

 $z_2 < z_0 < z_1$, which satisfy the conditions (C1), (C2), (C3), with

$$s = -z_2c_2 = -z_2q_2(z_0).$$

In particular, for s = -1/2, there is a solution with m = -5/2 and $z_0^2 = r = z_1 z_2$.
<u>Canoni</u>cal examples (n = 2)

Notes of the Proof

The conditions can be written as (C1) $m = 2h(r^{-2(m+2)}) - 1 - f_0(z_2),$ (C2) $-2 = f_0(z_1) - f_0(z_2),$ (C3) $z_1 z_2 = r^{-2(m+2)}$, with $h(z) = \frac{z \vartheta'_1(z)}{\vartheta_1(z)}, \ f_0(z) = h(z/z_0) + h(zz_0).$

Theorem

Each canonical example $\psi : \mathbb{A}_r \setminus \{z_0\} \longrightarrow \mathbb{H}^3$ is a complete flat embedding with two isolated singularities and one end.

◆□ > ◆□ > ◆臣 > ◆臣 > □ 臣 ○ のへの

Notes of the Proof

The holomorphic function g is one to one on ∂A_r, (covering map with g⁻¹(g(ž)) = {ž}, for ž ∈ {±1, ±r}), and it is a diffemorphism on A_r.

Now

$$p(z) = \left(\frac{Q_1(z)}{1 - R(z)}z^m\right)^2 \left(\frac{F'(z)}{g'(z)} + F^2(z)\right)$$

verifies |p(z)| = 1 on $\partial \mathbb{A}_r \Rightarrow |p(z)| < 1$ on \mathbb{A}_r ,

 $ds^2 = \exp(-4u)|\overline{dg} - p \ dg|^2 \ge \exp(-4u)|dg|^2(1 - |p|^2) = d\sigma^2$

is positive definite, complete and $\psi(\mathbb{S}_1)$ and $\psi(\mathbb{S}_r)$ are their unique singularities.

• Only one embedded end $\psi(z_0)$ and ψ is an embedding.

Notes of the Proof

- The holomorphic function g is one to one on ∂A_r, (covering map with g⁻¹(g(ž)) = {ž}, for ž ∈ {±1, ±r}), and it is a diffemorphism on A_r.
- Now

$$p(z) = \left(\frac{Q_1(z)}{1-R(z)}z^m\right)^2 \left(\frac{F'(z)}{g'(z)} + F^2(z)\right)$$

verifies |p(z)|=1 on $\partial \mathbb{A}_r \;\; \Rightarrow \;\; |p(z)|<1$ on \mathbb{A}_r ,

$$ds^2 = \exp(-4u)|\overline{dg} - p \ dg|^2 \ge \exp(-4u)|dg|^2(1 - |p|^2) = d\sigma^2$$

is positive definite, complete and $\psi(\mathbb{S}_1)$ and $\psi(\mathbb{S}_r)$ are their unique singularities.

• Only one embedded end $\psi(z_0)$ and ψ is an embedding.

Notes of the Proof

- The holomorphic function g is one to one on ∂A_r, (covering map with g⁻¹(g(ž)) = {ž}, for ž ∈ {±1, ±r}), and it is a diffemorphism on A_r.
- Now

$$p(z) = \left(\frac{Q_1(z)}{1-R(z)}z^m\right)^2 \left(\frac{F'(z)}{g'(z)} + F^2(z)\right)$$

verifies |p(z)|=1 on $\partial \mathbb{A}_r \;\; \Rightarrow \;\; |p(z)|<1$ on \mathbb{A}_r ,

$$ds^2 = \exp(-4u)|\overline{dg} - p \ dg|^2 \ge \exp(-4u)|dg|^2(1 - |p|^2) = d\sigma^2$$

is positive definite, complete and $\psi(\mathbb{S}_1)$ and $\psi(\mathbb{S}_r)$ are their unique singularities.

• Only one embedded end $\psi(z_0)$ and ψ is an embedding.

Characterizations

Theorem (n = 1)

The revolution examples are the unique complete flat embedding in \mathbb{H}^3 with only one isolated singularity and one end.

Theorem (n = 2)

Each complete flat embedding in \mathbb{H}^3 with only two isolated singularities and one end must be congruent to one of the canonical examples.

Characterizations

Theorem (n = 1)

The revolution examples are the unique complete flat embedding in \mathbb{H}^3 with only one isolated singularity and one end.

Theorem (n = 2)

Each complete flat embedding in \mathbb{H}^3 with only two isolated singularities and one end must be congruent to one of the canonical examples.

The conditions on the boundary and in z_0 determine the above R, g and u.

In particular

$$du + i * du = R \frac{ag}{g}$$

has a simple pole in z_0 and, up to isometries of \mathbb{H}^3 , we can consider

- The singularity and $\psi(z_0)$ in $\{0\} \times \mathbb{R}^+ \Rightarrow R$ is constant, since $\frac{dg}{g}$ has the pole in z_0 .
- The two singularities in $\{0\} \times \mathbb{R}^+ \Rightarrow R$ has the pole . . .

The conditions on the boundary and in z_0 determine the above R, g and u. In particular

$$du + i * du = R \ \frac{dg}{g}$$

has a simple pole in z_0 and, up to isometries of $\mathbb{H}^3,$ we can consider

- The singularity and $\psi(z_0)$ in $\{0\} \times \mathbb{R}^+ \Rightarrow R$ is constant, since $\frac{dg}{g}$ has the pole in z_0 .
- ② The two singularities in $\{0\} \times \mathbb{R}^+ \Rightarrow R$ has the pole . . .

The conditions on the boundary and in z_0 determine the above R, g and u. In particular

$$du + i * du = R \ \frac{dg}{g}$$

has a simple pole in z_0 and, up to isometries of $\mathbb{H}^3,$ we can consider

• The singularity and $\psi(z_0)$ in $\{0\} \times \mathbb{R}^+ \Rightarrow R$ is constant, since $\frac{dg}{g}$ has the pole in z_0 .

2) The two singularities in $\{0\} imes \mathbb{R}^+ \Rightarrow R$ has the pole . . .

The conditions on the boundary and in z_0 determine the above R, g and u. In particular

$$du + i * du = R \frac{dg}{g}$$

has a simple pole in z_0 and, up to isometries of \mathbb{H}^3 , we can consider

• The singularity and $\psi(z_0)$ in $\{0\} \times \mathbb{R}^+ \Rightarrow R$ is constant, since $\frac{dg}{\sigma}$ has the pole in z_0 .

2 The two singularities in $\{0\} \times \mathbb{R}^+ \Rightarrow R$ has the pole ...

Characterizations

Remark

There are not compact embedded flat surfaces, with less than three isolated singularities, because R is constant only for the revolution examples.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶