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Introduction

Shapes of Complete Minimal Surfaces

Can we classify complete, (properly) embedded minimal
surface in R® of finite topology ?
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Introduction

Shapes of Complete Minimal Surfaces

Can we classify complete, (properly) embedded minimal
surface in R® of finite topology ?

Can we classify the asymptotic geometry of these surfaces?

(B.-Breiner, Collin, Meeks-Rosenberg,...). Let > be a complete,
properly embedded minimal surface of finite topology then each
end is asymptotic to a plane, a helicoid or half of a catenoid.
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Motivation

Why are we interested in such a question?
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Motivation

Why are we interested in such a question?

@ Very classical problem, yet requires very sophisticated
modern techniques.

@ Physical motivations...

@ Close relationship between understanding the shapes of
these surfaces and compactness properties of sequences
of embedded minimal surfaces.
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Introduction

Motivation

Why are we interested in such a question?

@ Very classical problem, yet requires very sophisticated
modern techniques.

@ Physical motivations...

@ Close relationship between understanding the shapes of
these surfaces and compactness properties of sequences
of embedded minimal surfaces.

@ We emphasize that we restrict attention to embedded
surfaces...
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Ends of Elements in £(e, g)

Minimal Surfaces

A brief introduction.

Let £(e, g) be the space of complete, embedded minimal
surfaces in R® of genus g and with e ends.
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Ends of Elements in £(e, g)

Minimal Surfaces

A brief introduction.

Let £(e, g) be the space of complete, embedded minimal
surfaces in R® of genus g and with e ends.

In R® an immersed (oriented) surface ¥ is minimal if:

° %hzoArea(Z,) = 0 for all smooth compactly supported
variations of ¥ = ¥ o; or

@ The mean curvature of ¥, Hy, vanishes identically
(= |A?2 = —2K); or

@ The coordinate functions x4, Xo, X3 restrict to harmonic
functions on X; or

@ The Gauss map n : ¥ — S? is holomorphic.
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Ends of Elements in £(e, g)

Constructing Examples

How do we get some examples of elements of £(e, g)?
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Ends of Elements in £(e, g)

Constructing Examples

How do we get some examples of elements of £(e, g)?
@ Write down an explicit parameterization.
@ Use the Weierstrass representation.
@ Variational methods.
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Ends of Elements in £(e, g)

Constructing Examples

How do we get some examples of elements of £(e, g)?
@ Write down an explicit parameterization.
@ Use the Weierstrass representation.
@ Variational methods.
@ Gluing constructions.
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Ends of Elements in £(e, g)

Weierstrass Representation

Weierstrass representation: given triple (M, g, dh) of a
Riemann surface, a meromorphic function and holomorphic
one-form, can cook up a minimal immersion F : M — R3 with
F*dxs = Re dh and with Gauss map determined by g.
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Ends of Elements in £(e, g)

Weierstrass Representation

Weierstrass representation: given triple (M, g, dh) of a
Riemann surface, a meromorphic function and holomorphic
one-form, can cook up a minimal immersion F : M — R3 with
F*dxs = Re dh and with Gauss map determined by g.

orone ([ (2(o-3) 4(6+1)))
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Ends of Elements in £(e, g)

Weierstrass Representation

Weierstrass representation: given triple (M, g, dh) of a
Riemann surface, a meromorphic function and holomorphic
one-form, can cook up a minimal immersion F : M — R3 with
F*dxs = Re dh and with Gauss map determined by g.

o ([ (a(og) alorg) 1))

For F to be a well defined immersion on M need:
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Weierstrass Representation

Weierstrass representation: given triple (M, g, dh) of a
Riemann surface, a meromorphic function and holomorphic
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Ends of Elements in £(e, g)

Weierstrass Representation

Weierstrass representation: given triple (M, g, dh) of a
Riemann surface, a meromorphic function and holomorphic
one-form, can cook up a minimal immersion F : M — R3 with
F*dxs = Re dh and with Gauss map determined by g.

o ([ (a(og) alorg) 1))

For F to be a well defined immersion on M need:
@ gdhand g~ dhto be holomorphic.
® [, 9dh— [,,97"dh= [, Redxs =0 V[v] € H'(M).
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Ends of Elements in £(e, g)

Classical Example: Catenoid

Catenoid (Euler, 1744).
In £(2,0) and of finite total curvature.

Images courtesy Matthias Weber, http://www.indiana.edu/ minimal.
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Ends of Elements in £(e, g)

Classical Example: Helicoid

Helicoid (Meusnier, 1776)
In £(1,0) and of infinite total curvature.
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Ends of Elements in £(e, g)

Classical Example: Scherk’s Surface

Scherk’s Surface (Scherk, 1835)
In £(1, c0) and of infinite total curvature.
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Ends of Elements in £(e, g)

Modern Example: Costa Surface

Costa Surface (Costa, '83).
Proven embedded by Hoffman and Meeks in ’84.

In £(3, 1) and of finite total curvature.
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Ends of Elements in £(e, g)

Modern Example: Genus-One Helicoid

Genus-One Helicoid (Hoffman, Karcher and Wei, '93).
Proven embedded by Hoffman, Weber and Wolf in '04.

In £(1, 1) and of infinite total curvature.
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Ends of Elements in £(e, g)

Strategy for Classifiying the Ends

The close interaction between complex analysis and the
geometry of a minimal surfaces gives a general procedure for
trying to classify the asymptotic geometry:

J. Bernstein The Asymptotic Geometry of Genus-g Helicoids



Ends of Elements in £(e, g)

Strategy for Classifiying the Ends

The close interaction between complex analysis and the
geometry of a minimal surfaces gives a general procedure for
trying to classify the asymptotic geometry:
@ Step 1: Get some weak control on the asymptotic
geometry.
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Strategy for Classifiying the Ends

The close interaction between complex analysis and the
geometry of a minimal surfaces gives a general procedure for
trying to classify the asymptotic geometry:
@ Step 1: Get some weak control on the asymptotic
geometry.
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Strategy for Classifiying the Ends

The close interaction between complex analysis and the
geometry of a minimal surfaces gives a general procedure for
trying to classify the asymptotic geometry:
@ Step 1: Get some weak control on the asymptotic
geometry.
@ Step 2: Use this to bound the Weierstrass data of the end.

@ Step 3: As the Weierstrass data holomorphic, get finer
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Ends of Elements in £(e, g)

Strategy for Classifiying the Ends

The close interaction between complex analysis and the
geometry of a minimal surfaces gives a general procedure for
trying to classify the asymptotic geometry:
@ Step 1: Get some weak control on the asymptotic
geometry.
@ Step 2: Use this to bound the Weierstrass data of the end.

@ Step 3: As the Weierstrass data holomorphic, get finer
understanding.

@ Step 4: Use Weierstrass representation together with
embeddedness for further refinement.
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Ends of Elements in £(e, g)

Classical Result

A classical result of Osserman provides a good example of this.
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Ends of Elements in £(e, g)

Classical Result

A classical result of Osserman provides a good example of this.

(Huber °58, Osserman, '64) Let © be a complete minimal
surface with finite total curvature in R® then . is conformal to a
finitely punctured Riemann surface and its Gauss map extends
holomorphically to each end. Thus, if the surface is embedded
each end is asymptotic to a plane or half a catenoid.
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Ends of Elements in £(e, g)

Complete Surfaces with 2 Ends

For £(e, g) when e > 2 barrier constructions imply finite total
curvature.
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Ends of Elements in £(e, g)

Complete Surfaces with 2 Ends

For £(e, g) when e > 2 barrier constructions imply finite total
curvature.

(Meeks and Rosenberg, 93) If¥ € £(e,g) ande > 2 then ¥ is
conformal to a punctured compact Riemann surface and at
least e — 2 of the ends are asymptotic to a plane or a catenoid.
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Ends of Elements in £(e, g)

Complete Surfaces with 2 Ends

For £(e, g) when e > 2 barrier constructions imply finite total
curvature.

(Meeks and Rosenberg, 93) If¥ € £(e,g) ande > 2 then ¥ is
conformal to a punctured compact Riemann surface and at
least e — 2 of the ends are asymptotic to a plane or a catenoid.

(Collin, '97) If ¥ € £(e, g) and e > 2 then * has finite total
curvature and so is conformal to a punctured compact Riemann
surface and each end is asymptotic to a plane or a catenoid.
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Ends of Elements in £(e, g)

Surfaces with One End

@ Complete minimal surfaces with one end must have infinite
total curvature or be the plane.
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Ends of Elements in £(e, g)

Surfaces with One End

@ Complete minimal surfaces with one end must have infinite
total curvature or be the plane.

@ Thus, Huber and Osserman’s result cannot be applied and
so no a priori knowledge about conformal type of the end.
Some results with additional assumptions on the
asymptotic behavior. (cf. Hoffman-McCuan, Hauswirth-
Pérez-Romon)
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Ends of Elements in £(e, g)

Surfaces with One End

@ Complete minimal surfaces with one end must have infinite
total curvature or be the plane.

@ Thus, Huber and Osserman’s result cannot be applied and
so no a priori knowledge about conformal type of the end.
Some results with additional assumptions on the
asymptotic behavior. (cf. Hoffman-McCuan, Hauswirth-
Pérez-Romon)

@ General results only achieved by applying a new theory
developed by Colding and Minicozzi. Their work has
(among other things) led to the complete classification of
the asymptotic geometry.
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Ends of Elements in £(e, g)

Conformal and Asymptotic Properties of £(1, g)

Elements of £(1,0) are completely classified.
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Conformal and Asymptotic Properties of £(1, g)

Elements of £(1,0) are completely classified.

(Meeks and Rosenberg, '04) The only elements of £(1,0) are
planes and helicoids.
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Ends of Elements in £(e, g)

Conformal and Asymptotic Properties of £(1, g)

Elements of £(1,0) are completely classified.

(Meeks and Rosenberg, '04) The only elements of £(1,0) are
planes and helicoids.

Completely understand asymptotics of elements of £(1, g):

(B. and Breiner, '08) Every element of £(1,g), g > 0, is
conformal to a once-punctured compact genus g Riemann
surface and is asymptotic to a helicoid.

Thus, may call any such an element a genus-g helicoid.
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Ends of Elements in £(e, g)

Incomplete Surfaces

Interesting to consider each end individually (i.e. as a surface
with compact boundary and one end).
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Ends of Elements in £(e, g)

Incomplete Surfaces

Interesting to consider each end individually (i.e. as a surface
with compact boundary and one end).
One expects similar arguments except:

@ Weak asymptotics less straightforward.

J. Bernstein The Asymptotic Geometry of Genus-g Helicoids



Ends of Elements in £(e, g)

Incomplete Surfaces

Interesting to consider each end individually (i.e. as a surface
with compact boundary and one end).
One expects similar arguments except:

@ Weak asymptotics less straightforward.
@ Subtleties involving the flux arise.
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Interesting to consider each end individually (i.e. as a surface
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@ Subtleties involving the flux arise.
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Ends of Elements in £(e, g)

Incomplete Surfaces

Interesting to consider each end individually (i.e. as a surface
with compact boundary and one end).
One expects similar arguments except:

@ Weak asymptotics less straightforward.
@ Subtleties involving the flux arise.
@ Good example is recent work of Meeks and Pérez.

Indeed, they consider ends with infinite total curvature. If the
flux is zero around boundary the surface is asymptotic to a
helicoid. If non-zero it is asymptotic to a certain family they
construct.
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Shapes of Embedded Minimal Disks

Shapes of Embedded Disks

Let 0 € ¥ ¢ Bg C R3 be an embedded minimal disk with
00X C 0Bg.
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Shapes of Embedded Minimal Disks

Shapes of Embedded Disks

Let 0 € ¥ ¢ Bg C R3 be an embedded minimal disk with
00X C 0Bg.

(Colding and Minicozzi, ‘04) There exist constants C,Q > 1 so
if ¥ is as above and |A|?(0) > CR~? then the component of
Br/q N X containing 0 is the union of two multi-valued graphs
that spiral together.
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Shapes of Embedded Minimal Disks

Shapes of Embedded Disks

Let 0 € ¥ ¢ Bg C R3 be an embedded minimal disk with
00X C 0Bg.

(Colding and Minicozzi, ‘04) There exist constants C,Q > 1 so
if ¥ is as above and |A|?(0) > CR~? then the component of
Br/q N X containing 0 is the union of two multi-valued graphs
that spiral together.

The previous theorem can be interpreted as saying ¥ looks
(away from the boundary) like a distorted helicoid. This
distortion can be quite great, and so in principle description is
qualitative.
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Shapes of Embedded Minimal Disks

Colding and Minicozzi’'s Examples

Image

Tight Spiraling

Colding and Minicozzi also give
an example of a sequence of
disks 0 € X; with 9%; C 0B;
that have uniformly bounded
curvature away from the origin

but have curvature blowing up \\

at the origin.
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Shapes of Embedded Minimal Disks

Bent Helicoids

Bent Helicoids

Meeks and Weber have
constructed examples of “bent”
helicoids, where the
multi-valued graphs have axis
an arbitrary C'! curve.
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Shapes of Embedded Minimal Disks

Sketch of Colding and Minicozzi’'s Argument

@ First focus on points of large curvature:

Definition

A pair (y,s) € ¥ x RT is a (C) blow-up pair if
SUPg, ) AI? < 4|A%(y) = 4C3s2.
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Sketch of Colding and Minicozzi’'s Argument

@ First focus on points of large curvature:

Definition

A pair (y,s) € ¥ x RT is a (C) blow-up pair if
SUPg, ) AI? < 4|A%(y) = 4C3s2.

@ Suppose (Y, s) is such a pair in X, far from 0%, then near y
a small multi-valued graph, ¥, forms on the scale s
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Shapes of Embedded Minimal Disks

Sketch of Colding and Minicozzi’'s Argument

@ First focus on points of large curvature:

Definition

A pair (y,s) € ¥ x RT is a (C) blow-up pair if
SUPg, ) AI? < 4|A%(y) = 4C3s2.

@ Suppose (Y, s) is such a pair in X, far from 0%, then near y
a small multi-valued graph, ¥, forms on the scale s
@ XY, can be extended, as a multi-valued graph, in * to 0%
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Shapes of Embedded Minimal Disks

Sketch of Colding and Minicozzi’'s Argument

@ First focus on points of large curvature:

Definition

A pair (y,s) € ¥ x RT is a (C) blow-up pair if
SUPg, ) AI? < 4|A%(y) = 4C3s2.

@ Suppose (Y, s) is such a pair in X, far from 0%, then near y
a small multi-valued graph, ¥, forms on the scale s

@ XY, can be extended, as a multi-valued graph, in * to 0%

@ Points of X “between the sheets” of ¥ form a second
multi-valued graph.
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Shapes of Embedded Minimal Disks

Sketch of Colding and Minicozzi’'s Argument

@ First focus on points of large curvature:

Definition

A pair (y,s) € ¥ x RT is a (C) blow-up pair if
SUPg, ) AI? < 4|A%(y) = 4C3s2.

@ Suppose (Y, s) is such a pair in X, far from 0%, then near y
a small multi-valued graph, ¥, forms on the scale s

@ XY, can be extended, as a multi-valued graph, in * to 0%

@ Points of X “between the sheets” of ¥ form a second
multi-valued graph.

@ The existence of these graphs implies existence of blow-up
pairs above and below y.
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Shapes of Embedded Minimal Disks

Sketch of Colding and Minicozzi’'s Argument

@ First focus on points of large curvature:

Definition

A pair (y,s) € ¥ x RT is a (C) blow-up pair if
SUPg, ) AI? < 4|A%(y) = 4C3s2.

@ Suppose (Y, s) is such a pair in X, far from 0%, then near y
a small multi-valued graph, ¥, forms on the scale s

@ XY, can be extended, as a multi-valued graph, in * to 0%

@ Points of X “between the sheets” of Xy form a second
multi-valued graph.

@ The existence of these graphs implies existence of blow-up
pairs above and below y.

@ Process can be iterated and rest of X can be filled in.



Shapes of Embedded Minimal Disks

Some Applications

This description of disks has some powerful consequences:
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This description of disks has some powerful consequences:

@ Curvature bounds for embedded minimal disks that are
close to, but on one side of, a plane. Effective version of
the strong half-space theorem.
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Shapes of Embedded Minimal Disks

Some Applications

This description of disks has some powerful consequences:

@ Curvature bounds for embedded minimal disks that are
close to, but on one side of, a plane. Effective version of
the strong half-space theorem.

@ Compactness theory for embedded minimal disks that
requires no curvature or area bounds.
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Shapes of Embedded Minimal Disks

Some Applications

This description of disks has some powerful consequences:

@ Curvature bounds for embedded minimal disks that are
close to, but on one side of, a plane. Effective version of
the strong half-space theorem.

@ Compactness theory for embedded minimal disks that
requires no curvature or area bounds.

@ Chord-arc bounds for embedded minimal disks, i.e.
uniform relationship between intrinsic and extrinsic length.

Used to settle Calabi-Yau conjecture for embedded
minimal disks.
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Proof of the Description of £(1, g)

Description of £(1, g)

We now discuss the proof of:

Every element of £(1, g) is conformal to a once-punctured
compact genus g Riemann surface and is either a plane or is
asymptotic to a helicoid.
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Proof of the Description of £(1, g)

Description of £(1, g)

We now discuss the proof of:

Every element of £(1, g) is conformal to a once-punctured
compact genus g Riemann surface and is either a plane or is
asymptotic to a helicoid.

For simplicity we will focus on the case g = 0 and indicate how
one generalizes.
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Proof of the Description of £(1, g)

Strategy

Recall our strategy for understanding the ends:

@ Step 1: Get some weak control on the asymptotic
geometry.

@ Step 2: Use this to bound the Weierstrass data of the end.

@ Step 3: As the Weierstrass data holomorphic, get finer
understanding.

@ Step 4: Use Weierstrass representation together with
embeddedness for further refinement.
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Proof of the Description of £(1, g)

Step 1: Initial Decomposition

Due to distortions, Colding and Minicozzi’s description alone
does not suffice.
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Proof of the Description of £(1, g)

Step 1: Initial Decomposition

Due to distortions, Colding and Minicozzi’s description alone
does not suffice.

However, for complete ¥, it can be refined:
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Proof of the Description of £(1, g)

Step 1: Initial Decomposition

Due to distortions, Colding and Minicozzi’s description alone
does not suffice.

However, for complete ¥, it can be refined:

Let ¥ be a non-flat, complete, properly embedded minimal disk.
There exist disjoint sets R4 and Rg with™ = RaU Rg and an
€0 > 0 so, after a rotation in R3, Rg is the union of two strictly
spiraling multi-valued graphs and, on R 4, |n - e3| < €g.
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Proof of the Description of £(1, g)

Proof of the Decomposition

@ Multi-valued minimal graphs over unbounded annuli
eventually strictly spiral.
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Proof of the Description of £(1, g)

Proof of the Decomposition

@ Multi-valued minimal graphs over unbounded annuli
eventually strictly spiral.

@ Colding and Minicozzi’s work allows one to construct the
strictly spiraling region Rg in .
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Proof of the Description of £(1, g)

Proof of the Decomposition

@ Multi-valued minimal graphs over unbounded annuli
eventually strictly spiral.

@ Colding and Minicozzi’s work allows one to construct the
strictly spiraling region Rg in .

@ Their work also gives understanding of |A| in R 4.
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Proof of the Description of £(1, g)

Proof of the Decomposition

@ Multi-valued minimal graphs over unbounded annuli
eventually strictly spiral.

@ Colding and Minicozzi’s work allows one to construct the
strictly spiraling region Rg in .

@ Their work also gives understanding of |A| in R 4.

@ Harmonicity of coordinate functions = Vyx3 # 0.
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Proof of the Description of £(1, g)

Proof of the Decomposition

@ Multi-valued minimal graphs over unbounded annuli
eventually strictly spiral.

@ Colding and Minicozzi’s work allows one to construct the
strictly spiraling region Rg in .

@ Their work also gives understanding of |A| in R 4.

@ Harmonicity of coordinate functions = Vyx3 # 0.

@ Vsyx3 # 0 and understanding of |A| in R4 = uniform lower
bound on |Vsx3| in Ra.

Ol
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Proof of the Description of £(1, g)

Step 2: Conformal Structure of &

The decomposition determines the conformal type of ¥:
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Proof of the Description of £(1, g)

Step 2: Conformal Structure of &

The decomposition determines the conformal type of ¥:

@ z = x3 + ix3 is a holomorphic coordinate on %. We claim it
is onto, that is X is “conformally” once-punctured (i.e. have
Huber’s result).
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Proof of the Description of £(1, g)

Step 2: Conformal Structure of &

The decomposition determines the conformal type of ¥:

@ z = x3 + ix3 is a holomorphic coordinate on %. We claim it
is onto, that is X is “conformally” once-punctured (i.e. have
Huber’s result).

@ Vsxz3 #0 < n: X — S?\(0,0,+1) = stereographically
projecting gives a holomorphic map g : ¥ — C\ {0}.
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Proof of the Description of £(1, g)

Step 2: Conformal Structure of &

The decomposition determines the conformal type of ¥:

@ z = x3 + ix3 is a holomorphic coordinate on %. We claim it
is onto, that is X is “conformally” once-punctured (i.e. have
Huber’s result).

@ Vsxz3 #0 < n: X — S?\(0,0,+1) = stereographically
projecting gives a holomorphic map g : ¥ — C\ {0}.

@ 3hso e = g. Note, [Re h| < vy on Ra.

@ |dea: know h “almost” surjective whereas know z injective.

@ Indeed: hinjective on subset Q2 of Rg and maps subset
onto two closed half-planes.
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Proof of the Description of £(1, g)

Step 3 and 4: Concluding Uniqueness

We now understand conformal type of the end.
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We now understand conformal type of the end.

@ As his injective on Q have: hoz=' : C — C linear, i.e.
g(p) = e*#P1H5 o, 3 € C.
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Proof of the Description of £(1, g)

Step 3 and 4: Concluding Uniqueness

We now understand conformal type of the end.

@ As his injective on Q have: hoz=' : C — C linear, i.e.
g(p) = e*#P1H5 o, 3 € C.

@ However, as dh = dz the Weierstrass representation =
g(p) = €27 for X\ € R when X is embedded.
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Proof of the Description of £(1, g)

Open Questions

Is £(1,9) non-empty forg > 17?
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Open Questions

Is £(1,9) non-empty forg > 17?

Can we classify £(1,1) ? Does it have a unique element
(modulo rigid motions and homotheties)?
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Proof of the Description of £(1, g)

Open Questions

Is £(1,9) non-empty forg > 17?

Can we classify £(1,1) ? Does it have a unique element
(modulo rigid motions and homotheties)?

Can show any element of £(1, 1) admits an orientation
preserving involutive symmetry (induced by rotation about a
line).
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