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Shapes of Complete Minimal Surfaces

Question
Can we classify complete, (properly) embedded minimal
surface in R3 of finite topology?

Question
Can we classify the asymptotic geometry of these surfaces?

Theorem
(B.-Breiner, Collin, Meeks-Rosenberg,...). Let Σ be a complete,
properly embedded minimal surface of finite topology then each
end is asymptotic to a plane, a helicoid or half of a catenoid.
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Motivation

Why are we interested in such a question?
Very classical problem, yet requires very sophisticated
modern techniques.
Physical motivations...
Close relationship between understanding the shapes of
these surfaces and compactness properties of sequences
of embedded minimal surfaces.
We emphasize that we restrict attention to embedded
surfaces...
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Minimal Surfaces
A brief introduction.

Let E(e, g) be the space of complete, embedded minimal
surfaces in R3 of genus g and with e ends.

Definition

In R3 an immersed (oriented) surface Σ is minimal if:
d
dt |t=0Area(Σt) = 0 for all smooth compactly supported
variations of Σ = Σ0; or
The mean curvature of Σ, HΣ, vanishes identically
(⇒ |A|2 = −2K ); or
The coordinate functions x1, x2, x3 restrict to harmonic
functions on Σ; or
The Gauss map n : Σ → S2 is holomorphic.
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Constructing Examples

How do we get some examples of elements of E(e, g)?
Write down an explicit parameterization.
Use the Weierstrass representation.
Variational methods.
Gluing constructions.
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Weierstrass Representation

Weierstrass representation: given triple (M, g, dh) of a
Riemann surface, a meromorphic function and holomorphic
one-form, can cook up a minimal immersion F : M → R3 with
F ∗dx3 = Re dh and with Gauss map determined by g.

F (p) = Re
(∫ p

p0

(
1
2

(
g − 1

g

)
,

1
2i

(
g +

1
g

)
, 1

)
dh

)
For F to be a well defined immersion on M need:

g dh and g−1 dh to be holomorphic.∫
[ν] gdh −

∫
[ν] g−1dh =

∫
[ν] Re dx3 = 0 ∀[ν] ∈ H1(M).
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Classical Example: Catenoid

Catenoid (Euler, 1744).
In E(2, 0) and of finite total curvature.

Images courtesy Matthias Weber, http://www.indiana.edu/˜minimal.
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Classical Example: Helicoid

Helicoid (Meusnier, 1776)
In E(1, 0) and of infinite total curvature.
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Classical Example: Scherk’s Surface

Scherk’s Surface (Scherk, 1835)
In E(1,∞) and of infinite total curvature.
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Modern Example: Costa Surface

Costa Surface (Costa, ’83).
Proven embedded by Hoffman and Meeks in ’84.

In E(3, 1) and of finite total curvature.
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Modern Example: Genus-One Helicoid

Genus-One Helicoid (Hoffman, Karcher and Wei, ’93).
Proven embedded by Hoffman, Weber and Wolf in ’04.

In E(1, 1) and of infinite total curvature.
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Strategy for Classifiying the Ends

The close interaction between complex analysis and the
geometry of a minimal surfaces gives a general procedure for
trying to classify the asymptotic geometry:

Step 1: Get some weak control on the asymptotic
geometry.
Step 2: Use this to bound the Weierstrass data of the end.
Step 3: As the Weierstrass data holomorphic, get finer
understanding.
Step 4: Use Weierstrass representation together with
embeddedness for further refinement.
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Classical Result

A classical result of Osserman provides a good example of this.

Theorem
(Huber ’58, Osserman, ’64) Let Σ be a complete minimal
surface with finite total curvature in R3 then Σ is conformal to a
finitely punctured Riemann surface and its Gauss map extends
holomorphically to each end. Thus, if the surface is embedded
each end is asymptotic to a plane or half a catenoid.
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Complete Surfaces with 2 Ends

For E(e, g) when e ≥ 2 barrier constructions imply finite total
curvature.

Theorem
(Meeks and Rosenberg, ’93) If Σ ∈ E(e, g) and e ≥ 2 then Σ is
conformal to a punctured compact Riemann surface and at
least e − 2 of the ends are asymptotic to a plane or a catenoid.

Theorem
(Collin, ’97) If Σ ∈ E(e, g) and e ≥ 2 then Σ has finite total
curvature and so is conformal to a punctured compact Riemann
surface and each end is asymptotic to a plane or a catenoid.
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Surfaces with One End

Complete minimal surfaces with one end must have infinite
total curvature or be the plane.
Thus, Huber and Osserman’s result cannot be applied and
so no a priori knowledge about conformal type of the end.
Some results with additional assumptions on the
asymptotic behavior. (cf. Hoffman-McCuan, Hauswirth-
Pérez-Romon)
General results only achieved by applying a new theory
developed by Colding and Minicozzi. Their work has
(among other things) led to the complete classification of
the asymptotic geometry.
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Conformal and Asymptotic Properties of E(1, g)

Elements of E(1, 0) are completely classified.

Theorem
(Meeks and Rosenberg, ’04) The only elements of E(1, 0) are
planes and helicoids.

Completely understand asymptotics of elements of E(1, g):

Theorem
(B. and Breiner, ’08) Every element of E(1, g), g > 0, is
conformal to a once-punctured compact genus g Riemann
surface and is asymptotic to a helicoid.

Thus, may call any such an element a genus-g helicoid.
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Incomplete Surfaces

Interesting to consider each end individually (i.e. as a surface
with compact boundary and one end).
One expects similar arguments except:

Weak asymptotics less straightforward.
Subtleties involving the flux arise.
Good example is recent work of Meeks and Pérez.

Indeed, they consider ends with infinite total curvature. If the
flux is zero around boundary the surface is asymptotic to a
helicoid. If non-zero it is asymptotic to a certain family they
construct.
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Shapes of Embedded Disks

Let 0 ∈ Σ ⊂ BR ⊂ R3 be an embedded minimal disk with
∂Σ ⊂ ∂BR.

Theorem
(Colding and Minicozzi, ’04) There exist constants C,Ω > 1 so
if Σ is as above and |A|2(0) > CR−2 then the component of
BR/Ω ∩ Σ containing 0 is the union of two multi-valued graphs
that spiral together.

The previous theorem can be interpreted as saying Σ looks
(away from the boundary) like a distorted helicoid. This
distortion can be quite great, and so in principle description is
qualitative.
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Colding and Minicozzi’s Examples

Tight Spiraling

Colding and Minicozzi also give
an example of a sequence of
disks 0 ∈ Σi with ∂Σi ⊂ ∂B1
that have uniformly bounded
curvature away from the origin
but have curvature blowing up
at the origin.

Image
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Bent Helicoids

Bent Helicoids
Meeks and Weber have
constructed examples of “bent”
helicoids, where the
multi-valued graphs have axis
an arbitrary C1,1 curve.

Image
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Sketch of Colding and Minicozzi’s Argument

First focus on points of large curvature:

Definition
A pair (y , s) ∈ Σ× R+ is a (C) blow-up pair if
supBs(y) |A|2 ≤ 4|A|2(y) = 4C2s−2.

Suppose (y , s) is such a pair in Σ, far from ∂Σ, then near y
a small multi-valued graph, Σ0, forms on the scale s
Σ0 can be extended, as a multi-valued graph, in Σ to ∂Σ.
Points of Σ “between the sheets” of Σ0 form a second
multi-valued graph.
The existence of these graphs implies existence of blow-up
pairs above and below y .
Process can be iterated and rest of Σ can be filled in.
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Some Applications

This description of disks has some powerful consequences:
Curvature bounds for embedded minimal disks that are
close to, but on one side of, a plane. Effective version of
the strong half-space theorem.
Compactness theory for embedded minimal disks that
requires no curvature or area bounds.
Chord-arc bounds for embedded minimal disks, i.e.
uniform relationship between intrinsic and extrinsic length.
Used to settle Calabi-Yau conjecture for embedded
minimal disks.
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Description of E(1, g)

We now discuss the proof of:

Theorem
Every element of E(1, g) is conformal to a once-punctured
compact genus g Riemann surface and is either a plane or is
asymptotic to a helicoid.

For simplicity we will focus on the case g = 0 and indicate how
one generalizes.

J. Bernstein The Asymptotic Geometry of Genus-g Helicoids



Introduction
Ends of Elements in E(e, g)

Shapes of Embedded Minimal Disks
Proof of the Description of E(1, g)

Description of E(1, g)

We now discuss the proof of:

Theorem
Every element of E(1, g) is conformal to a once-punctured
compact genus g Riemann surface and is either a plane or is
asymptotic to a helicoid.

For simplicity we will focus on the case g = 0 and indicate how
one generalizes.

J. Bernstein The Asymptotic Geometry of Genus-g Helicoids



Introduction
Ends of Elements in E(e, g)

Shapes of Embedded Minimal Disks
Proof of the Description of E(1, g)

Strategy

Recall our strategy for understanding the ends:
Step 1: Get some weak control on the asymptotic
geometry.
Step 2: Use this to bound the Weierstrass data of the end.
Step 3: As the Weierstrass data holomorphic, get finer
understanding.
Step 4: Use Weierstrass representation together with
embeddedness for further refinement.
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Step 1: Initial Decomposition

Due to distortions, Colding and Minicozzi’s description alone
does not suffice.

However, for complete Σ, it can be refined:

Theorem
Let Σ be a non-flat, complete, properly embedded minimal disk.
There exist disjoint sets RA and RS with Σ = RA ∪RS and an
ε0 > 0 so, after a rotation in R3, RS is the union of two strictly
spiraling multi-valued graphs and, on RA, |n · e3| ≤ ε0.
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Proof of the Decomposition

Proof.
Multi-valued minimal graphs over unbounded annuli
eventually strictly spiral.
Colding and Minicozzi’s work allows one to construct the
strictly spiraling region RS in Σ.
Their work also gives understanding of |A| in RA.
Harmonicity of coordinate functions ⇒ ∇Σx3 6= 0.
∇Σx3 6= 0 and understanding of |A| in RA ⇒ uniform lower
bound on |∇Σx3| in RA.
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Step 2: Conformal Structure of Σ

The decomposition determines the conformal type of Σ:
z = x3 + ix∗3 is a holomorphic coordinate on Σ. We claim it
is onto, that is Σ is “conformally” once-punctured (i.e. have
Huber’s result).
∇Σx3 6= 0 ⇐⇒ n : Σ → S2\(0, 0,±1) ⇒ stereographically
projecting gives a holomorphic map g : Σ → C\ {0}.
∃h so eh = g. Note, |Re h| ≤ γ0 on RA.
Idea: know h “almost” surjective whereas know z injective.
Indeed: h injective on subset Ω of RS and maps subset
onto two closed half-planes.
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Step 3 and 4: Concluding Uniqueness

We now understand conformal type of the end.
As h is injective on Ω have: h ◦ z−1 : C → C linear, i.e.
g(p) = eαz(p)+β , α, β ∈ C.
However, as dh = dz the Weierstrass representation ⇒
g(p) = eiλz(p) for λ ∈ R when Σ is embedded.
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Open Questions

Question
Is E(1, g) non-empty for g > 1?

Question
Can we classify E(1, 1)? Does it have a unique element
(modulo rigid motions and homotheties)?

Can show any element of E(1, 1) admits an orientation
preserving involutive symmetry (induced by rotation about a
line).
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