## GROWTH PROPERTIES OF SOLUTIONS TO THE MINIMAL SURFACE EQUATION

Allen Weitsman<br>Department of Mathematics<br>Purdue University<br>West Lafayette, IN 47907

July 3, 2010

## The Dirichlet Problem for the Minimal Surface Equation

( $\star$ ) $\quad \operatorname{div} \frac{\vec{\nabla} u}{\sqrt{1+|\vec{\nabla} u|^{2}}}=0 \quad$ in $D, \quad u=\Phi \quad$ on $\partial D$.

1. If $D$ is bounded and convex, then ( $\star$ ) has a unique solution. If $D$ is not convex, there are always boundary functions $\Phi$ for which there is no solution. In the convex case, the graph of $u$ gives the surface which minimizes area amongst all surfaces with boundary function $\Phi$.
2. Solutions to ( $\star$ ) have a (very) strong maximum principle.
3. Solutions to ( $\star$ ) are real analytic.
4. The surface has nonpositive curvature at each point.
5. If $D$ is the plane, then $u$ is affine.

## Nitsche's Theorem

We consider the problem ( $\star$ ) with vanishing boundary values.

$$
\operatorname{div} \frac{\vec{\nabla} u}{\sqrt{1+|\vec{\nabla} u|^{2}}}=0 \quad u>0 \quad \text { in } D
$$

$(\star \star)$

$$
u=0 \quad \text { on } \partial D
$$

By the maximum principle, $D$ must be unbounded.
Theorem. (Nitsche 1965) No solutions if $D$ is contained in a sector of opening less than $\pi$.

So minimal graphs coming from $(\star \star)$ "take up a lot of room".

## The Asymptotic Angle

If $D$ is a domain, then define

$$
\Theta(r)=\operatorname{meas}_{\theta}(D \cap\{|z|=r\})
$$

and the asymptotic angle

$$
\beta=\limsup _{r \rightarrow \infty} \Theta(r)
$$

Based on Nitsche's theorem we have

## Conjecture

There are no solutions to $(\star \star)$ with $\quad \beta<\pi$.

In classical potential theory, the asymptotic angle and growth rates of harmonic and subharmonic functions are related.
The order of $u(z)$ is

$$
\alpha=\limsup _{z \rightarrow \infty, z \in D} \frac{\log |u(z)|}{\log |z|} .
$$

Theorem If $u$ is a nontrivial solution to $(\star \star), D$ is bounded by a Jordan arc with asymptotic angle $\beta \geq \pi$, then

$$
\alpha \geq \pi / \beta
$$

## Growth Properties of Solutions to $(\star \star)$



## Upper Bounds

## Conjecture

If $u(z)$ is a solution to $(\star \star)$, then for $z \in D$,

$$
|u(z)|<K e^{K|z|} .
$$

Example. The portion of the catenoid over the right half plane where $u>0$

$$
u(x, y)=\left(\sqrt{\cosh ^{2} C x-C^{2} y^{2}}-1\right) / C
$$

Theorem If $u$ is a solution to $(\star \star)$, $D$ lies in a halfplane and is bounded by a Jordan arc, then for $z \in D$,

$$
|u(z)|<K e^{K|z|} .
$$

## Lower Bounds

Theorem If $u$ is a nontrivial solution to $(\star \star), D$ lies in a halfplane and is bounded by a Jordan arc, then for $z \in D$,

$$
\max _{|z|=r}|u(z)|>K r
$$

## Conjecture

If $u$ is a nontrivial solution to $(\star \star)$ and $D$ is simply connected, then for $z \in D$,

$$
\max _{|z|=r}|u(z)|>K r^{1 / 2}
$$

## Function Theoretic Approach

So far we have represented $S$ nonparametrically by ( $x, y, u(x, y)$ ) where $u$ is as in ( $\star$ ). We may also use the Weierstrass representation to represent $S$ locally (and globally if $D$ is simply connected) parametrically in conformal coordinates $\left(x_{1}(\zeta), x_{2}(\zeta), x_{3}(\zeta)\right)$.

## Notations

$$
\begin{gathered}
f(\zeta)=x_{1}(\zeta)+i x_{2}(\zeta)=h(\zeta)+\overline{g(\zeta)}=\sum_{-\infty}^{\infty} a_{n} r^{\mid n} e^{i n \theta} \quad \zeta \in U \\
u\left(x_{1}(\zeta), x_{2}(\zeta)\right)=\Im m F(\zeta)=\Im m 2 \int \sqrt{h^{\prime}(\zeta) g^{\prime}(\zeta)} d \zeta \\
d s=\left(\left|h^{\prime}(\zeta)\right|+\left|g^{\prime}(\zeta)\right|\right)|d \zeta| \\
a(\zeta)=\overline{f_{\zeta}(\zeta) / f_{\zeta}(\zeta)=g^{\prime}(\zeta) / h^{\prime}(\zeta)=-1 / G^{2}(\zeta) .} \\
K(\zeta)=\frac{-\left|a^{\prime}(\zeta)\right|^{2}}{\left|h^{\prime}(\zeta) g^{\prime}(\zeta)\right|(1+|a(\zeta)|)^{4}} .
\end{gathered}
$$



## I. Jenkins-Serrin Surfaces and Poisson Integrals of Step Functions



JS surfaces: $u=+\infty$ on int $A_{j} \quad u=-\infty$ on int $B_{j}$.

## Some JS surface facts

Scherk's surface
$u\left(x_{1}, x_{2}\right)=\log \left(\cos x_{1} / \cos x_{2}\right) \quad-\pi / 2<x_{1}, x_{2}<\pi / 2$

Jenkins and Serrin gave necessary and sufficient conditions for the existence of JS surfaces. In particular, $+\infty,-\infty$ must alternate at convex corners.

The downstairs function $f(\zeta)$ is the Poisson integral of a step function, namely the vertices of the polygon.

If the height function has n sign changes, $G(\zeta)=c / B(\zeta)$ where $B(\zeta)$ is a Blaschke product of order $(n-2) / 2$.

## Gauss Curvature

E. Heinz 1950's. If $D=U$, then $|K(0)| \leq K_{0}$. Normalizing the $f$ corresponding to the surface by $f(0)=0$,

$$
|K(0)| \leq \frac{4}{\left|a_{1}\right|^{2}+\left|a_{-1}\right|^{2}}
$$



## Function Theoretic Estimates



## Schwarz Lemma

$f$ harmonic (not necessarily univalent) $U \rightarrow U, f(0)=0$, then $|f(z)| \leq(4 / \pi) \tan ^{-1}|z|$.
$f(U)=U$ and $f$ 1-1,
Duren and Schober $(1987,1989)$ :

$$
\begin{gathered}
\left|a_{0}\right|<1 \quad\left|a_{1} \leq 1, \quad\right| a_{n} \mid<1 / n \quad n \geq 2, \\
\left|a_{n}\right|<\frac{n+1}{n \pi} \sin \left(\frac{\pi}{n+1}\right) \quad n<0 .
\end{gathered}
$$

Hall (1985): $\quad\left|a_{1}\right|^{2}+(3 \sqrt{3} / \pi)\left|a_{0}\right|^{2}+\left|a_{-1}\right|^{2}>27 /\left(4 \pi^{2}\right)$
W. (1998) : $\quad\left|a_{0}\right|+\left|a_{1}\right|>2 / \pi$

## The Class $S_{H}^{O}$

$$
f(z)=\sum_{-\infty}^{\infty} a_{n} r^{|n|} e^{i n \theta} \quad \zeta \in U
$$

$f \in S_{H}^{o}$ if $f$ is univalent, and normalized so that $a_{0}=a_{-1}=0$ and $a_{1}=1$.

## Harmonic Koebe Function

$$
K(z)=\Re e \frac{z+(1 / 3) z^{3}}{(1-z)^{3}}+i \Im m \frac{z}{(1-z)^{2}}
$$

## Harmonic Bieberbach Conjecture for $S_{H}^{\circ}$

$$
\begin{aligned}
& \left|a_{n}\right| \leq \frac{1}{6}(2 n+1)(n+1) \\
& \left|a_{-n}\right| \leq \frac{1}{6}(2 n-1)(n-1)
\end{aligned}
$$

## Spiraling Minimal Graphs

Suppose $D$ unbounded and simply connected with $\partial D$ a piecewise differentiable Jordan arc not containing the origin. Then $D$ will be a spiraling domain and its graph $S$ from ( $\star \star$ ) a spiraling minimal graph, if $\partial D$ contains a subarc $\beta$ tending to $\infty$ on which, for a branch of $\arg z$ on $\beta$, we have

```
arg z\uparrow+\infty as z m\infty.
    z\in\beta
```


## Question

Do spiraling minimal graphs exist?

## Answer

## Yes.

## Restrictions on spiraling

## Question

## Are there restrictions on spiraling?

## Answer

## Yes.

Theorem. Let $D$ be a spiraling domain with $\beta$ as above and suppose that $u$ is nontrivial and satisfies $(\star \star)$. Then there is a constant $\tau_{0}$ such that if the limit

$$
\tau(\beta)=\lim _{z \rightarrow \infty} \frac{\arg z}{\log |z|},
$$

exists, then $\tau \leq \tau_{0}$.

