GROWTH PROPERTIES OF SOLUTIONS TO THE MINIMAL SURFACE EQUATION

Allen Weitsman

Department of Mathematics Purdue University West Lafayette, IN 47907

July 3, 2010

The Dirichlet Problem for the Minimal Surface Equation

(★) div
$$\frac{\vec{\nabla}u}{\sqrt{1+|\vec{\nabla}u|^2}} = 0$$
 in D , $u = \Phi$ on ∂D .

1. If *D* is bounded and convex, then (\bigstar) has a unique solution. If *D* is not convex, there are always boundary functions Φ for which there is no solution. In the convex case, the graph of *u* gives the surface which minimizes area amongst all surfaces with boundary function Φ .

2. Solutions to (\bigstar) have a (very) strong maximum principle.

3. Solutions to (\bigstar) are real analytic.

4. The surface has nonpositive curvature at each point.

5. If *D* is the plane, then *u* is affine.

 $(\star\star)$

We consider the problem (\bigstar) with vanishing boundary values.

$$\operatorname{div} \frac{\vec{\nabla} u}{\sqrt{1+|\vec{\nabla} u|^2}} = 0 \qquad u > 0 \qquad \text{in } D,$$

$$u=0$$
 on ∂D .

By the maximum principle, *D* must be unbounded.

Theorem. (Nitsche 1965) No solutions if *D* is contained in a sector of opening less than π .

So minimal graphs coming from (\bigstar) "take up a lot of room".

If D is a domain, then define

$$\Theta(r) = \operatorname{meas}_{\theta} \left(D \cap \{ |z| = r \} \right)$$

and the *asymptotic angle*

 $\beta = \limsup_{r \to \infty} \Theta(r).$

Based on Nitsche's theorem we have

Conjecture

There are no solutions to $(\bigstar \bigstar)$ with $\beta < \pi$.

In classical potential theory, the asymptotic angle and growth rates of harmonic and subharmonic functions are related. The *order* of u(z) is

$$\alpha = \limsup_{z \to \infty, \ z \in D} \frac{\log |u(z)|}{\log |z|}$$

Theorem If *u* is a nontrivial solution to ($\bigstar \bigstar$), *D* is bounded by a Jordan arc with asymptotic angle $\beta \ge \pi$, then

 $\alpha \geq \pi/\beta.$

Growth Properties of Solutions to $(\star \star)$

Conjecture

If u(z) is a solution to $(\bigstar \bigstar)$, then for $z \in D$,

 $|u(z)| < Ke^{K|z|}.$

Example. The portion of the catenoid over the right half plane where u > 0

$$u(x,y) = \left(\sqrt{\cosh^2 Cx - C^2 y^2} - 1\right) / C$$

Theorem If *u* is a solution to $(\bigstar \bigstar)$, *D* lies in a halfplane and is bounded by a Jordan arc, then for $z \in D$,

$$|u(z)| < K e^{K|z|}.$$

Theorem If *u* is a nontrivial solution to $(\bigstar \bigstar)$, *D* lies in a halfplane and is bounded by a Jordan arc, then for $z \in D$,

 $\max_{|z|=r}|u(z)|>Kr$

Conjecture

If *u* is a nontrivial solution to $(\bigstar \bigstar)$ and *D* is simply connected, then for $z \in D$,

$$\max_{|z|=r} |u(z)| > Kr^{1/2}$$

So far we have represented *S* nonparametrically by (x, y, u(x, y)) where *u* is as in (\bigstar). We may also use the *Weierstrass representation* to represent *S* locally (and globally if *D* is simply connected) parametrically in conformal coordinates $(x_1(\zeta), x_2(\zeta), x_3(\zeta))$.

Notations

$$f(\zeta) = x_1(\zeta) + ix_2(\zeta) = h(\zeta) + \overline{g(\zeta)} = \sum_{-\infty}^{\infty} a_n r^{|n|} e^{in\theta} \quad \zeta \in U$$

$$u(x_1(\zeta), x_2(\zeta)) = \Im m F(\zeta) = \Im m 2 \int \sqrt{h'(\zeta)g'(\zeta)} dz$$

 $ds = (|h'(\zeta)| + |g'(\zeta)|)|d\zeta|$

$$\mathbf{a}(\zeta) = \overline{f_{\zeta}(\zeta)}/f_{\zeta}(\zeta) = g'(\zeta)/h'(\zeta) = -1/G^2(\zeta).$$

$$\mathcal{K}(\zeta) = rac{-|a'(\zeta)|^2}{|h'(\zeta)g'(\zeta)|(1+|a(\zeta)|)^4}$$

A. Weitsman (Purdue)

July 3, 2010 9 / 1

I. Jenkins-Serrin Surfaces and Poisson Integrals of Step Functions

Scherk's surface $u(x_1, x_2) = \log(\cos x_1 / \cos x_2) - \pi/2 < x_1, x_2 < \pi/2$

Jenkins and Serrin gave necessary and sufficient conditions for the existence of JS surfaces. In particular, $+\infty$, $-\infty$ must alternate at convex corners.

The downstairs function $f(\zeta)$ is the Poisson integral of a step function, namely the vertices of the polygon.

If the height function has n sign changes, $G(\zeta) = c/B(\zeta)$ where $B(\zeta)$ is a Blaschke product of order (n-2)/2.

E. Heinz 1950's. If D = U, then $|K(0)| \le K_0$. Normalizing the *f* corresponding to the surface by f(0) = 0,

$$|K(0)| \leq rac{4}{|a_1|^2 + |a_{-1}|^2}$$

Function Theoretic Estimates

Schwarz Lemma

f harmonic (not necessarily univalent) $U \rightarrow U$, f(0) = 0, then $|f(z)| \le (4/\pi) \tan^{-1} |z|$.

f(U) = U and f 1-1, Duren and Schober (1987,1989):

$$\begin{split} |a_0| < 1 \quad |a_1 \leq 1, \quad |a_n| < 1/n \quad n \geq 2, \\ |a_n| < \frac{n+1}{n\pi} \sin(\frac{\pi}{n+1}) \quad n < 0. \end{split}$$

Hall (1985):
$$\begin{aligned} |a_1|^2 + (3\sqrt{3}/\pi)|a_0|^2 + |a_{-1}|^2 > 27/(4\pi^2) \\ \text{W.} (1998): \quad |a_0| + |a_1| > 2/\pi \end{aligned}$$

$$f(z) = \sum_{-\infty}^{\infty} a_n r^{|n|} e^{in\theta} \quad \zeta \in U$$

 $f \in S_H^o$ if f is univalent, and normalized so that $a_0 = a_{-1} = 0$ and $a_1 = 1$.

Harmonic Koebe Function

$$K(z) = \Re e \frac{z + (1/3)z^3}{(1-z)^3} + i \Im m \frac{z}{(1-z)^2}$$

Harmonic Bieberbach Conjecture for S_{H}^{o}

$$|a_n| \le \frac{1}{6}(2n+1)(n+1)$$

 $|a_{-n}| \le \frac{1}{6}(2n-1)(n-1)$

A. Weitsman (Purdue)

Suppose *D* unbounded and simply connected with ∂D a piecewise differentiable Jordan arc not containing the origin. Then *D* will be a *spiraling domain* and its graph S from ($\bigstar \bigstar$) a *spiraling minimal graph*, if ∂D contains a subarc β tending to ∞ on which, for a branch of arg *z* on β , we have

 $\underset{z\in\beta}{\operatorname{arg}} z\uparrow +\infty \quad \text{as } z\to\infty.$

Question

Do spiraling minimal graphs exist?

Answer

Yes.

Question	
	Are there restrictions on spiraling?
Answer	
	Yes.

Theorem. Let *D* be a spiraling domain with β as above and suppose that *u* is nontrivial and satisfies ($\bigstar \bigstar$). Then there is a constant τ_0 such that if the limit

$$\tau(\beta) = \lim_{z \to \infty} \lim_{z \in \beta} \frac{\arg z}{\log |z|},$$

exists, then $\tau \leq \tau_0$.