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Lagrangian submanifolds A�ne di�erential geometry Other geometric tensors The inde�nite case

The notion of a submanifold with isotropic second fundamental

form was �rst introduced by O'Neill. Namely, if

< h(X (p),X (p)), h(X (p),X (p)) >= λ(p) < X (p),X (p) >2,

for any X (p) ∈ TpM, we say that M has isotropic second

fundamental form. If λ is independent of the point p, the

submanifold is called constant isotropic.
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For Lagrangian submanifolds, the �rst result about isotropic

submanifolds was obtained by Naitoh, in his study of submanifolds

with parallel second fundamental form. Later such submanifolds

were studied by Montiel and Urbano (1988) who showed the

following results:

Theorem

Let Mn be a Lagrangian submanifold of CPn(4). If M is constant

isotropic then M has parallel second fundamental form.

Theorem

Let Mn, n > 2, be a minimal Lagrangian submanifold of CPn(4).
Assume that M is not totally geodesic. If M has isotropic second

fundamental form then M is constant isotropic and either

n = 5, 8, 14 or 25.
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Let p ∈ M. As

UMp = {v ∈ TpM| < v , v >= 1},

is compact, we can choose e1 such that

f : UMp → R : v 7→< h(v , v), Jv >,

attains an absolute maximum for v = e1. This implies that e1 is an

eigenvector of the symmetric operator AJe1 .
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Using then the isotropy condition it follows that

TpM = T0 ⊕ T1 ⊕ T2,

where

1. T0 is spanned by e1,

2. T1 is the eigenspace of AJe1 with eigenvalue −λ
3. T2 is the eigenspace of AJe1 with eigenvalue λ

2
.

The isotropy condition implies that

h(v ,w) = −λ < v ,w > Je1, v ,w ∈ T1

whereas the fact that f attains an absolute maximum in e1 implies

that

h(v ,w)− λ
2
< v ,w > Je1 ∈ T1, v ,w ∈ T2
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Fix now an e2 ∈ T1.

AJe2 : T2 → T2,

with

< AJe2v ,AJe2v >= 3

4
λ2

This shows that we can decompose T2 = V+
2
⊕ V−

2
, which are

respectively the eigenspaces with eigenvalue
√
3

2
λ and −

√
3

2
λ. In

view of the dimension, both of the above spaces must have the

same dimension which also must be equal to the dimension of T1.
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From before,

h(x+, x−) ∈ T1

and orthogonal to Je2. Moreover, the isotropy condition (and the

fact that the metric is positive de�nite) implies that

h(x+, x+) =< x+, x+ > λ(1
2
Je1 +

√
3

2
Je2)

and

h(x−, x−) =< x−, x− > λ(1
2
Je1 −

√
3

2
Je2)

which is su�cient to apply Hurwitz theorem determining both the

dimension and an explicit expression of the second fundamental

form.
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1. Study Lagrangian submanifolds for which

T (X ,Y ,Z ,W ) =< ∇h)(X ,Y ,Z ), JW >

is isotropic

2. Study Lagrangian submanifolds for which

T (X ,Y ,Z ,W ,U,V ) =< ∇h)(X ,Y ,Z ), (∇h)(W ,U,V ) >

is isotropic

3. Submanifolds with isotropic fundamental tensors in a�ne

di�erential geometry

4. Inde�nite Lagrangian submanifolds with isotropic fundamental

tensors
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A�ne di�erential geometry

In terms of the di�erence tensor K , the a�ne metric and the a�ne

shape operator S , the basic equations which are given by

R̂(X ,Y )Z = 1

2
(h(Y ,Z )SX + h(SY ,Z )X − h(X ,Z )SY − h(SX ,Z )Y )

− [KX ,KY ]Z
(1)

(∇̂K )(X ,Y ,Z )−(∇̂K )(Y ,X ,Z ) = 1

2
(h(Y ,Z )SX

− h(SY ,Z )X − h(X ,Z )SY + h(SX ,Z )Y )
(2)

(∇̂XS)(Y ) + K (X , SY ) = (∇̂Y S)(X ) + K (Y , SX )

are very similar to those for Lagrangian submanifolds.
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Theorem (Birembaux-Djoric)

Let n ≥ 3 and M be an n-dimensional a�ne sphere in Rn+1

which is λ-isotropic. Then M is a constant isotropic hyperbolic

a�ne sphere and M is a�ne equivalent with a canonical immersion

of one of the following symmetric spaces:

• SL(3,R)/SO(3);

• SL(3,C)/SU(3);

• SU∗(6)/Sp(3);

• E6(−26)/F4.
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What happens if M is not an a�ne sphere?

Of course the dimension can only be 5, 8, 14 or 26.

For dimension 5 a complete answer is almost known (joint work

with Birembaux and Djoric).
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Idea of the proof

The �rst step is to derive the isotropy condition, at a point p of M,

and determine relations between the < (∇̂K )(ei , ej , ek), e` >
explicitly. Next we use the Codazzi equation for ∇̂K . Combining

the above equations it is possible to determine explicitly

1. the components of < (∇̂K )(ei , ej , ek), e` >

2. the components of < S(ei ), ej >

in terms of the components of the gradient of λ and the mean

curvature.
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Next we use the fact that the choice of the frame is not unique. In

the 5-dimensional case, there exists an SO(3)-family of possible

frames. We can then choose are e1 that, amongst all possible e1's,

the component of the gradient of λ in the direction of e1 is the

largest one possible. Doing so we �nd that e1 is an eigenvector of

the shape operator. As the eigenspace corresponding to this

eigenvalue is 1-dimensional, it follows that our frame can be

extended di�erentiably.
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Using the above choice of e1, it follows that the gradient of λ has

no component in the direction of T2. Introducing the connection

coe�cients and using the coe�cients of < (∇̂K )(ei , ej , ek), e` > it

follows that there are two cases to be considered, namely:

Case 1: gradient(λ) ∈ T0,

Case 2: gradient(λ) ∈ T0 ⊕ T1,
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The �rst case

We obtain the following immersion:

F = (e−
√
3x + 3y2e

√
3x + 6w2, ye

√
3xα1(u) + 2

√
3vwα2(u),

e
√
3xα1(u) + 6v2α2(u),wα2(u), vα2(u), α2(u))

(3)

where

α1(u) = 1/c(2(1− ecu)
3

2
)e−cu

α2(u) = 2/ce−cu.
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The second case

We �rst look at the 2-dimensional distribution determined by T0

and the gradient of λ.
It turns out that this distribution is totally geodesic (therefore

integrable) and that its leaves are a�ne surfaces in a 3-dimensional

space R3.

Moreover, the surface admits an isothermal coordinate such that

the di�erence tensor satis�es K (∂, ∂) = ∂̄, together with an

additional equation on the metric.

Such surfaces can be classi�ed.
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Other geometric tensors

Theorem

(Li,-) Let Mn → CPn(4) be a Lagrangian submanifold. If the tensor

T (X ,Y ,Z ,W ) =< (∇h)(X ,Y ,Z ), JW >,

is isotropic. Then, either M has parallel second fundamental form

or M is congruent to the Whitney sphere.



Lagrangian submanifolds A�ne di�erential geometry Other geometric tensors The inde�nite case

Theorem

(Li,-,Wang) Let M3 → CP3(4) be a Lagrangian submanifold. If the

tensor

T (X ,Y ,Z ,W ,U,V ) =< (∇h)(X ,Y ,Z ), (∇h)(W ,U,V ) >,

is isotropic. Then, either M has parallel second fundamental form,

M is congruent to the Whitney sphere or M has isotropic second

fundamental form (H-umbilic)
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The inde�nite case

This is a work in progress with F. Dillen (Leuven) and H. Li and X.

Wang (Tsinghua University). Given: an inde�nite minimal

Lagrangian submanifold such that for any tangent vectorx ∈ TpM

< h(x , x), h(x , x) >= λ(p) < x , x >2,

where λ is a non vanishing function. The above notion was

introduced by P.M. Chacon and G.A. Lobos.

Our aim is to determine the possible dimensions, the possible

expressions of the second fundamental form and also the possible

immersions.
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We consider three cases:

1. For any null vector v , Jv and h(v , v) are linearly dependent

2. For any null vector v , h(v , v) is orthogonal to Jv . However

there exists a null vector u such that h(u, u) and Ju are

linearly independent

3. There exists a null vector v such that < h(v , v), Jv >6= 0.
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Writing K (x , y) = −Jh(x , y) and linearizing the isotropy condition,

we get

σ(K (K (x , y), z)) = σ(< x , y > z),

where σ denotes cyclic permutation.

We now rescale v such that < h(, v , v), Jv >= −4λ2 and de�ne

u1 = v

u2 = K (v , v).



Lagrangian submanifolds A�ne di�erential geometry Other geometric tensors The inde�nite case

Writing K (x , y) = −Jh(x , y) and linearizing the isotropy condition,

we get

σ(K (K (x , y), z)) = σ(< x , y > z),

where σ denotes cyclic permutation.

We now rescale v such that < h(, v , v), Jv >= −4λ2 and de�ne

u1 = v

u2 = K (v , v).



Lagrangian submanifolds A�ne di�erential geometry Other geometric tensors The inde�nite case

Writing K (x , y) = −Jh(x , y) and linearizing the isotropy condition,

we get

σ(K (K (x , y), z)) = σ(< x , y > z),

where σ denotes cyclic permutation.

We now rescale v such that < h(, v , v), Jv >= −4λ2 and de�ne

u1 = v

u2 = K (v , v).



Lagrangian submanifolds A�ne di�erential geometry Other geometric tensors The inde�nite case

It follows

K (u1, u1) = u2

K (u1, u2) = 0

K (u2, u2) = K (K (u1, u1), u2) = −8λ3u1.

Showing that the space spanned by u1 and u2 is invariant under K .

We then take the orthogonal complement of {u1, u2} and we look

at the Jordan form of Ku1
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By a similar argument as before, it follows that Ku1 is diagonalisable

over the complex numbers and that the possible eigenvalues are

λ

λ(−1

2
+ i
√
3

2
)

λ(−1

2
− i
√
3

2
)

In view of the minimality each of these eigenvalues has the same

dimension p and therefore the total dimension n = 3p + 2.



Lagrangian submanifolds A�ne di�erential geometry Other geometric tensors The inde�nite case

By a similar argument as before, it follows that Ku1 is diagonalisable

over the complex numbers and that the possible eigenvalues are

λ

λ(−1

2
+ i
√
3

2
)

λ(−1

2
− i
√
3

2
)

In view of the minimality each of these eigenvalues has the same

dimension p and therefore the total dimension n = 3p + 2.



Lagrangian submanifolds A�ne di�erential geometry Other geometric tensors The inde�nite case

By a similar argument as before, it follows that Ku1 is diagonalisable

over the complex numbers and that the possible eigenvalues are

λ

λ(−1

2
+ i
√
3

2
)

λ(−1

2
− i
√
3

2
)

In view of the minimality each of these eigenvalues has the same

dimension p and therefore the total dimension n = 3p + 2.



Lagrangian submanifolds A�ne di�erential geometry Other geometric tensors The inde�nite case

Writing now

e1 = 1

d
(2λf1 − f2)

e2 = 1

d
(2λf1 + f2)

where d is chosen such that e1 has length ±1
we get the same decomposition of the tangent space as in the

positive de�nite case with the exception that V+
2

(and V−
2
) are

complexi�ed eigenspaces with eigenvalues ±i
√
3

2

which means we cannot use Hurwitz theorem to conclude.
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Results so far:

p = 1, n = 5: 1 possible second fundamental form leading to 1

example

p = 2, n = 8: 2 possible second fundamental forms leading to 2

examples (with di�erent signatures for the metric)

p = 3, n = 11: no examples

Lorentzian case (minimality assumption not necessary): only

H-umbilical examples can occur. These can be all classi�ed.
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