Lagrangian (and affine) immersions for which suitable tensors are isotropic

Luc Vrancken
Universidad de Granada

$$
\text { July 14, } 2010
$$

UVHC

Plan

Lagrangian submanifolds
Introduction
First results
Idea of proof
Possible generalisations

Plan

Lagrangian submanifolds
Introduction
First results
Idea of proof
Possible generalisations

Affine differential geometry

Other geometric tensors

The indefinite case

Plan

Lagrangian submanifolds
Introduction
First results
Idea of proof
Possible generalisations

Affine differential geometry

Other geometric tensors

Plan

Lagrangian submanifolds
Introduction
First results
Idea of proof
Possible generalisations

Affine differential geometry

Other geometric tensors

The indefinite case

The notion of a submanifold with isotropic second fundamental form was first introduced by O'Neill. Namely, if

The notion of a submanifold with isotropic second fundamental form was first introduced by O'Neill. Namely, if

$$
<h(X(p), X(p)), h(X(p), X(p))>=\lambda(p)<X(p), X(p)>^{2}
$$

for any $X(p) \in T_{p} M$, we say that M has isotropic second fundamental form.

The notion of a submanifold with isotropic second fundamental form was first introduced by O'Neill. Namely, if

$$
<h(X(p), X(p)), h(X(p), X(p))>=\lambda(p)<X(p), X(p)>^{2}
$$

for any $X(p) \in T_{p} M$, we say that M has isotropic second fundamental form. If λ is independent of the point p, the submanifold is called constant isotropic.

For Lagrangian submanifolds, the first result about isotropic submanifolds was obtained by Naitoh, in his study of submanifolds with parallel second fundamental form.

For Lagrangian submanifolds, the first result about isotropic submanifolds was obtained by Naitoh, in his study of submanifolds with parallel second fundamental form. Later such submanifolds were studied by Montiel and Urbano (1988) who showed the following results:

For Lagrangian submanifolds, the first result about isotropic submanifolds was obtained by Naitoh, in his study of submanifolds with parallel second fundamental form. Later such submanifolds were studied by Montiel and Urbano (1988) who showed the following results:
Theorem
Let M^{n} be a Lagrangian submanifold of $\mathbb{C} P^{n}(4)$. If M is constant isotropic then M has parallel second fundamental form.

For Lagrangian submanifolds, the first result about isotropic submanifolds was obtained by Naitoh, in his study of submanifolds with parallel second fundamental form. Later such submanifolds were studied by Montiel and Urbano (1988) who showed the following results:

Theorem

Let M^{n} be a Lagrangian submanifold of $\mathbb{C} P^{n}(4)$. If M is constant isotropic then M has parallel second fundamental form.

Theorem

Let $M^{n}, n>2$, be a minimal Lagrangian submanifold of $\mathbb{C} P^{n}(4)$. Assume that M is not totally geodesic. If M has isotropic second fundamental form then M is constant isotropic and either $n=5,8,14$ or 25 .

Let $p \in M$. As

$$
U M_{p}=\left\{v \in T_{p} M \mid<v, v>=1\right\}
$$

is compact, we can choose e_{1} such that eigenvector of the symmetric operator $A_{J_{e_{1}}}$

Let $p \in M$. As

$$
U M_{p}=\left\{v \in T_{p} M \mid<v, v>=1\right\},
$$

is compact, we can choose e_{1} such that

$$
f: U M_{p} \rightarrow \mathbb{R}: v \mapsto<h(v, v), J v>
$$

attains an absolute maximum for $v=e_{1}$.
eigenvector of the symmetric operator $A_{J_{e_{1}}}$

Let $p \in M$. As

$$
U M_{p}=\left\{v \in T_{p} M \mid<v, v>=1\right\},
$$

is compact, we can choose e_{1} such that

$$
f: U M_{p} \rightarrow \mathbb{R}: v \mapsto<h(v, v), J v>
$$

attains an absolute maximum for $v=e_{1}$. This implies that e_{1} is an eigenvector of the symmetric operator $A_{J e_{1}}$.

Using then the isotropy condition it follows that

$$
T_{p} M=T_{0} \oplus T_{1} \oplus T_{2}
$$

where

1. T_{0} is spanned by e_{1},
2. T_{1} is the eigenspace of $A_{J_{1}}$ with eigenvalue $-\lambda$
3. T_{2} is the eigenspace of $A_{J_{e_{1}}}$ with eigenvalue $\frac{\lambda}{2}$.
whereas the fact that f attains an absolute maximum in e_{1} implies
that

Using then the isotropy condition it follows that

$$
T_{p} M=T_{0} \oplus T_{1} \oplus T_{2}
$$

where

1. T_{0} is spanned by e_{1},
2. T_{1} is the eigenspace of $A_{J_{1}}$ with eigenvalue $-\lambda$
3. T_{2} is the eigenspace of $A_{J e_{1}}$ with eigenvalue $\frac{\lambda}{2}$.

The isotropy condition implies that

$$
h(v, w)=-\lambda<v, w>J e_{1}, \quad v, w \in T_{1}
$$

whereas the fact that f attains an absolute maximum in ϵ_{1} implies that

$$
h(v, w)-\frac{\lambda}{2}<v, w>J e_{1} \in T_{1}, \quad v, w \in T_{2}
$$

Fix now an $e_{2} \in T_{1}$.

Fix now an $e_{2} \in T_{1}$.

$$
A_{J_{e_{2}}}: T_{2} \rightarrow T_{2}
$$

with

$$
<A_{J_{e_{2}}} v, A_{J_{2}} v>=\frac{3}{4} \lambda^{2}
$$

Fix now an $e_{2} \in T_{1}$.

$$
A_{J_{e_{2}}}: T_{2} \rightarrow T_{2}
$$

with

$$
<A_{J e_{2}} v, A_{J e_{2}} v>=\frac{3}{4} \lambda^{2}
$$

This shows that we can decompose $T_{2}=V_{2}^{+} \oplus V_{2}^{-}$, which are respectively the eigenspaces with eigenvalue $\frac{\sqrt{3}}{2} \lambda$ and $-\frac{\sqrt{3}}{2} \lambda$.

Fix now an $e_{2} \in T_{1}$.

$$
A_{J_{e_{2}}}: T_{2} \rightarrow T_{2}
$$

with

$$
<A_{J_{e_{2}}} v, A_{J_{2}} v>=\frac{3}{4} \lambda^{2}
$$

This shows that we can decompose $T_{2}=V_{2}^{+} \oplus V_{2}^{-}$, which are respectively the eigenspaces with eigenvalue $\frac{\sqrt{3}}{2} \lambda$ and $-\frac{\sqrt{3}}{2} \lambda$. In view of the dimension, both of the above spaces must have the same dimension which also must be equal to the dimension of T_{1}.

From before,

$$
h\left(x^{+}, x^{-}\right) \in T_{1}
$$ and orthogonal to Je_{2}. fact that the metric is positive definite) implies that which is sufficient to apply Hurwitz theorem determining both the dimension and an explicit expression of the second fundamental form.

From before,

$$
h\left(x^{+}, x^{-}\right) \in T_{1}
$$

and orthogonal to Je_{2}. Moreover, the isotropy condition (and the fact that the metric is positive definite) implies that

$$
h\left(x^{+}, x^{+}\right)=<x^{+}, x^{+}>\lambda\left(\frac{1}{2} J e_{1}+\frac{\sqrt{3}}{2} J e_{2}\right)
$$

From before,

$$
h\left(x^{+}, x^{-}\right) \in T_{1}
$$

and orthogonal to Je_{2}. Moreover, the isotropy condition (and the fact that the metric is positive definite) implies that

$$
h\left(x^{+}, x^{+}\right)=<x^{+}, x^{+}>\lambda\left(\frac{1}{2} J e_{1}+\frac{\sqrt{3}}{2} J e_{2}\right)
$$

and

$$
h\left(x^{-}, x^{-}\right)=<x^{-}, x^{-}>\lambda\left(\frac{1}{2} J e_{1}-\frac{\sqrt{3}}{2} J e_{2}\right)
$$

which is sufficient to apply Hurwitz theorem determining both the dimension and an explicit expression of the second fundamental form.

1. Study Lagrangian submanifolds for which

$$
T(X, Y, Z, W)=<\nabla h)(X, Y, Z), J W>
$$

is isotropic
\qquad
Submanifolds with isotropic fundamental tensors in affine differential genmetry

1. Study Lagrangian submanifolds for which

$$
T(X, Y, Z, W)=<\nabla h)(X, Y, Z), J W>
$$

is isotropic
2. Study Lagrangian submanifolds for which

$$
T(X, Y, Z, W, U, V)=<\nabla h)(X, Y, Z),(\nabla h)(W, U, V)>
$$

is isotropic
Submanifolds with isotropic fundamental tensors in affine
differential geometry
tensors

1. Study Lagrangian submanifolds for which

$$
T(X, Y, Z, W)=<\nabla h)(X, Y, Z), J W>
$$

is isotropic
2. Study Lagrangian submanifolds for which

$$
T(X, Y, Z, W, U, V)=<\nabla h)(X, Y, Z),(\nabla h)(W, U, V)>
$$

is isotropic
3. Submanifolds with isotropic fundamental tensors in affine differential geometry

1. Study Lagrangian submanifolds for which

$$
T(X, Y, Z, W)=<\nabla h)(X, Y, Z), J W>
$$

is isotropic
2. Study Lagrangian submanifolds for which

$$
T(X, Y, Z, W, U, V)=<\nabla h)(X, Y, Z),(\nabla h)(W, U, V)>
$$

is isotropic
3. Submanifolds with isotropic fundamental tensors in affine differential geometry
4. Indefinite Lagrangian submanifolds with isotropic fundamental tensors

Affine differential geometry

In terms of the difference tensor K, the affine metric and the affine shape operator S, the basic equations which are given by

Affine differential geometry

In terms of the difference tensor K, the affine metric and the affine shape operator S, the basic equations which are given by

$$
\begin{align*}
\hat{R}(X, Y) Z=\frac{1}{2}(h(Y, Z) S X+h(S Y, Z) X & -h(X, Z) S Y-h(S X, Z) Y) \\
& -\left[K_{X}, K_{Y}\right] Z \tag{1}
\end{align*}
$$

are very similar to those for Lagrangian submanifolds.

Affine differential geometry

In terms of the difference tensor K, the affine metric and the affine shape operator S, the basic equations which are given by

$$
\begin{align*}
\hat{R}(X, Y) Z=\frac{1}{2}(h(Y, Z) S X+h(S Y, Z) X & -h(X, Z) S Y-h(S X, Z) Y) \\
& -\left[K_{X}, K_{Y}\right] Z \tag{1}
\end{align*}
$$

$$
\begin{align*}
(\hat{\nabla} K)(X, Y, Z)- & (\hat{\nabla} K)(Y, X, Z)=\frac{1}{2}(h(Y, Z) S X \\
& -h(S Y, Z) X-h(X, Z) S Y+h(S X, Z) Y) \tag{2}
\end{align*}
$$

are very similar to those for Lagrangian submanifolds.

Affine differential geometry

In terms of the difference tensor K, the affine metric and the affine shape operator S, the basic equations which are given by

$$
\begin{align*}
\hat{R}(X, Y) Z=\frac{1}{2}(h(Y, Z) S X+h(S Y, Z) X & -h(X, Z) S Y-h(S X, Z) Y) \\
& -\left[K_{X}, K_{Y}\right] Z \tag{1}
\end{align*}
$$

$$
\begin{align*}
&(\hat{\nabla} K)(X, Y, Z)-(\hat{\nabla} K)(Y, X, Z)=\frac{1}{2}(h(Y, Z) S X \\
&-h(S Y, Z) X-h(X, Z) S Y+h(S X, Z) Y) \tag{2}\\
&\left(\hat{\nabla}_{X} S\right)(Y)+K(X, S Y)=\left(\hat{\nabla}_{Y} S\right)(X)+K(Y, S X)
\end{align*}
$$

are very similar to those for Lagrangian submanifolds.

Theorem (Birembaux-Djoric)

Let $n \geq 3$ and M be an n-dimensional affine sphere in \mathbb{R}^{n+1} which is λ-isotropic. Then M is a constant isotropic hyperbolic affine sphere and M is affine equivalent with a canonical immersion of one of the following symmetric spaces:

- $S L(3, \mathbb{R}) / S O(3)$;
- $S L(3, \mathbb{C}) / S U(3)$;
- $S U^{*}(6) / S p(3)$;
- $E_{6}(-26) / F_{4}$.

What happens if M is not an affine sphere? For dimension 5 a complete answer is almost known (joint work with Birembaux and Djoric).

What happens if M is not an affine sphere? Of course the dimension can only be $5,8,14$ or 26 .

What happens if M is not an affine sphere?
Of course the dimension can only be $5,8,14$ or 26 .
For dimension 5 a complete answer is almost known (joint work with Birembaux and Djoric).

Idea of the proof

The first step is to derive the isotropy condition, at a point p of M, and determine relations between the $<(\hat{\nabla} K)\left(e_{i}, e_{j}, e_{k}\right), e_{\ell}>$ explicitly.

Idea of the proof

The first step is to derive the isotropy condition, at a point p of M, and determine relations between the $<(\hat{\nabla} K)\left(e_{i}, e_{j}, e_{k}\right), e_{\ell}>$ explicitly. Next we use the Codazzi equation for $\hat{\nabla} K$. Combining the above equations it is possible to determine explicitly

Idea of the proof

The first step is to derive the isotropy condition, at a point p of M, and determine relations between the $<(\hat{\nabla} K)\left(e_{j}, e_{j}, e_{k}\right), e_{\ell}>$ explicitly. Next we use the Codazzi equation for $\hat{\nabla} K$. Combining the above equations it is possible to determine explicitly

1. the components of $<(\hat{\nabla} K)\left(e_{i}, e_{j}, e_{k}\right), e_{\ell}>$
2. the components of $\left\langle S\left(e_{i}\right), e_{j}\right\rangle$

Idea of the proof

The first step is to derive the isotropy condition, at a point p of M, and determine relations between the $<(\hat{\nabla} K)\left(e_{i}, e_{j}, e_{k}\right), e_{\ell}>$ explicitly. Next we use the Codazzi equation for $\hat{\nabla} K$. Combining the above equations it is possible to determine explicitly

1. the components of $\left\langle(\hat{\nabla} K)\left(e_{i}, e_{j}, e_{k}\right), e_{\ell}>\right.$
2. the components of $\left\langle S\left(e_{i}\right), e_{j}\right\rangle$
in terms of the components of the gradient of λ and the mean curvature.

Next we use the fact that the choice of the frame is not unique. frames. We can then choose are e_{1} that, amongst all possible e_{1}

Next we use the fact that the choice of the frame is not unique. In the 5-dimensional case, there exists an SO(3)-family of possible frames.

Next we use the fact that the choice of the frame is not unique. In the 5-dimensional case, there exists an $S O(3)$-family of possible frames. We can then choose are e_{1} that, amongst all possible e_{1} 's, the component of the gradient of λ in the direction of e_{1} is the largest one possible.

Next we use the fact that the choice of the frame is not unique. In the 5 -dimensional case, there exists an $S O$ (3)-family of possible frames. We can then choose are e_{1} that, amongst all possible e_{1} 's, the component of the gradient of λ in the direction of e_{1} is the largest one possible. Doing so we find that e_{1} is an eigenvector of the shape operator. As the eigenspace corresponding to this eigenvalue is 1 -dimensional, it follows that our frame can be extended differentiably.

Using the above choice of e_{1}, it follows that the gradient of λ has no component in the direction of T_{2}.

Using the above choice of e_{1}, it follows that the gradient of λ has no component in the direction of T_{2}. Introducing the connection coefficients and using the coefficients of $<(\hat{\nabla} K)\left(e_{i}, e_{j}, e_{k}\right), e_{\ell}>$ it follows that there are two cases to be considered, namely:

Using the above choice of e_{1}, it follows that the gradient of λ has no component in the direction of T_{2}. Introducing the connection coefficients and using the coefficients of $<(\hat{\nabla} K)\left(e_{i}, e_{j}, e_{k}\right), e_{\ell}>$ it follows that there are two cases to be considered, namely:
Case 1: $\operatorname{gradient}(\lambda) \in T_{0}$,

Using the above choice of e_{1}, it follows that the gradient of λ has no component in the direction of T_{2}. Introducing the connection coefficients and using the coefficients of $<(\hat{\nabla} K)\left(e_{i}, e_{j}, e_{k}\right), e_{\ell}>$ it follows that there are two cases to be considered, namely:
Case 1: $\operatorname{gradient}(\lambda) \in T_{0}$,
Case 2: $\operatorname{gradient}(\lambda) \in T_{0} \oplus T_{1}$,

The first case

We obtain the following immersion:

$$
\begin{gather*}
F=\left(e^{-\sqrt{3} x}+3 y^{2} e^{\sqrt{3} x}+6 w^{2}, y e^{\sqrt{3} x} \alpha_{1}(u)+2 \sqrt{3} v w \alpha_{2}(u),\right. \tag{3}\\
\left.e^{\sqrt{3} x} \alpha_{1}(u)+6 v^{2} \alpha_{2}(u), w \alpha_{2}(u), v \alpha_{2}(u), \alpha_{2}(u)\right)
\end{gather*}
$$

The first case

We obtain the following immersion:

$$
\begin{gather*}
F=\left(e^{-\sqrt{3} x}+3 y^{2} e^{\sqrt{3} x}+6 w^{2}, y e^{\sqrt{3} x} \alpha_{1}(u)+2 \sqrt{3} v w \alpha_{2}(u),\right. \\
\left.e^{\sqrt{3} x} \alpha_{1}(u)+6 v^{2} \alpha_{2}(u), w \alpha_{2}(u), v \alpha_{2}(u), \alpha_{2}(u)\right) \tag{3}
\end{gather*}
$$

where

$$
\begin{aligned}
& \alpha_{1}(u)=1 / c\left(2\left(1-e^{c u}\right)^{\frac{3}{2}}\right) e^{-c u} \\
& \alpha_{2}(u)=2 / c e^{-c u}
\end{aligned}
$$

The second case

We first look at the 2-dimensional distribution determined by T_{0} and the gradient of λ.
It turns out that this distribution is totally geodesic (therefore integrable) and that its leaves are affine surfaces in a 3-dimensional snace \mathbb{R}^{3}. Moreover, the surface admits an isothermal coordinate such that the difference tensor satisfies $K(\partial, \partial)=\bar{\partial}$, together with an additional eallation on the metric

The second case

We first look at the 2-dimensional distribution determined by T_{0} and the gradient of λ.
It turns out that this distribution is totally geodesic (therefore integrable) and that its leaves are affine surfaces in a 3-dimensional space \mathbb{R}^{3}.
additional equation on the metric. Such surfaces can be classified.

The second case

We first look at the 2-dimensional distribution determined by T_{0} and the gradient of λ.
It turns out that this distribution is totally geodesic (therefore integrable) and that its leaves are affine surfaces in a 3-dimensional space \mathbb{R}^{3}.
Moreover, the surface admits an isothermal coordinate such that the difference tensor satisfies $K(\partial, \partial)=\bar{\partial}$, together with an additional equation on the metric.

The second case

We first look at the 2-dimensional distribution determined by T_{0} and the gradient of λ.
It turns out that this distribution is totally geodesic (therefore integrable) and that its leaves are affine surfaces in a 3-dimensional space \mathbb{R}^{3}.
Moreover, the surface admits an isothermal coordinate such that the difference tensor satisfies $K(\partial, \partial)=\bar{\partial}$, together with an additional equation on the metric.
Such surfaces can be classified.

Other geometric tensors

Theorem
(Li,-) Let $M^{n} \rightarrow \mathbb{C} P^{n}(4)$ be a Lagrangian submanifold. If the tensor

$$
T(X, Y, Z, W)=<(\nabla h)(X, Y, Z), J W>,
$$

is isotropic. Then, either M has parallel second fundamental form or M is congruent to the Whitney sphere.

Theorem
(Li,-,Wang) Let $M^{3} \rightarrow \mathbb{C} P^{3}(4)$ be a Lagrangian submanifold. If the tensor

$$
T(X, Y, Z, W, U, V)=<(\nabla h)(X, Y, Z),(\nabla h)(W, U, V)>
$$

is isotropic. Then, either M has parallel second fundamental form, M is congruent to the Whitney sphere or M has isotropic second fundamental form (H -umbilic)

The indefinite case

This is a work in progress with F. Dillen (Leuven) and H. Li and X. Wang (Tsinghua University).

The indefinite case

This is a work in progress with F. Dillen (Leuven) and H. Li and X. Wang (Tsinghua University). Given: an indefinite minimal Lagrangian submanifold such that for any tangent vectorx $\in T_{p} M$

The indefinite case

This is a work in progress with F. Dillen (Leuven) and H. Li and X. Wang (Tsinghua University). Given: an indefinite minimal Lagrangian submanifold such that for any tangent vectorx $\in T_{p} M$

$$
<h(x, x), h(x, x)>=\lambda(p)<x, x>^{2}
$$

where λ is a non vanishing function.

Our aim is to determine the possible dimensions, the possible

The indefinite case

This is a work in progress with F. Dillen (Leuven) and H. Li and X. Wang (Tsinghua University). Given: an indefinite minimal Lagrangian submanifold such that for any tangent vectorx $\in T_{p} M$

$$
<h(x, x), h(x, x)>=\lambda(p)<x, x>^{2}
$$

where λ is a non vanishing function. The above notion was introduced by P.M. Chacon and G.A. Lobos.

The indefinite case

This is a work in progress with F. Dillen (Leuven) and H. Li and X. Wang (Tsinghua University). Given: an indefinite minimal Lagrangian submanifold such that for any tangent vectorx $\in T_{p} M$

$$
<h(x, x), h(x, x)>=\lambda(p)<x, x>^{2}
$$

where λ is a non vanishing function. The above notion was introduced by P.M. Chacon and G.A. Lobos.
Our aim is to determine the possible dimensions, the possible expressions of the second fundamental form and also the possible immersions.

We consider three cases:

1. For any null vector $v, J v$ and $h(v, v)$ are linearly dependent

We consider three cases:

1. For any null vector $v, J v$ and $h(v, v)$ are linearly dependent
2. For any null vector $v, h(v, v)$ is orthogonal to $J v$. However there exists a null vector u such that $h(u, u)$ and $J u$ are linearly independent

We consider three cases:

1. For any null vector $v, J v$ and $h(v, v)$ are linearly dependent
2. For any null vector $v, h(v, v)$ is orthogonal to $J v$. However there exists a null vector u such that $h(u, u)$ and $J u$ are linearly independent
3. There exists a null vector v such that $<h(v, v), J v>\neq 0$.

Writing $K(x, y)=-J h(x, y)$ and linearizing the isotropy condition, we get

Writing $K(x, y)=-J h(x, y)$ and linearizing the isotropy condition, we get

$$
\sigma(K(K(x, y), z))=\sigma(<x, y>z)
$$

where σ denotes cyclic permutation.

Writing $K(x, y)=-J h(x, y)$ and linearizing the isotropy condition, we get

$$
\sigma(K(K(x, y), z))=\sigma(<x, y>z)
$$

where σ denotes cyclic permutation.
We now rescale v such that $\langle h(, v, v), J v\rangle=-4 \lambda^{2}$ and define

$$
\begin{array}{r}
u_{1}=v \\
u_{2}=K(v, v)
\end{array}
$$

It follows

$$
\begin{aligned}
& K\left(u_{1}, u_{1}\right)=u_{2} \\
& K\left(u_{1}, u_{2}\right)=0 \\
& K\left(u_{2}, u_{2}\right)=K\left(K\left(u_{1}, u_{1}\right), u_{2}\right)=-8 \lambda^{3} u_{1} .
\end{aligned}
$$

It follows

$$
\begin{aligned}
& K\left(u_{1}, u_{1}\right)=u_{2} \\
& K\left(u_{1}, u_{2}\right)=0 \\
& K\left(u_{2}, u_{2}\right)=K\left(K\left(u_{1}, u_{1}\right), u_{2}\right)=-8 \lambda^{3} u_{1} .
\end{aligned}
$$

Showing that the space spanned by u_{1} and u_{2} is invariant under K.

It follows

$$
\begin{aligned}
& K\left(u_{1}, u_{1}\right)=u_{2} \\
& K\left(u_{1}, u_{2}\right)=0 \\
& K\left(u_{2}, u_{2}\right)=K\left(K\left(u_{1}, u_{1}\right), u_{2}\right)=-8 \lambda^{3} u_{1} .
\end{aligned}
$$

Showing that the space spanned by u_{1} and u_{2} is invariant under K. We then take the orthogonal complement of $\left\{u_{1}, u_{2}\right\}$ and we look at the Jordan form of $K_{u_{1}}$

By a similar argument as before, it follows that $K_{u_{1}}$ is diagonalisable over the complex numbers and that the possible eigenvalues are

By a similar argument as before, it follows that $K_{u_{1}}$ is diagonalisable over the complex numbers and that the possible eigenvalues are

$$
\begin{aligned}
& \lambda \\
& \lambda\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) \\
& \lambda\left(-\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

By a similar argument as before, it follows that $K_{u_{1}}$ is diagonalisable over the complex numbers and that the possible eigenvalues are

$$
\begin{aligned}
& \lambda \\
& \lambda\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) \\
& \lambda\left(-\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

In view of the minimality each of these eigenvalues has the same dimension p and therefore the total dimension $n=3 p+2$.

Writing now

$$
\begin{aligned}
& e_{1}=\frac{1}{d}\left(2 \lambda f_{1}-f_{2}\right) \\
& e_{2}=\frac{1}{d}\left(2 \lambda f_{1}+f_{2}\right)
\end{aligned}
$$

where d is chosen such that e_{1} has length ± 1
we get the same decomposition of the tangent space as in the positive definite case with the exception that V_{2}^{+}(and V_{2}^{-}) are complexified eigenspaces with eigenvalues $\pm i \frac{\sqrt{3}}{2}$ which means we cannot use Hurwitz theorem to conclude.

Writing now

$$
\begin{aligned}
& e_{1}=\frac{1}{d}\left(2 \lambda f_{1}-f_{2}\right) \\
& e_{2}=\frac{1}{d}\left(2 \lambda f_{1}+f_{2}\right)
\end{aligned}
$$

where d is chosen such that e_{1} has length ± 1 we get the same decomposition of the tangent space as in the positive definite case with the exception that V_{2}^{+}(and V_{2}^{-}) are complexified eigenspaces with eigenvalues $\pm i \frac{\sqrt{3}}{2}$

Writing now

$$
\begin{aligned}
& e_{1}=\frac{1}{d}\left(2 \lambda f_{1}-f_{2}\right) \\
& e_{2}=\frac{1}{d}\left(2 \lambda f_{1}+f_{2}\right)
\end{aligned}
$$

where d is chosen such that e_{1} has length ± 1 we get the same decomposition of the tangent space as in the positive definite case with the exception that V_{2}^{+}(and V_{2}^{-}) are complexified eigenspaces with eigenvalues $\pm i \frac{\sqrt{3}}{2}$ which means we cannot use Hurwitz theorem to conclude.

Results so far:

$p=1, n=5$: 1 possible second fundamental form leading to 1 example
 examples (with different signatures for the metric)

Results so far:
$p=1, n=5$: 1 possible second fundamental form leading to 1 example

Results so far:
$p=1, n=5$: 1 possible second fundamental form leading to 1 example
$p=2, n=8: 2$ possible second fundamental forms leading to 2 examples (with different signatures for the metric)

Results so far:
$p=1, n=5$: 1 possible second fundamental form leading to 1 example
$p=2, n=8: 2$ possible second fundamental forms leading to 2 examples (with different signatures for the metric) $p=3, n=11$: no examples

Results so far:
$p=1, n=5$: 1 possible second fundamental form leading to 1 example
$p=2, n=8$: 2 possible second fundamental forms leading to 2 examples (with different signatures for the metric)
$p=3, n=11$: no examples
Lorentzian case (minimality assumption not necessary): only H -umbilical examples can occur. These can be all classified.

