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Differential & Finsler Geometry, lasi, Romania

Research group "Geometry & Applications in Physics"

100 years traditions on math & applications; supervision/
collaborations by/with D. Hilbert, T. Levi—Civita and E. Cartan
of PhD of prominent members of Romanian Academy.

@ E. Cartan visit at lasi in 1931 induced 80 years of research
on Finsler/integral geometry etc, "isolation" after 1944;
"Japanese—Finsler geometry orientation" after 1968

@ Alexandru Myller (1879-1965), PhD—1906: D. Hilbert
(chair/adviser) and F. Klein, H. Minkowski (commission).

@ Gheorghe Vranceanu (1900-1979), PhD-1924, from
Levi—Civita, commission head: Volterra; 1927-28,
Rockefeller scholarship for France, E. Cartan, and USA at
Harvard & Princeton (Morse, Birkhoff, Veblen)
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(prolongation)

@ Mendel Haimovici (1906—1973); PhD-1933- Levi—Civita.

@ Radu Miron (1927 - ); 28 monogr., 240 rev. MathSciNet
Lagrange—Finsler, Hamilton—Cartan & higher order,
applications to mechanics and relativity etc.

@ lasi team and "Romanian Finsler diaspora": M. Anastasiei,
D. Bucataru and M. Crasmareanu (lasi);
A.Bejancu(Kuwait);D.Hrimiuc(Canada);V.Sabau(Japan);

S. Vacaru (Cernauti/Chernivtsy, Chisinau/ Kishinev, Tomsk,
Dubna, Moscow, Kyiv, Bucharest—Magurele, Lisbon,
Madrid, Toronto, lasi)
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Outline

0 Goals and Motivation

@ Nonlinear dispersions from QG and LV

@ Nonholonomic Ricci / —Finsler flows

@ Exact off-diagonal solutions and cosmology
e Einstein—Finsler Gravity

@ Einstein—Finsler spacetimes/gravity, EFG

@ Lagrange—Finsler geometry

@ Principles and axioms of EFG

@ Gravitational field egs in EFG

@ Main theorems for exact solutions
e Ricci—Finsler Flows and Exact Solutions

@ Nonholonomic Perelman’s functionals

@ Finsler—branes & cosmological solutions
@ Conclusions
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Nonlinear dispersions

Goals

@ Finsler modifications of GR derived for QG theories;
Geometric models for quantum contributions and LV

@ Nonholonomic evolutions of (pseudo) Riemannian
geometries into Lagrange—Finsler ones

@ Canonical models for Einstein—Finsler gravity (EFG);
principles and axioms

@ Physical implications in EFG: Finsler branes,
locally anisotropic cosmology & astrophysics

Reviews and new results:

S. Vacaru (in CQG, PLB, IJGMMP, JMP, JGP, IJTP)

arXiv: 1008.4912; 1004.3007; 1003.0044;
0909.3949; 0907.4278
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Nonlinear dispersions

Motivation: nonlinear disps; QG & LV, cosmology

1. Deforms in Minkovski s-t: E2 = p?c? + m2c* + o (E, p; u; Mp)
9 0 _ 94 . _ 9% 2 __ 242 2(_h 244
ENE’p:N§7w_W kl‘—m/z/uj _CSk +CS(2/T7003) k + ...

effective ¢, (x' = ct, x2,x3,x*);1,j... = 2,3, 4;

w? = gk KIP(1 = a5 Y y™ [ riggk K1)
light velocity in "media/ether" ¢ = gﬁ(x")y7y7/72 — F2(yl)/r2
fundamental Finsler function F(x’, 8y/) = ﬂF(x",}{f),@ > 0,
Gy KWy

2= F2~ — 2 _(xKVylyi 1 o 2
ds? =F (cdt)? + g (x*)y'y/[1 + 7 (0. C 7y 1+ O(g°)
Finsler "metrics", velocities on TV, Fg;(x,y/) = %%

2. Nonholonomic Ricci flows and mutual transforms of
Riemann-Finsler geometries.

3. Exact solutions & modified cosmology with generic
off-diagonal metrics and local anisotropy.
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Einstein—Finsler Gravity (EFG)

Statement I: A (pseudo) Finsler metric, ©g;(x¥,y?), DOES
NOT define completely a geometric model (not Riemannian !)

Statement Il: A model of Finsler geometry is defined on TV by
THREE fundamental geometric objects induced by F(x, y) :
@ N-connection, N&(x, y), splitting FN: TTV = hTV & vTV
canonically, Euler-Lagrange for L = F? are semi—sprays,
© d-—connection, N-adapted linear connect. FD = (hD, vD),
preferred/ canonically induced by Fg,-,- and N2
© d-metric, Fg=hg® vg
2 classes: a) nonmetricity, FQ := FD fg, Chern d—conn., ¢'D
b) metricity, FQ = 0, Cartan d—conn., ¢@'D

Levi—Civita ©V is NOT adapted to honholonomic FN.
Jinduced by g : torsion FT, and/or FQ(not Riemann-Cartan)
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Einstein—Finsler spacetimes/gravity, EFG

Spacetime as a nonholonomic manifold/ bundle V := (V, D)
(Vranceanu, 1926), or TM, with a non—integrable distribution D.

Geometric data: Finsler (F : N,D, g) and Riemannian (V, g)
N-anholonomic frames: e, = (e; = 0; — N?0,, 85 = 03)
Sasaki d-metric: Fg = Fgj(u)ax’ @ dx/ + Fgap(u) €@ Ce®,
for ‘e? = dy?+ °N7 (u)dx'.
For D, standard Riemannian, Ricci, Einstein d—tensors; h-/v—splitting.
N-adapted coef. Gatp = D = (hD, vD) = (T2, = (L}, C&)},
Ly = S Fa"(ex Far+e For —er Fgp),
Cg. = 3 F9%(ec Fgba + €c " ged — € " gic)-
Theorem: Equivalent (pseudo) Finsler & Riemannian theories
if 9D = 9V + 9Z distortion determined by g = g.
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Analogous Gravity and Lagrange—Finsler Geometry

Unified formalism for Riemann—Cartan, Finsler spaces and geometric mechanics.

Alternative works on analogous gravity. "Pseudo” (relativistic)
geometric mechanics. (— + ++), local pseudo—Euclidian with
x'=i°x', 2 =—-1.

Lagrange spaces: "Mechanical" modelling of gravitational
interactions on semi—Riemannian manifolds V, or E = TM,
fundamental/generating Lagrange function L(x, y) :

L, 1 2L

Gab = zayaayba
Canonical N—connection

; oLG o1, . 9PL oL
Lpgi L i L A k

nonlinear aeodesic equations for x/(7). vi = &
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Analogous Gravity and Lagrange—Finsler Geometry

Finsler/Lagrange modelling

Theorem: Any Lagrange (Finsler) geometry can be modelled
equivalently as a N—anholonomic Riemann manifold V, and
inversely, with canonically induced by L (F) d—metric structure

‘g = ‘gj(u)e'@é + "ga(u) e e
e = ax, e® =dy®+ "NP(u)ax;

(not) N-adapted connections, LD: equivalently, 1v.
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Analogous Gravity and Lagrange—Finsler Geometry

Almost Kahler variables/models

in Lagrange—Finsler geometry, classical and quantum gravity,
nonholonomic Ricci flows
Almost complex structure determined by the canonical
N—connection: J(e;) = —e; and J(e;) = e;
L(x, y) induces a canonical 1-form Lw = %g—yﬁe"
Lg — canonical 2—f. L9(X,Y) = tg(JX,Y) = Lgj;(x,y)e A€
Almost Kahler models of Lagrange—Finsler/Einstein spaces
with °D =D R R

Dy lg =0and Dy J = 0.
Important for deformation quantization (Fedosov) of Einstein
and Lagrange—Finsler/Hamilton—Cartan gravity.
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Analogous Gravity and Lagrange—Finsler Geometry

Remarks:

@ I a unique geometric formalism of nonholonomic
deformations and analogous modeling of gravitational,
Einstein and Finsler and "pseudo" mechanical models.

@ Key questions: for what types of connections we postulate
the field equations and what class of nonholonomic
constraints is involved?

@ Different Finsler d—connections (for instance) Chern’s one
o7,y = (L Cg = 0) , ©'D Fg # 0, but T = 0.

© Nonmetricity is not compatible with standard physics: a.
Definition of spinors; b. Conservation laws;
c. Supersymmetric / noncommutative generalizations of
Finsler like spaces; d. Exact solutions?
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Principles and axioms of EFG

Principles: Similarly to GR with 9V on V construct EFG: with
g~ fg,N~ FNand “@Don TV, orV.
@ Generalized equivalence principle: Ideas on Free Fall and
Universality of Gravitational Redshift for a"D.
© Generalized Mach principle: quantum energy/motion
encoded via (N, g, D) for spacetime ether with y2.
@ Principle of general covariance extended on V, or TV, with
"mixing of Finsler parametrizations".
© Motion egs and conservation laws: Nonholonomc Bianchi
identities for FD; V; T/ =0 — D, 7% #£ 0.
© Einstein—Finsler gravitational field eqs for FD.
© Axiomatics: Constructive—axiomatic appr. (Ehlers-Pirani
—Schild, EPS axioms), paradigm "Lorentzian 4—manifold"
in GR; nonholon. tangent bundle on "L ..." for EFG.
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Gravitational field egs in EFG

vV D, Einstein eqgs: E,3 = Tyg3,
h—/v—components, for R, = R, and R, = RX,,:

1
Rj—5(R+S)g; = Tj,
1
Rala - E(R + S)hab = Tab7

Rai =Tai, Ra = —Ti,
Remark: For @D, general off-diagonal solutions for EFG,
restrictions to GR, g = g, (u) du® @ au’,
g _ gij + N,-aN/bhab N/'ehae
Zap NF hpe hab

Claim: Compactification/trapping/warping mechanism on
velocity/momenta for a "new" QG and LV phenomenology.
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Gravitational field eqgs in EFG

Levi—Civita and canonical d—connection

Levi-Civita connection V = { 917 ;}, T%,=0andVvVg=0
Canonical d—connection D = { 9T, ;}

Dg = 0 and AT(hX, hY) =0, v?(vx, vY) =0, 9, = T, + 977,
Distortion 927, defined by g, 77, , = ( L, [, Ch, cbc) :

N '
x = EQ" (exgjr + €jgkr — ergj) ,
~ 1
L = en(NQ)+ Ehac (ekhbc — hac €N — hap ecM?) ;
. ' _ 1
C. = Eglk ecgik, Che = §had (echbd + echeg — €qhie) -

N(lntrivial d—torsion ?Wag : T’ ,b, Ta =-0%, T;l = L° ea(Nf)
fT,,=0, 9T, ;= °T" ;evenV # D

] [ =
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General Solutions in Gravity

Einstein egs for the canonical d—connection

The Einstein equations for a d—metric g5, also in GR, can be
rewritten equivalently using D,

o
R 55 — 5900 *R = Tgs,
LS = ea(Nf), Cj, =0, Q% =0,
ﬁ B8 for /I:’Yaﬁ’ R = gﬁéﬁ B8 and Tg(; — %ng for 6 — V.
(2+2) splitting, (u® = (x*, t, y*), ansatz with Killing 6/0y*,
Kg = g1(x")ax' @ dx' + go(x¥)dx®  dx?
+hs(x¥, Hedwe® + hy(xX, te*we*

for N¥ = wi(x*, t), N = nj(x¥, 1), _
e® = dt + w;(x¥, )dx!, e* = dy* + n;(x*, t)dx’
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General Solutions in Gravity
Theorem 1 (Separation of Egs)

The Einstein eqs for ansatz Kg and D are:

Rl B 1 g 9% (@) g 99 (

g )2 Kk
- - = Ta(x
291007 294 29. 29: 294 ] 4

= Tg(Xk, t),

B pa_ 1 o (M2 mhg
—Rs = —Ri = 2hshs {h“ 2h, 2hs

= w - 2 hih h;y ([ Okh okh. okhy
P g [ ] (e 0o

2ha o 2m | Tam \Thy T h,
hy

D ok & * g * n; _
R = gp, e + (hsh3 2h“> oh, 0

where a* = 0a/ox', & = da/ox?, a* = da/ot.

] = -
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Integration of (non)holonomic Einstein eq

Theorem 2 (Integral Varieties)

)+ " 274(x")
h; 2h3hsTa(X', 1) /"
pwi+ai = 0
nt+an = 0

>k * * i 3/2 * *
aj = ;0,3 = h; ¢ ,¢>=|n|\/|h,j3—m|,v= (InLe=) " b5 #0,Tau £0,

k *
General solution: g; = go = €®, hy = hy(x*) + 2/ wfﬁ,
2

L h(xi i 2 p(x"
h= 3 |\Im0DI| expl-2 o0 )]

wi=~ai0/6", me="nc (x) + 0 (x) o/l et
LC conditions: w;* = e;In |hy|,exw; = e;wk, nf =0, dinx =N - =
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Integration of (non)holonomic Einstein eq
General Solutions

Dependence on 4th coordinate via w?(x/, t, y)
g = gi(x*)ax’ ® dx’ + P (X, t, y)ha(X*, e e,
ed = dy® + wi(x¥, t)ax', e* = dy* + n(x¥, t)dx',
exw = Okw + Wyw™ + nkaw/ay =0,
w? = 1 results in solutions with Killing symmetry.
N-deformations and exact solutions
'Polarizations’ 1, and n?, nonholonomic deformations,
og = [Ogl'v ohaa ON/?] - Ug = [giaha’ N/‘?]
Deformations of fundamental geometric structures:
g = ni(x¥, t) °gi(x¥, t)dx' @ dx’ + na(x¥, t) “ha(x¥, t)edwe?,
e® = dt+nP(xk 1) w;(xX, t)dx!, e* = dy*+nt(xK, t) °ni(x¥, t)adx'.
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Integration of (non)holonomic Einstein eq

Remarks

@ "Almost" any solution of Einstein eqs, g./s, via €, = e‘g'(x’,ya)ea,

! ’
9op = 6%6%Garpr, EXpressed gos =

g1 + WP (Wy2hs + P(n2hy)  WP(wywohs + nynyhy) WP wyhs
u)Z(W1 W2h3 +n n2h4) 9> + wz(szhs + n22h4) u)z W2h3
u)2 74 h3 u)2 W2h3 h3
U.J2 ny h4 U.J2 n2h4 0

bl

w2 n h4
w2 n2h4
0
hy

@ Concept of general solutions for systems of nonlinear partial differential
egs? Topology, symmetries etc. Arbitrariness, uniqueness, sources?

@ Complex/supersymmetric/ nonholonomic / quantum distributions —
applications to modern gravity and physics

@ Higher dimensions - "shell by shell". Almost Ké&hler structures etc,
generalized (algebroid etc) symmetries. Nontrivial topology etc

@ Exact solutions in astrophysics, cosmology: black ellipsoids/toruses,

wormholes, solitons, Dirac waves, pp—waves etc
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Nonholonomic Ricci Flows

Constrained Ricci Evolution
(Non) commutative/ supersymmetric Lagrange—Finsler, almost
Kéhler and nonholonomic Ricci flows
@ Families regular Lagrangians L(u, x) = L(x, y,x) on TM, or V
@ forinstance, g.s as solutions of Einstein egs Ras = A gas

© 4g.5(x) as solutions of the Ricci flow egs dg(;f = —2R.s
real parameter x, Ricci tensor R, for V or any metric compatible
connection D, Dg = 0, but torsion 9°°T £ 0

o

N—adapted evolution: 88 gi = -2 [ - /\Qu] - hccaa (NF)?,
a ~
8 —hap, = -2 (Raa — Ahaa) ,
R.s = 0, for a#p
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Ricci—Lagrange/—Finsler Evolution

(Semi)sprays and N—connections:

dy? a B
d—§+26 (Xv.y) _Oa

curve x'(s), 0 < ¢ < ¢, when y' = dx’/ds.
Regular Lagrangian: L(x, y) = L(x', y?), Lg; = %%

2
ne = 28 4Gi=Lgif(aL K a_L.),

P oyl oy oxky T ox
g = lgj(x.y) [e’ e +e® ef]
e = [¢ = dx’,e? = dy? + N3(x, y)dx'].
[m] = = =



Nonholonomic Perelman’s functionals
:

Finsler—branes & cosmological solutions
Ricci—Lagrange/—Finsler Evolution
Hamilton’s evolution egs:

99a8(x) _
Ox

=2 Rap(x)
for a set of (semi) Riemannian metrics g.s(x), real parameter y, Ricci
tensors ,R.s(x) for the Levi—Civita connection.

F(L,f)

Perelman’s functionals for flows of Riemannian metrics

v

/ (R+ Vi) e av,

'W(La f: T)

/[T( R+ VA +f—2n] waV,
v

volume form of g, dV, integration over compact V, function f for gradient
flows with different measures, scalar curvature for V, \R. For+ > 0,
JyndV =1, = (4r7)

e

=] (=)



Nonholonomic Perelman’s functionals
Finsler-branes & cosmological solutions
Clalm

F(L, f) W(L 1 ,T) are

For Lagrange spaces, Perelman’s functionals for D
o

—

w

PN -~
/(R-l—S—l—‘Df‘ )e—fdv
\'}

- /[?(R+S+"’D7‘+
\'}

~\N2 ~

VDfD +f- Zn] aadv,

R and S are h- and v—components of curvature scalar of
~~2 —~|2

D= ("D, D), ‘Df‘ - ‘th‘ n

for fi = (4rr) e

VDf‘ , f satisfies [, idV = 1
efandr>0

=] (=)



Nonholonomic Perelman’s functionals
Finsler—branes & cosmological solutions

Proofs for N—adapted evolution eqgs
Theorem: If a Lagrange (Finsler) metric g(x) and functions

fi x) and 7(x) evolve for 2Z = —1 and constant (47r?)—”e—?dv
ox v

as solutions of

9g;; . 0g -

8X 25//7 8X Z_Raby
o~~~ PNy

oA _Riy of ~R-s+2

195% T

vy 2N A P ~ 1
then S-W( L9(x).F(x). 7x)) = 2 | Ry + DO - 5z0/°
\'

~ ~ 1 o 3
+|Rap + DaDpf — —gap|?](477) e~ aV.

2T
] [ =



Nonholonomic Perelman’s functionals
Finsler-branes & cosmological solutions

Corollary: The evolution, for all = € [0, 79), of N-adapted
frames e,(7) = eqs*(r, u)d, is defined by

ar v | elru) Ni(r,u) ef(r,u)
ea(mu) = 0 ed(r, u) ’

with Lg;(r) = el(r,u) eji(T, u)n; subjected to eqs

oo ef = ‘g% Ry, ea’, for the Levi-Civita connection;
o) 3 . -

5 ed = '9®°Rs, es, forthe canonical d—connection.
- By

] = -
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Finsler—branes & cosmological solutions
Nonholon. trapping solutions (cosmology, with hs(x', y® = 1)) :
g=g10x' @ dx" + godx? @ dx? + hse3we® + hetwe* +
h
(Ip)2—2[ Ihse® @ e° + hgeb @ e + Ihe’ ® e’ + Ihge® » ef)

= dy® +W,dx et _dy + nidx’, €% = dy® + 'w;dx’,
:dy + "nidx’, " = dy” + 2w;dx’, e® = dy® + 2n;dx’.

€ — 64
(5) = % and Jpy/[A(yS)| = ——

[3¢2 + (y5)2]%
N—connection coefficients determined by sources
h/\(Xi) = :YV‘4 + ;f‘s + :f‘g, V/\(Xi, V) = ;f‘g + :Yv‘s + :f‘g,

SA(X,Y®) = Tat+Ta+Ts, "AX,y5y")=To+Ts+Ts.
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Conclusions

@ Almost all models of QG with nonlinear dispersions can be
geometrized as certain Finsler spacetimes.

@ Natural/ Canonical Principles for metric compatible EFG
generalizing the GRon TV,V — ¢a1p,

@ Finsler branes, trapping: "new" QG/ LV phenomenology.

@ Outlook (recently developed, under elaboration):

o EFG is almost completely integrable, can be quantized as
almost Kahler-Fedosov/ A-brane geometries, and
renormalizable for bi—~connection/gauge gravity models.

@ Finsler for black holes (ellipsoids, toruses, holes,
wormholes, solitons); anisotropic cosmological models
(off—diagonal inflation, dark energy/matter etc).

@ Noncommutative/ Ricci—Finsler flows, emergent (non)
commutative Lagrange—Finsler analogous gravity and
auantization, Clifford—Finsler alaebroids etc.
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