Homogeneous geodesics
 in homogeneous affine manifolds

Zdeněk Dušek
Palacky University, Olomouc

Granada, 2010

Contents

Homogeneous geodesics in homogeneous affine manifolds General settings Dimension 2

Existence of homogeneous geodesics in dimension 3
Using the Borsuk-Ulam Theorem - incomplete solution Using the Hair-Dressing Theorem

Generalizations
Existence in odd dimensions
Existence in arbitrary dimension
Equiaffine connections and invariants of $S L(2, \mathbb{R})$
Invariants of the representation of $S L(2, \mathbb{R})$ on \mathbb{R}^{6}
Invariants of the representation of $S L(2, \mathbb{R})$ on \mathbb{R}^{9}

Homogeneous geodesics
 in homogeneous affine manifolds

Definition

Let (M, ∇) be a homogeneous affine manifold.
A geodesic is homogeneous if it is an orbit of an one-parameter group of affine diffeomorphisms. (Here the canonical parameter of the group need not be the affine parameter of the geodesic.) An affine g.o. manifold is a homogeneous affine manifold (M, ∇) such that each geodesic is homogeneous.

Lemma

Let $M=G / H$ be a homogeneous space with a left-invariant affine connection ∇. Then each regular curve which is an orbit of a 1-parameter subgroup $g_{t} \subset G$ on M is an integral curve of an affine Killing vector field on M.

Definition

Let (M, ∇) be a manifold with an affine connection. A vector field X on M is called a Killing vector field if

$$
\left[X, \nabla_{Y} Z\right]-\nabla_{Y}[X, Z]-\nabla_{[X, Y]} Z=0
$$

is satisfied for arbitrary vector fields Y, Z.

Lemma

Let (M, ∇) be a homogeneous affine manifold and $p \in M$.
There exist $n=\operatorname{dim}(M)$ affine Killing vector fields which are linearly independent at each point of some neighbourhood \mathcal{U} of p.

Definition

A nonvanishing smooth vector field Z on M is geodesic along its regular integral curve γ
if $\gamma(t)$ is geodesic up to a possible reparametrization. If all regular integral curves of Z are geodesics up to a reparametrization, then the vector field Z is called a geodesic vector field.

For example, a round two-sphere with the corresponding Levi-Civita connection does not admit any geodesic affine Killing vector field. Still, all geodesics are homogeneous.

Lemma

Let Z be a nonvanishing Killing vector field on $M=(G / H, \nabla)$.

1) Z is geodesic along its integral curve γ if and only if

$$
\nabla_{Z_{\gamma(t)}} Z=k_{\gamma} \cdot Z_{\gamma(t)}
$$

holds along γ. Here $k_{\gamma} \in \mathbb{R}$ is a constant.
2) Z is a geodesic vector field if and only if

$$
\nabla_{Z} Z=k \cdot Z
$$

holds on M. Here k is a smooth function on M which is constant along integral curves of Z.

$\operatorname{dim}(M)=2$

Theorem (Opozda; Arias-Marco, Kowalski)

Let ∇ be a locally homogeneous affine connection with arbitrary torsion on a 2 -dimensional manifold \mathcal{M}. Then, either ∇ is locally a Levi-Civita connection of the unit sphere or, in a neighbourhood \mathcal{U} of each point $m \in \mathcal{M}$, there is a system (u, v) of local coordinates and constants A, B, C, D, E, F, G, H such that ∇ is expressed in \mathcal{U} by one of the following formulas:

TypeA:

$$
\begin{array}{r}
\nabla \partial_{\partial_{u}} \partial_{u}=A \partial_{u}+B \partial_{v}, \\
\nabla \partial_{\nu} \partial_{u}=E \partial_{u}+F \partial_{\nu}, \\
\nabla_{\partial_{u}} \partial_{u}=\frac{A}{u} \partial_{u}+\frac{B}{u} \partial_{v}, \\
\nabla_{\partial_{v}} \partial_{u}=\frac{E}{u} \partial_{u}+\frac{F}{u} \partial_{v},
\end{array}
$$

$$
\nabla_{\partial_{u}} \partial_{\nu}=C \partial_{u}+D \partial_{\nu},
$$

$$
\nabla_{\partial_{v}} \partial_{v}=G \partial_{u}+H \partial_{v}
$$

TypeB:

$$
\begin{aligned}
& \nabla_{\partial_{u}} \partial_{v}=\frac{C}{u} \partial_{u}+\frac{D}{u} \partial_{v}, \\
& \nabla_{\partial_{v}} \partial_{v}=\frac{G}{u} \partial_{u}+\frac{H}{u} \partial_{v} .
\end{aligned}
$$

Connections of type A

- Let us have a connection ∇ with constant Christoffel symbols. The operators $\partial_{u}, \partial_{v}$ are affine Killing vector fields.
- A general vector field $X=x \partial_{u}+y \partial_{v}$ satisfies the condition $\nabla_{X} X=k X$ if it holds

$$
\begin{align*}
& A x^{2}+(C+E) x y+G y^{2}=k x, \\
& B x^{2}+(D+F) x y+H y^{2}=k y . \tag{1}
\end{align*}
$$

- By the elimination of the factor k we obtain

$$
B x^{3}-(A-D-F) x^{2} y-(C+E-H) x y^{2}-G y^{3}=0 .
$$

- A sufficient condition for a vector field $X=x \partial_{u}+y \partial_{v}$ to be geodesic is that the pair (x, y) satisfies this condition.
- For any connection of type A, a geodesic Killing field (and at least one homogeneous geodesic) exist.

Affine g.o. manifold

Theorem

For $\left(\mathbb{R}^{2}, \nabla\right)$ to be an affine g.o. manifold, it is sufficient that

$$
B=0, A=D+F, G=0, H=C+E
$$

- In this case, the equations (1) give

$$
A x+H y=k
$$

k is nonzero in general and geodesics must be reparametrized.

Connections of type B

- The globally homogeneous manifold $\mathcal{U}=\{\mathbb{R}(u, v) \mid u>0\}$. The general Killing vector field is $X=x \partial_{v}+y\left(u \partial_{u}+v \partial_{v}\right)$.
- The equality $\nabla_{X_{\gamma}(t)} X=k_{\gamma} \cdot X_{\gamma(t)}$ gives

$$
\begin{align*}
\left((A+1) c_{1}^{2}+(C+E) c_{1} c_{2}+G c_{2}^{2}\right) y & =k_{\gamma} c_{1}^{2} \\
\left(B c_{1}^{2}+(D+F+1) c_{1} c_{2}+H c_{2}^{2}\right) y & =k_{\gamma} c_{1} c_{2} \tag{2}
\end{align*}
$$

- By the elimination of k_{γ} we obtain

$$
B c_{1}^{3}-(A-D-F) c_{1}^{2} c_{2}-(C+E-H) c_{1} c_{2}^{2}-G c_{2}^{3}=0
$$

- $\underline{(\mathcal{U}, \nabla) \text { admits at least one homogeneous geodesic }}$ through each point.
- Homogeneous geodesics are the integral curves of Killing vector fields which are not geodesic.
- In general, connections of type B do not admit any geodesic Killing vector fields.

Affine g.o. manifold

Theorem
If it holds

$$
B=0, A=D+F, G=0, H=C+E,
$$

then for any $(x, y) \neq(0,0)$ the Killing vector field

$$
X=x \partial_{v}+y\left(u \partial_{u}+v \partial_{v}\right)
$$

is geodesic. (\mathcal{U}, ∇) is an affine g.o. manifold and any homogeneous geodesic is the integral curve of a geodesic Killing vector field.

- In this case, the equations (2) give us

$$
\left((A+1) c_{1}+H c_{2}\right) y=k_{\gamma} c_{1} .
$$

- For a given geodesic Killing field, different geodesics must be reparametrized by different k_{γ}.

Homogeneous geodesics in dimension 3

$\left(\mathbb{R}^{3}, \nabla\right)$
connection ∇ with constant Christoffel symbols group \mathbb{R}^{3} acting on it by the translations

$$
\begin{array}{cl}
\Gamma_{11}^{i}=A_{i}, \quad \Gamma_{22}^{i}=B_{i}, & \Gamma_{33}^{i}=C_{i}, \\
\Gamma_{12}^{i}=\Gamma_{21}^{i}=E_{i}, \quad \Gamma_{13}^{i}=\Gamma_{31}^{i}=F_{i}, & \Gamma_{23}^{i}=\Gamma_{32}^{i}=G_{i} .
\end{array}
$$

The Killing vector field $X=x \partial_{u}+y \partial_{v}+z \partial_{w}$ satisfies the condition $\nabla_{X} X=k X$ if it holds

$$
\begin{aligned}
x^{2} A_{1}+y^{2} B_{1}+z^{2} C_{1}+2 x y E_{1}+2 x z F_{1}+2 y z G_{1} & =k x, \\
x^{2} A_{2}+y^{2} B_{2}+z^{2} C_{2}+2 x y E_{2}+2 x z F_{2}+2 y z G_{2} & =k y, \\
x^{2} A_{3}+y^{2} B_{3}+z^{2} C_{3}+2 x y E_{3}+2 x z F_{3}+2 y z G_{3} & =k z .
\end{aligned}
$$

Families of homogeneous connections on H_{3} or on $E(1,1)$ lead to similar equations.

Existence of homogeneous geodesics in dimension 3

Theorem

Let ∇ be a connection with constant Christoffel symbols on \mathbb{R}^{3}.
$\left(\mathbb{R}^{3}, \nabla\right)$ admits a geodesic Killing vector field.
Proof. Recall that the Killing vector field $X=x \partial_{u}+y \partial_{v}+z \partial_{w}$ satisfies the condition $\nabla_{X} X=k X$ if it holds

$$
\begin{aligned}
& x^{2} A_{1}+y^{2} B_{1}+z^{2} C_{1}+2 x y E_{1}+2 x z F_{1}+2 y z G_{1}=k x, \\
& x^{2} A_{2}+y^{2} B_{2}+z^{2} C_{2}+2 x y E_{2}+2 x z F_{2}+2 y z G_{2}=k y, \\
& x^{2} A_{3}+y^{2} B_{3}+z^{2} C_{3}+2 x y E_{3}+2 x z F_{3}+2 y z G_{3}=k z .
\end{aligned}
$$

- Sphere S^{2} in $T_{p} M$, vectors $X=(x, y, z)$ with the norm 1 .
- Denote $v(X)=\nabla_{X} X$ and $t(X)=v(X)-\langle v(X), X\rangle X$, then $t(X) \perp X$ and $X \mapsto t(X)$ defines a vector field on S^{2}.
- According to the Hair-Dressing Theorem for sphere, there is $\bar{X} \in T_{p} M$ such that $t(\bar{X})=0$.
- We see $v(\bar{X})=k \bar{X}$, hence $\nabla_{\bar{X}} \bar{X}=k \bar{X}$.

Existence of homogeneous geodesics in odd dimensions

Theorem

Let $M=(G / H, \nabla)$ be a homogeneous affine manifold of odd dimension n and $p \in M$. There exists a homogeneous geodesic through p.

Proof. Killing vector fields K_{1}, \ldots, K_{n} independent near p, $B=\left\{K_{1}(p), \ldots, K_{n}(p)\right\}$ basis of $T_{p} M$, $X \in \overline{T_{p} M, X=\left(x_{1}, \ldots x_{n}\right) \text { in } B \text {, }, ~ \text {, }}$ $X^{*}=x_{1} K_{1}+\cdots+x_{n} K_{n}$ and an integral curve γ of X^{*} through p. $\overline{S^{n-1}}$ in $T_{p} M$ of vectors $X=\left(x_{1}, \ldots, x_{n}\right)$ with the norm 1. Denote $v(X)=\left.\nabla_{X_{\gamma(t)}^{*}} X^{*}\right|_{t=0}$ and $t(X)=v(X)-\langle v(X), X\rangle X$, then $t\left(\overline{X) \perp X}\right.$ and $X \mapsto t(X)$ defines a vector field on S^{n-1}. Again, there is $\bar{X} \in T_{p} M$ such that $t(\bar{X})=0$.
We obtain $v(\bar{X})=k_{\gamma} \bar{X}$, where $k_{\gamma}=\langle v(\bar{X}), \bar{X}\rangle$ is a constant,
$\nabla_{\bar{X}_{\gamma}^{*}} \bar{X}^{*}=k_{\gamma} \bar{X}_{\gamma}^{*}$ and γ is homogeneous geodesic.

Preliminaries on differential topology

Let $f: M \rightarrow N$ be a smooth map between manifolds of the same dimension.
We say that $x \in M$ is a regular point of f if the derivative $d f_{x}$ is nonsingular. In this case, f maps a neighborhood of x diffeomorphically onto an open set in N.
The point $y \in N$ is called a regular value if $f^{-1}(y)$ contains only regular points.

- If M is compact and $y \in N$ is a regular value, then $f^{-1}(y)$ is a finite set (possibly empty).
For compact M, smooth map $f: M \rightarrow N$ and a regular value $y \in N$, we define $\# f^{-1}(y)$ to be the number of points in $f^{-1}(y)$.
- \# $f^{-1}(y)$ is locally constant as a function of y, where y ranges through regular values.

Points, or values, respectively, which are not regular are critical.

Theorem (Morse, Sard)

Let $f: U \rightarrow \mathbb{R}^{n}$ be a smooth map, defined on an open set $U \subset \mathbb{R}^{m}$ and let C be the set of critical points; that is the set of all $x \in U$ with $\operatorname{rank}\left(d f_{x}\right)<n$. Then the image $f(C) \subset \mathbb{R}^{n}$ has measure zero.

Corollary (Brown)

The set of regular values of a smooth map $f: M \rightarrow N$ is everywhere dense in N.

Theorem

Let M and N be manifolds of the same dimension, M compact without boundary, N connected and $f: M \rightarrow N$ smooth mapping. If y and z are regular values of f, then

$$
\# f^{-1}(y)=\# f^{-1}(z) \quad(\bmod 2)
$$

This common residue class (called mod 2 degree of f) depends only on the smooth homotopy class of f.

Let M and N be oriented n-dimensional manifolds without boundary, M compact and N connected.
Let $f: M \rightarrow N$ be a smooth map and $x \in M$ a regular point of f, hence $d f_{x}: T_{x} M \rightarrow T_{f(x)} N$ is a linear isomorphism.
Define the sign of $d f_{x}$ to be +1 or -1 according as $d f_{x}$ preserves or reverses orientation. For any regular value $y \in N$ define

$$
\operatorname{deg}(f, y)=\sum_{x \in f^{-1}(y)} \operatorname{sign}\left(d f_{x}\right)
$$

- Again, $\operatorname{deg}(f, y)$ is a locally constant function of y and it is defined on a dense open subset of N.
- The integer $\operatorname{deg}(f, y)$ does not depend on the choice of regular value y and it is called degree of f.
- If f is homotopic to g, then $\operatorname{deg}(f)=\operatorname{deg}(g)$.
- Reflection $r_{i}: S^{n} \rightarrow S^{n}$ defined by

$$
r_{i}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{i-1},-x_{i}, x_{i+1}, \ldots, x_{n}\right)
$$

is an orientation reversing diffeomorphism with degree -1 .

- The antipodal map $x \mapsto-x$ of S^{n} has degree $(-1)^{n+1}$, because it is the composition of $n+1$ reflections.
- Any map $f: S^{n} \rightarrow S^{n}$ without fixed points has degree $(-1)^{n+1}$, because it is homotopic to the antipodal map. The homotopy is for example

$$
\varphi(x, t)=\frac{(1-t) f(x)-t x}{\|(1-t) f(x)-t x\|}
$$

Clearly, $\varphi(x, 0)=f(x)$ and $\varphi(x, 1)$ is the antipodal map.

Existence of homogeneous geodesics in any dimension

We refine the proof of previous Theorem to arbitrary dimension. $\overline{\text { Recall that } X \mapsto t(} X)$ defines a smooth vector field on S^{n-1}.
Assume now that $t(X) \neq 0$ everywhere.
Putting $f(X)=t(X) /\|t(X)\|$, we obtain a smooth map $f: S^{n-1} \rightarrow S^{n-1}$ without fixed points.
According to a well-known statement from differential topology, the degree of f is $\operatorname{deg}(f)=(-1)^{n}$.
On the other hand, we have $v(X)=v(-X)$ and hence $f(X)=f(-X)$ for each X.
If Y is a regular value of f, then the inverse image $f^{-1}(Y)$ consists of even number of elements. Hence $\operatorname{deg}(f)$ is an even number, which is a contradiction.
This implies that there is $\bar{X} \in T_{p} M$ such that $t(\bar{X})=0$ and again, a homogeneous geodesic exists.

Existence of homogeneous geodesics

Theorem
Let $M=(G / H, \nabla)$ be a homogeneous affine manifold and $p \in M$.
Then M admits a homogeneous geodesic through p.

> Theorem
> Let $M=(G / H, g)$ be a homogeneous pseudo-Riemannian manifold (not necessarily reductive) and $p \in M$.
> Then M admits a homogeneous geodesic through p.

Equiaffine connections

Definition

Let (M, ∇) be a torsion-free affine manifold. The affine connection ∇ is said to be equiaffine if there exists a nonvanishing n-form ω which is parallel with respect to ∇.

- A simply connected manifold (M, ∇) is equiaffine if and only if the Ricci tensor Ric ${ }^{\nabla}$ is symmetric.
- Any homogeneous connection with constant Christoffel symbols is equiaffine.
- The group $\mathrm{SL}(2, \mathbb{R})$ acts naturally on the tangent space of each point and this action induces the natural action on the space of connections with constant Christoffel symbols.
- The only well-known polynomial invariant with respect to this action is the determinant of the Ricci matrix.

Representation of $S L(2, \mathbb{R})$ on \mathbb{R}^{6}

$\mathcal{H} \ldots$ set of torsion-free connections with constant Christoffel symbols on \mathbb{R}^{2}

$$
\begin{array}{ll}
\Gamma_{11}^{1}=A_{1}, & \quad \Gamma_{12}^{1}=\Gamma_{21}^{1}=E_{1}, \\
\Gamma_{11}^{2}=A_{2}, & \Gamma_{12}^{1}=B_{21}^{1}=\Gamma_{21}^{2}=E_{2}, \\
\Gamma_{22}^{2}=B_{2} .
\end{array}
$$

$S L(2, \mathbb{R})$ is acting on frames in the plane $\mathbb{R}^{2}[u, v]$ and it induces the action on $\mathcal{H}=\mathbb{R}^{6}\left[A_{1}, A_{2}, B_{1}, B_{2}, E_{1}, E_{2}\right]$

$$
\begin{aligned}
& \bar{A}_{1}=a d^{2} A_{1}+b d^{2} A_{2}+a c^{2} B_{1}+b c^{2} B_{2}-2 a c d E_{1}-2 b c d E_{2}, \\
& \bar{A}_{2}=c d^{2} A_{1}+d^{3} A_{2}+c^{3} B_{1}+c^{2} d B_{2}-2 c^{2} d E_{1}-2 c d^{2} E_{2}, \\
& \bar{B}_{1}=a b^{2} A_{1}+b^{3} A_{2}+a^{3} B_{1}+a^{2} b B_{2}-2 a^{2} b E_{1}-2 a b^{2} E_{2}, \\
& \bar{B}_{2}=b^{2} c A_{1}+b^{2} d A_{2}+a^{2} c B_{1}+a^{2} d B_{2}-2 a b c E_{1}-2 a b d E_{2}, \\
& \bar{E}_{1}=-a b d A_{1}-b^{2} d A_{2}-a^{2} c B_{1}-a b c B_{2} \\
& \quad+a(b c+a d) E_{1}+b(b c+a d) E_{2}, \\
& \bar{E}_{2}=-b c d A_{1}-b d^{2} A_{2}-a c^{2} B_{1}-a c d B_{2} \\
& \quad+c(b c+a d) E_{1}+d(b c+a d) E_{2} .
\end{aligned}
$$

Invariants of the representation of $S L(2, \mathbb{R})$ on \mathcal{H}

- The determinant of the Ricci matrix is

$$
\begin{aligned}
\iota_{1}= & \left(A_{2} E_{1}+E_{2}^{2}-A_{1} E_{2}-A_{2} B_{2}\right)\left(B_{1} E_{2}-B_{2} E_{1}-A_{1} B_{1}+E_{1}^{2}\right) \\
& -\left(A_{2} B_{1}-E_{1} E_{2}\right)^{2}
\end{aligned}
$$

- Vector field $X=x \partial_{u}+y \partial_{v}$ satisfies $\nabla_{X} X=0$ if

$$
\begin{aligned}
& x^{2} A_{1}+y^{2} B_{1}+2 x y E_{1}=0 \\
& x^{2} A_{2}+y^{2} B_{2}+2 x y E_{2}=0
\end{aligned}
$$

The resultant of these polynomials is

$$
I_{2}=4\left(A_{1} E_{2}-E_{1} A_{2}\right)\left(B_{1} E_{2}-E_{1} B_{2}\right)+\left(A_{1} B_{2}-A_{2} B_{1}\right)^{2} .
$$

Invariants of the representation of $S L(2, \mathbb{R})$ on \mathcal{H}

- This representation admits 3 independent invariants. Using the computer, we found

$$
\begin{aligned}
I_{3}= & \left(A_{1}^{2}+A_{1} E_{2}+A_{2} B_{2}+A_{2} E_{1}\right)\left(A_{1} B_{1}+B_{1} E_{2}+B_{2}^{2}+B_{2} E_{1}\right) \\
& -\left(A_{1} E_{1}+B_{2} E_{2}+2 E_{1} E_{2}\right)^{2} .
\end{aligned}
$$

Theorem
Polynomials I_{1}, l_{2}, l_{3} form a Hilbert basis of scalar invariants of the representation ρ of $S L(2, \mathbb{R})$.

Representation of $S L(2, \mathbb{R})$ on \mathbb{R}^{9}

$\mathcal{H}^{\prime} \ldots$ space of torsion-free affine connections with constant Christoffel symbols on $\mathbb{R}^{3}[u, v, w]$

$$
\begin{array}{cll}
\Gamma_{11}^{i}=A_{i}, & \Gamma_{22}^{i}=B_{i}, & \Gamma_{33}^{i}=C_{i}, \\
\Gamma_{12}^{i}=\Gamma_{21}^{i}=E_{i}, & \Gamma_{13}^{i}=\Gamma_{31}^{i}=F_{i}, & \Gamma_{23}^{i}=\Gamma_{32}^{i}=G_{i} .
\end{array}
$$

Representation ρ^{\prime} of $\operatorname{SL}(2, \mathbb{R})$ on $\mathcal{H}^{\prime}=\mathbb{R}^{9}\left[A_{i}, B_{i}, E_{i}\right]$

$$
\begin{aligned}
& \bar{A}_{1}=a d^{2} A_{1}+b d^{2} A_{2}+a c^{2} B_{1}+b c^{2} B_{2}-2 a c d E_{1}-2 b c d E_{2}, \\
& \bar{A}_{2}=c d^{2} A_{1}+d^{3} A_{2}+c^{3} B_{1}+c^{2} d B_{2}-2 c^{2} d E_{1}-2 c d^{2} E_{2}, \\
& \bar{A}_{3}=d^{2} A_{3}+c^{2} B_{3}-2 c d E_{3}, \\
& \bar{B}_{1}=a b^{2} A_{1}+b^{3} A_{2}+a^{3} B_{1}+a^{2} b B_{2}-2 a^{2} b E_{1}-2 a b^{2} E_{2}, \\
& \bar{B}_{2}=b^{2} c A_{1}+b^{2} d A_{2}+a^{2} c B_{1}+a^{2} d B_{2}-2 a b c E_{1}-2 a b d E_{2}, \\
& \bar{B}_{3}=b^{2} A_{3}+a^{2} B_{3}-2 a b E_{3}, \\
& \bar{E}_{1}=-a b d A_{1}-b^{2} d A_{2}-a^{2} c B_{1}-a b c B_{2} \\
& \quad \quad \quad-a(b c+a d) E_{1}+b(b c+a d) E_{2}, \\
& \bar{E}_{2}=-b c d A_{1}-b d^{2} A_{2}-a c^{2} B_{1}-a c d B_{2} \\
& \quad \quad \quad c(b c+a d) E_{1}+d(b c+a d) E_{2}, \\
& \bar{E}_{3}=-b d A_{3}-a c B_{3}+(a d+b c) E_{3} .
\end{aligned}
$$

Invariants of the representation of $S L(2, \mathbb{R})$ on \mathcal{H}^{\prime}

- The representation space \mathcal{H}^{\prime} of $\underline{\rho^{\prime} \text { decomposes }}$

$$
\begin{aligned}
\mathcal{H}^{\prime} & =\mathbb{R}^{9}\left[A_{i}, B_{i}, E_{i}\right]= \\
& =\mathbb{R}^{6}\left[A_{1}, A_{2}, B_{1}, B_{2}, E_{1}, E_{2}\right] \oplus \mathbb{R}^{3}\left[A_{3}, B_{3}, E_{3}\right]= \\
& =\mathcal{H} \oplus \widetilde{\mathcal{H}}
\end{aligned}
$$

and we can denote $\rho^{\prime}=\rho \oplus \tilde{\rho}$.

- The invariants of ρ are I_{1}, l_{2}, l_{3}.
- The invariant of $\tilde{\rho}$ is

$$
I_{4}=A_{3} B_{3}-E_{3}^{2}
$$

Invariants of the representation of $S L(2, \mathbb{R})$ on \mathcal{H}^{\prime}

An invariant related with homogeneous geodesics is

$$
\begin{aligned}
I_{5}= & A_{1}^{2} A_{3} B_{3}^{2}+A_{2}^{2} B_{3}^{3}+A_{3}^{3} B_{1}^{2} \\
& +A_{1}\left(2 A_{2} B_{3}^{2} E_{3}-2 A_{3}^{2} B_{1} B_{3}\right. \\
& \left.+A_{3}\left(4 B_{1} E_{3}^{2}+2 B_{2} B_{3} E_{3}-4 B_{3}^{2} E_{2}-4 B_{3} E_{1} E_{3}\right)\right) \\
& +A_{2}\left(A_{3}\left(-6 B_{1} B_{3} E_{3}-2 B_{2} B_{3}^{2}+4 B_{3}^{2} E_{1}\right)\right. \\
& \left.\quad+8 B_{1} E_{3}^{3}+4 B_{2} B_{3} E_{3}^{2}-4 B_{3}^{2} E_{2} E_{3}-8 B_{3} E_{1} E_{3}^{2}\right) \\
& +A_{3}^{2}\left(2 B_{1}\left(B_{2} E_{3}+2 B_{3} E_{2}-2 E_{1} E_{3}\right)\right. \\
& \left.\quad+B_{2}^{2} B_{3}-4 B_{2} B_{3} E_{1}+4 B_{3} E_{1}^{2}\right) \\
& +A_{3}\left(-8 B_{1} E_{2} E_{3}^{2}-4 B_{2} B_{3} E_{2} E_{3}+4 B_{3}^{2} E_{2}^{2}+8 B_{3} E_{1} E_{2} E_{3}\right)
\end{aligned}
$$

Invariants of the representation of $S L(2, \mathbb{R})$ on \mathcal{H}^{\prime}

Open problem. The representation ρ^{\prime} on \mathbb{R}^{9} has 6 independent invariants. We know the invariants I_{1}, \ldots, I_{5}. Finding the last invariant of this representation and its geometrical meaning remains an open problem.

Dušek, Z., Kowalski, O., Vlášek, Z.: Homogeneous geodesics in homogeneous affine manifolds, Results in Math. (2009).

Dušek, Z., Kowalski, O., Vlášek, Z.:
Homogeneous geodesics in 3-dimensional homogeneous affine manifolds, preprint
國 Dušek, Z.:
Existence of homogeneous geodesics in homogeneous pseudo-Riemannian and affine manifolds,
J. Geom. Phys. (2010).

國 Dušek, Z.:
Scalar invariants on special spaces of equiaffine connections, J. Lie Theory (2010).

