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Homogeneous geodesics
in homogeneous affine manifolds

Definition

Let (M,∇) be a homogeneous affine manifold.
A geodesic is homogeneous if it is an orbit of an one-parameter
group of affine diffeomorphisms. (Here the canonical parameter
of the group need not be the affine parameter of the geodesic.)
An affine g.o. manifold is a homogeneous affine manifold (M,∇)
such that each geodesic is homogeneous.

Lemma

Let M = G/H be a homogeneous space with a left-invariant affine
connection ∇. Then each regular curve which is an orbit
of a 1-parameter subgroup gt ⊂ G on M
is an integral curve of an affine Killing vector field on M.



Definition

Let (M,∇) be a manifold with an affine connection.
A vector field X on M is called a Killing vector field if

[X ,∇Y Z ]−∇Y [X ,Z ]−∇[X ,Y ]Z = 0

is satisfied for arbitrary vector fields Y ,Z .

Lemma

Let (M,∇) be a homogeneous affine manifold and p ∈ M.
There exist n = dim(M) affine Killing vector fields which are
linearly independent at each point of some neighbourhood U of p.



Definition

A nonvanishing smooth vector field Z on M is
geodesic along its regular integral curve γ
if γ(t) is geodesic up to a possible reparametrization.
If all regular integral curves of Z are geodesics up to
a reparametrization, then the vector field Z is called
a geodesic vector field.

For example, a round two-sphere with the corresponding
Levi-Civita connection does not admit any geodesic affine
Killing vector field. Still, all geodesics are homogeneous.



Lemma

Let Z be a nonvanishing Killing vector field on M = (G/H,∇).
1) Z is geodesic along its integral curve γ if and only if

∇Zγ(t)
Z = kγ · Zγ(t)

holds along γ. Here kγ ∈ R is a constant.
2) Z is a geodesic vector field if and only if

∇ZZ = k · Z

holds on M. Here k is a smooth function on M
which is constant along integral curves of Z .



dim(M) = 2

Theorem (Opozda; Arias-Marco, Kowalski)

Let ∇ be a locally homogeneous affine connection with arbitrary
torsion on a 2-dimensional manifold M. Then,
either ∇ is locally a Levi-Civita connection of the unit sphere or,
in a neighbourhood U of each point m ∈M, there is a system
(u, v) of local coordinates and constants A,B,C ,D,E ,F ,G ,H
such that ∇ is expressed in U by one of the following formulas:

TypeA : ∇∂u∂u = A ∂u + B ∂v , ∇∂u∂v = C ∂u + D ∂v ,
∇∂v ∂u = E ∂u + F ∂v , ∇∂v ∂v = G ∂u + H ∂v ,

TypeB : ∇∂u∂u =
A

u
∂u +

B

u
∂v , ∇∂u∂v =

C

u
∂u +

D

u
∂v ,

∇∂v ∂u =
E

u
∂u +

F

u
∂v , ∇∂v ∂v =

G

u
∂u +

H

u
∂v .



Connections of type A

I Let us have a connection ∇ with constant Christoffel symbols.
The operators ∂u, ∂v are affine Killing vector fields.

I A general vector field X = x ∂u + y ∂v satisfies
the condition ∇XX = kX if it holds

Ax2 + (C + E )xy + Gy2 = k x ,
Bx2 + (D + F )xy + Hy2 = k y . (1)

I By the elimination of the factor k we obtain

Bx3 − (A− D − F )x2y − (C + E − H)xy2 − Gy3 = 0.

I A sufficient condition for a vector field X = x ∂u + y ∂v to be
geodesic is that the pair (x , y) satisfies this condition.

I For any connection of type A, a geodesic Killing field
(and at least one homogeneous geodesic) exist.



Affine g.o. manifold

Theorem

For (R2,∇) to be an affine g.o.manifold, it is sufficient that

B = 0, A = D + F , G = 0, H = C + E .

I In this case, the equations (1) give

Ax + Hy = k,

k is nonzero in general and geodesics
must be reparametrized.



Connections of type B

I The globally homogeneous manifold U = {R(u, v) | u > 0}.
The general Killing vector field is X = x∂v + y(u∂u + v∂v ).

I The equality ∇Xγ(t)X = kγ · Xγ(t) gives

((A + 1)c2
1 + (C + E )c1c2 + Gc2

2 )y = kγc2
1 ,

(Bc2
1 + (D + F + 1)c1c2 + Hc2

2 )y = kγc1c2. (2)

I By the elimination of kγ we obtain

B c3
1 − (A− D − F ) c2

1 c2 − (C + E − H) c1 c2
2 − G c3

2 = 0.

I (U ,∇) admits at least one homogeneous geodesic
through each point.

I Homogeneous geodesics are the integral curves of Killing
vector fields which are not geodesic.

I In general, connections of type B do not admit any geodesic
Killing vector fields.



Affine g.o. manifold

Theorem

If it holds

B = 0, A = D + F , G = 0, H = C + E ,

then for any (x , y) 6= (0, 0) the Killing vector field

X = x∂v + y(u∂u + v∂v )

is geodesic. (U ,∇) is an affine g.o. manifold and any homogeneous
geodesic is the integral curve of a geodesic Killing vector field.

I In this case, the equations (2) give us

((A + 1)c1 + Hc2)y = kγc1.

I For a given geodesic Killing field, different geodesics
must be reparametrized by different kγ .



Homogeneous geodesics in dimension 3

(R3,∇)
connection ∇ with constant Christoffel symbols
group R3 acting on it by the translations

Γi
11 = Ai , Γi

22 = Bi , Γi
33 = Ci ,

Γi
12 = Γi

21 = Ei , Γi
13 = Γi

31 = Fi , Γi
23 = Γi

32 = Gi .

The Killing vector field X = x ∂u + y ∂v + z ∂w

satisfies the condition ∇XX = kX if it holds

x2A1 + y2B1 + z2C1 + 2 xyE1 + 2 xzF1 + 2 yzG1 = k x ,
x2A2 + y2B2 + z2C2 + 2 xyE2 + 2 xzF2 + 2 yzG2 = k y ,
x2A3 + y2B3 + z2C3 + 2 xyE3 + 2 xzF3 + 2 yzG3 = k z .

Families of homogeneous connections on H3 or on E (1, 1)
lead to similar equations.



Existence of homogeneous geodesics in dimension 3

Theorem

Let ∇ be a connection with constant Christoffel symbols on R3.
(R3,∇) admits a geodesic Killing vector field.

Proof. Recall that the Killing vector field X = x ∂u + y ∂v + z ∂w

satisfies the condition ∇XX = kX if it holds

x2A1 + y2B1 + z2C1 + 2 xyE1 + 2 xzF1 + 2 yzG1 = k x ,
x2A2 + y2B2 + z2C2 + 2 xyE2 + 2 xzF2 + 2 yzG2 = k y ,
x2A3 + y2B3 + z2C3 + 2 xyE3 + 2 xzF3 + 2 yzG3 = k z .

I Sphere S2 in TpM, vectors X = (x , y , z) with the norm 1.
I Denote v(X ) = ∇XX and t(X ) = v(X )− 〈v(X ),X 〉X ,

then t(X ) ⊥ X and X 7→ t(X ) defines a vector field on S2.
I According to the Hair-Dressing Theorem for sphere,

there is X̄ ∈ TpM such that t(X̄ ) = 0.
I We see v(X̄ ) = kX̄ , hence ∇X̄ X̄ = kX̄ .

�



Existence of homogeneous geodesics in odd dimensions

Theorem

Let M = (G/H,∇) be a homogeneous affine manifold of odd
dimension n and p ∈ M. There exists a homogeneous geodesic
through p.

Proof. Killing vector fields K1, . . . ,Kn independent near p,
B ={K1(p), . . . ,Kn(p)} basis of TpM,

X ∈ TpM, X = (x1, . . . xn) in B,
X ∗ = x1K1 + · · ·+ xnKn and an integral curve γ of X ∗ through p.
Sn−1 in TpM of vectors X = (x1, . . . , xn) with the norm 1.
Denote v(X ) = ∇X∗

γ(t)
X ∗|t=0 and t(X ) = v(X )− 〈v(X ),X 〉X ,

then t(X ) ⊥ X and X 7→ t(X ) defines a vector field on Sn−1.
Again, there is X̄ ∈ TpM such that t(X̄ ) = 0.
We obtain v(X̄ ) = kγX̄ , where kγ = 〈v(X̄ ), X̄ 〉 is a constant,
∇X̄∗

γ
X̄ ∗ = kγX̄ ∗

γ and γ is homogeneous geodesic. �



Preliminaries on differential topology

Let f : M → N be a smooth map between manifolds
of the same dimension.
We say that x ∈ M is a regular point of f if the derivative dfx
is nonsingular. In this case, f maps a neighborhood of x
diffeomorphically onto an open set in N.
The point y ∈ N is called a regular value if f −1(y) contains
only regular points.

I If M is compact and y ∈ N is a regular value,
then f −1(y) is a finite set (possibly empty).

For compact M, smooth map f : M → N and a regular value
y ∈ N, we define #f −1(y) to be the number of points in f −1(y).

I #f −1(y) is locally constant as a function of y ,
where y ranges through regular values.

Points, or values, respectively, which are not regular are critical.



Theorem (Morse, Sard)

Let f : U → Rn be a smooth map, defined on an open set U ⊂ Rm

and let C be the set of critical points; that is the set of all x ∈ U
with rank(dfx) < n. Then the image f (C ) ⊂ Rn has measure zero.

Corollary (Brown)

The set of regular values of a smooth map f : M → N
is everywhere dense in N.

Theorem

Let M and N be manifolds of the same dimension, M compact
without boundary, N connected and f : M → N smooth mapping.
If y and z are regular values of f , then

#f −1(y) = #f −1(z) (mod2).

This common residue class (called mod 2 degree of f )
depends only on the smooth homotopy class of f .



Let M and N be oriented n-dimensional manifolds without
boundary, M compact and N connected.
Let f : M → N be a smooth map and x ∈ M a regular point of f ,
hence dfx : TxM → Tf (x)N is a linear isomorphism.
Define the sign of dfx to be +1 or −1 according as dfx preserves
or reverses orientation. For any regular value y ∈ N define

deg(f , y) =
∑

x∈f −1(y)

sign(dfx).

I Again, deg(f , y) is a locally constant function of y and it is
defined on a dense open subset of N.

I The integer deg(f , y) does not depend on the choice
of regular value y and it is called degree of f .

I If f is homotopic to g , then deg(f ) = deg(g).



I Reflection ri : Sn → Sn defined by

ri (x1, . . . , xn) = (x1, . . . , xi−1,−xi , xi+1, . . . , xn)

is an orientation reversing diffeomorphism with degree −1.

I The antipodal map x 7→ −x of Sn has degree (−1)n+1,
because it is the composition of n + 1 reflections.

I Any map f : Sn → Sn without fixed points has degree
(−1)n+1, because it is homotopic to the antipodal map.
The homotopy is for example

ϕ(x , t) =
(1− t)f (x)− tx

‖(1− t)f (x)− tx‖
.

Clearly, ϕ(x , 0) = f (x) and ϕ(x , 1) is the antipodal map.



Existence of homogeneous geodesics in any dimension

We refine the proof of previous Theorem to arbitrary dimension.
Recall that X 7→ t(X ) defines a smooth vector field on Sn−1.
Assume now that t(X ) 6= 0 everywhere.
Putting f (X ) = t(X )/‖t(X )‖, we obtain a smooth map
f : Sn−1 → Sn−1 without fixed points.
According to a well-known statement from differential topology,
the degree of f is deg(f ) = (−1)n.
On the other hand, we have v(X ) = v(−X ) and hence
f (X ) = f (−X ) for each X .
If Y is a regular value of f , then the inverse image f −1(Y ) consists
of even number of elements. Hence deg(f ) is an even number,
which is a contradiction.
This implies that there is X̄ ∈ TpM such that t(X̄ ) = 0
and again, a homogeneous geodesic exists.



Existence of homogeneous geodesics

Theorem

Let M = (G/H,∇) be a homogeneous affine manifold and p ∈ M.
Then M admits a homogeneous geodesic through p.

Theorem

Let M = (G/H, g) be a homogeneous pseudo-Riemannian
manifold (not necessarily reductive) and p ∈ M.
Then M admits a homogeneous geodesic through p.



Equiaffine connections

Definition

Let (M,∇) be a torsion-free affine manifold. The affine connection
∇ is said to be equiaffine if there exists a nonvanishing n-form ω
which is parallel with respect to ∇.

I A simply connected manifold (M,∇) is equiaffine if and only
if the Ricci tensor Ric∇ is symmetric.

I Any homogeneous connection with constant Christoffel
symbols is equiaffine.

I The group SL(2, R) acts naturally on the tangent space of
each point and this action induces the natural action on the
space of connections with constant Christoffel symbols.

I The only well-known polynomial invariant with respect to this
action is the determinant of the Ricci matrix.



Representation of SL(2, R) on R6

H ... set of torsion-free connections
with constant Christoffel symbols on R2

Γ1
11 = A1, Γ1

12 = Γ1
21 = E1, Γ1

22 = B1,
Γ2

11 = A2, Γ1
12 = Γ2

21 = E2, Γ2
22 = B2.

SL(2, R) is acting on frames in the plane R2[u, v ]

and it induces the action on H = R6[A1,A2,B1,B2,E1,E2]

Ā1 = ad2A1 + bd2A2 + ac2B1 + bc2B2 − 2 acdE1 − 2 bcdE2,
Ā2 = cd2A1 + d3A2 + c3B1 + c2dB2 − 2 c2dE1 − 2 cd2E2,
B̄1 = ab2A1 + b3A2 + a3B1 + a2bB2 − 2 a2bE1 − 2 ab2E2,
B̄2 = b2cA1 + b2dA2 + a2cB1 + a2dB2 − 2 abcE1 − 2 abdE2,
Ē1 = −abdA1 − b2dA2 − a2cB1 − abcB2

+a(bc + ad)E1 + b(bc + ad)E2,
Ē2 = −bcdA1 − bd2A2 − ac2B1 − acdB2

+c(bc + ad)E1 + d(bc + ad)E2.



Invariants of the representation of SL(2, R) on H

I The determinant of the Ricci matrix is

I1 = (A2E1 + E 2
2 − A1E2 − A2B2)(B1E2 − B2E1 − A1B1 + E 2

1 )
−(A2B1 − E1E2)

2.

I Vector field X = x ∂u + y ∂v satisfies ∇XX = 0 if

x2A1 + y2B1 + 2xyE1 = 0,
x2A2 + y2B2 + 2xyE2 = 0.

The resultant of these polynomials is

I2 = 4 (A1 E2 − E1 A2) (B1 E2 − E1 B2) + (A1 B2 − A2 B1)
2 .



Invariants of the representation of SL(2, R) on H

I This representation admits 3 independent invariants. Using
the computer, we found

I3 = (A2
1 + A1E2 + A2B2 + A2E1)(A1B1 + B1E2 + B2

2 + B2E1)
−(A1E1 + B2E2 + 2E1E2)

2.

Theorem

Polynomials I1, I2, I3 form a Hilbert basis of scalar invariants
of the representation ρ of SL(2, R).



Representation of SL(2, R) on R9

H′ . . . space of torsion-free affine connections
with constant Christoffel symbols on R3[u, v ,w ]

Γi
11 = Ai , Γi

22 = Bi , Γi
33 = Ci ,

Γi
12 = Γi

21 = Ei , Γi
13 = Γi

31 = Fi , Γi
23 = Γi

32 = Gi .

Representation ρ′ of SL(2, R) on H′ = R9[Ai ,Bi ,Ei ]

Ā1 = ad2A1 + bd2A2 + ac2B1 + bc2B2 − 2 acdE1 − 2 bcdE2,
Ā2 = cd2A1 + d3A2 + c3B1 + c2dB2 − 2 c2dE1 − 2 cd2E2,
Ā3 = d2A3 + c2B3 − 2 cdE3,
B̄1 = ab2A1 + b3A2 + a3B1 + a2bB2 − 2 a2bE1 − 2 ab2E2,
B̄2 = b2cA1 + b2dA2 + a2cB1 + a2dB2 − 2 abcE1 − 2 abdE2,
B̄3 = b2A3 + a2B3 − 2 abE3,
Ē1 = −abdA1 − b2dA2 − a2cB1 − abcB2

+a(bc + ad)E1 + b(bc + ad)E2,
Ē2 = −bcdA1 − bd2A2 − ac2B1 − acdB2

+c(bc + ad)E1 + d(bc + ad)E2,
Ē3 = −bdA3 − acB3 + (ad + bc) E3.



Invariants of the representation of SL(2, R) on H′

I The representation space H′ of ρ′ decomposes

H′ = R9[Ai ,Bi ,Ei ] =
= R6[A1,A2,B1,B2,E1,E2]⊕ R3[A3,B3,E3] =
= H⊕ H̃

and we can denote ρ′ = ρ⊕ ρ̃.

I The invariants of ρ are I1, I2, I3.

I The invariant of ρ̃ is

I4 = A3B3 − E 2
3 .



Invariants of the representation of SL(2, R) on H′

An invariant related with homogeneous geodesics is

I5 = A1
2A3 B3

2 + A2
2B3

3 + A3
3B1

2

+A1

(
2 A2 B3

2E3 − 2 A3
2B1 B3

+A3

(
4 B1 E3

2 + 2 B2 B3 E3 − 4 B3
2E2 − 4 B3 E1 E3

))
+A2

(
A3

(
−6 B1 B3 E3 − 2 B2 B3

2 + 4 B3
2E1

)
+8B1 E3

3 + 4 B2 B3 E3
2 − 4 B3

2E2 E3 − 8 B3 E1 E3
2
)

+A3
2
(
2B1 (B2 E3 + 2 B3 E2 − 2 E1 E3)

+B2
2B3 − 4 B2 B3 E1 + 4 B3 E1

2
)

+A3

(
−8 B1 E2 E3

2 − 4 B2 B3 E2 E3 + 4 B3
2E2

2 + 8 B3 E1 E2 E3

)
.



Invariants of the representation of SL(2, R) on H′

Open problem. The representation ρ′ on R9 has 6 independent
invariants. We know the invariants I1, . . . , I5. Finding the last
invariant of this representation and its geometrical meaning
remains an open problem.
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