Homogeneous geodesics in homogeneous affine manifolds

Zdeněk Dušek Palacky University, Olomouc

Granada, 2010

Contents

Homogeneous geodesics in homogeneous affine manifolds General settings Dimension 2

Existence of homogeneous geodesics in dimension 3 Using the Borsuk-Ulam Theorem - incomplete solution Using the Hair-Dressing Theorem

Generalizations

Existence in odd dimensions Existence in arbitrary dimension

Equiaffine connections and invariants of $SL(2, \mathbb{R})$ Invariants of the representation of $SL(2, \mathbb{R})$ on \mathbb{R}^6 Invariants of the representation of $SL(2, \mathbb{R})$ on \mathbb{R}^9

Homogeneous geodesics in homogeneous affine manifolds

Definition

Let (M, ∇) be a homogeneous affine manifold.

A geodesic is homogeneous if it is an orbit of an one-parameter group of affine diffeomorphisms. (Here the canonical parameter of the group need not be the affine parameter of the geodesic.) An affine g.o. manifold is a homogeneous affine manifold (M, ∇) such that each geodesic is homogeneous.

Lemma

Let M = G/H be a homogeneous space with a left-invariant affine connection ∇ . Then each regular curve which is an orbit of a 1-parameter subgroup $g_t \subset G$ on Mis an integral curve of an affine Killing vector field on M.

Definition

Let (M, ∇) be a manifold with an affine connection. A vector field X on M is called a Killing vector field if

$$[X, \nabla_Y Z] - \nabla_Y [X, Z] - \nabla_{[X, Y]} Z = 0$$

is satisfied for arbitrary vector fields Y, Z.

Lemma

Let (M, ∇) be a homogeneous affine manifold and $p \in M$. There exist $n = \dim(M)$ affine Killing vector fields which are linearly independent at each point of some neighbourhood \mathcal{U} of p.

Definition

A nonvanishing smooth vector field Z on M is geodesic along its regular integral curve γ if $\gamma(t)$ is geodesic up to a possible reparametrization. If all regular integral curves of Z are geodesics up to a reparametrization, then the vector field Z is called a geodesic vector field.

For example, a round <u>two-sphere</u> with the corresponding Levi-Civita connection <u>does</u> *not* admit any geodesic affine Killing vector field. Still, all geodesics are homogeneous.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Lemma

Let Z be a nonvanishing Killing vector field on $M = (G/H, \nabla)$. 1) Z is geodesic along its integral curve γ if and only if

$$\nabla_{Z_{\gamma(t)}} Z = k_{\gamma} \cdot Z_{\gamma(t)}$$

holds along γ . Here $k_{\gamma} \in \mathbb{R}$ is a constant. 2) Z is a geodesic vector field if and only if

$$\nabla_Z Z = k \cdot Z$$

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへで

holds on *M*. Here *k* is a smooth function on *M* which is constant along integral curves of *Z*.

$\dim(M)=2$

Theorem (Opozda; Arias-Marco, Kowalski)

Let ∇ be a locally homogeneous affine connection with arbitrary torsion on a 2-dimensional manifold \mathcal{M} . Then, either ∇ is locally a Levi-Civita connection of the unit sphere or, in a neighbourhood \mathcal{U} of each point $m \in \mathcal{M}$, there is a system (u, v) of local coordinates and constants A, B, C, D, E, F, G, Hsuch that ∇ is expressed in \mathcal{U} by one of the following formulas:

Connections of type A

- Let us have a connection ∇ with constant Christoffel symbols. The operators ∂_u, ∂_v are affine Killing vector fields.
- ► A general vector field X = x ∂_u + y ∂_v satisfies the condition ∇_XX = kX if it holds

$$Ax^{2} + (C + E)xy + Gy^{2} = kx, Bx^{2} + (D + F)xy + Hy^{2} = ky.$$
(1)

By the elimination of the factor k we obtain

$$Bx^{3} - (A - D - F)x^{2}y - (C + E - H)xy^{2} - Gy^{3} = 0.$$

- ► A sufficient condition for a vector field X = x ∂_u + y ∂_v to be geodesic is that the pair (x, y) satisfies this condition.
- For any connection of type A, a geodesic Killing field (and at least one homogeneous geodesic) exist.

Affine g.o. manifold

Theorem

For (\mathbb{R}^2, ∇) to be an affine g.o. manifold, it is sufficient that $B = 0, \ A = D + F, \ G = 0, \ H = C + E.$

▶ In this case, the equations (1) give

$$Ax + Hy = k$$
,

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

<u>*k* is nonzero</u> in general and geodesics must be reparametrized.

Connections of type B

- ► The globally homogeneous manifold U = {ℝ(u, v) | u > 0}. The general Killing vector field is X = x∂_v + y(u∂_u + v∂_v).
- The equality $\nabla_{X_{\gamma}(t)}X = k_{\gamma} \cdot X_{\gamma(t)}$ gives

$$\begin{array}{rcl} ((A+1)c_1^2+(C+E)c_1c_2+Gc_2^2)y &=& k_{\gamma}c_1^2,\\ (Bc_1^2+(D+F+1)c_1c_2+Hc_2^2)y &=& k_{\gamma}c_1c_2. \end{array} \tag{2}$$

• By the elimination of
$$k_{\gamma}$$
 we obtain

$$B c_1^3 - (A - D - F) c_1^2 c_2 - (C + E - H) c_1 c_2^2 - G c_2^3 = 0.$$

- $\blacktriangleright (\mathcal{U}, \nabla) \text{ admits at least one <u>homogeneous geodesic</u>}$ through each point.
- Homogeneous geodesics are the integral curves of Killing vector fields which are not geodesic.
- In general, connections of type B do not admit any geodesic Killing vector fields.

Affine g.o. manifold

Theorem

If it holds

$$B = 0, A = D + F, G = 0, H = C + E,$$

then for any $(x, y) \neq (0, 0)$ the Killing vector field

$$X = x\partial_v + y(u\partial_u + v\partial_v)$$

is geodesic. (\mathcal{U}, ∇) is an affine g.o. manifold and any homogeneous geodesic is the integral curve of a geodesic Killing vector field.

▶ In this case, the equations (2) give us

$$((A+1)c_1 + Hc_2)y = k_{\gamma}c_1.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

 For a given geodesic Killing field, different geodesics must be reparametrized by different k_γ. Homogeneous geodesics in dimension 3

 (\mathbb{R}^3,∇) connection ∇ with constant Christoffel symbols group \mathbb{R}^3 acting on it by the translations

$$\begin{split} & \Gamma_{11}^{i} = A_{i}, \quad \Gamma_{22}^{i} = B_{i}, \quad \Gamma_{33}^{i} = C_{i}, \\ & \Gamma_{12}^{i} = \Gamma_{21}^{i} = E_{i}, \quad \Gamma_{13}^{i} = \Gamma_{31}^{i} = F_{i}, \quad \Gamma_{23}^{i} = \Gamma_{32}^{i} = G_{i}. \end{split}$$

The Killing vector field $X = x \partial_u + y \partial_v + z \partial_w$ satisfies the condition $\nabla_X X = kX$ if it holds

$$\begin{aligned} x^2 A_1 + y^2 B_1 + z^2 C_1 + 2 xy E_1 + 2 xz F_1 + 2 yz G_1 &= k x, \\ x^2 A_2 + y^2 B_2 + z^2 C_2 + 2 xy E_2 + 2 xz F_2 + 2 yz G_2 &= k y, \\ x^2 A_3 + y^2 B_3 + z^2 C_3 + 2 xy E_3 + 2 xz F_3 + 2 yz G_3 &= k z. \end{aligned}$$

Families of homogeneous connections on H_3 or on E(1,1)lead to similar equations.

Existence of homogeneous geodesics in dimension 3

Theorem

Let ∇ be a connection with constant Christoffel symbols on \mathbb{R}^3 . (\mathbb{R}^3 , ∇) admits a geodesic Killing vector field.

Proof. Recall that the Killing vector field $X = x \partial_u + y \partial_v + z \partial_w$ satisfies the condition $\nabla_X X = kX$ if it holds

$$\begin{aligned} x^{2}A_{1} + y^{2}B_{1} + z^{2}C_{1} + 2xyE_{1} + 2xzF_{1} + 2yzG_{1} &= kx, \\ x^{2}A_{2} + y^{2}B_{2} + z^{2}C_{2} + 2xyE_{2} + 2xzF_{2} + 2yzG_{2} &= ky, \\ x^{2}A_{3} + y^{2}B_{3} + z^{2}C_{3} + 2xyE_{3} + 2xzF_{3} + 2yzG_{3} &= kz. \end{aligned}$$

- ▶ Sphere S^2 in T_pM , vectors X = (x, y, z) with the norm 1.
- ▶ Denote $\underline{v}(X) = \nabla_X X$ and $t(X) = v(X) \langle v(X), X \rangle X$, then $t(X) \perp X$ and $X \mapsto t(X)$ defines a vector field on S^2 .
- ► According to the Hair-Dressing Theorem for sphere, there is X̄ ∈ T_pM such that t(X̄) = 0.
- We see $v(\bar{X}) = k\bar{X}$, hence $\nabla_{\bar{X}}\bar{X} = k\bar{X}$.

Existence of homogeneous geodesics in odd dimensions

Theorem

Let $M = (G/H, \nabla)$ be a homogeneous affine manifold of odd dimension n and $p \in M$. There exists a homogeneous geodesic through p.

Proof. Killing vector fields K_1, \ldots, K_n independent near p, $B = \{K_1(p), \ldots, K_n(p)\}$ basis of $T_n M$, $X \in T_p M, X = (x_1, \ldots x_n)$ in B, $X^* = x_1 K_1 + \cdots + x_n K_n$ and an integral curve γ of X^* through p. $\overline{S^{n-1} \text{ in } T_p M}$ of vectors $X = (x_1, \dots, x_n)$ with the norm 1. Denote $v(X) = \nabla_{X^*_{\gamma(t)}} X^*|_{t=0}$ and $t(X) = v(X) - \langle v(X), X \rangle X$, then $t(X) \perp X$ and $X \mapsto t(X)$ defines a vector field on S^{n-1} . Again, there is $\bar{X} \in T_p M$ such that $t(\bar{X}) = 0$. We obtain $v(\bar{X}) = k_{\gamma}\bar{X}$, where $k_{\gamma} = \langle v(\bar{X}), \bar{X} \rangle$ is a constant, $abla_{ar{X}^*_{\star}} ar{X}^* = k_{\gamma} ar{X}^*_{\gamma}$ and γ is homogeneous geodesic.

Preliminaries on differential topology

Let $f: M \to N$ be a smooth map between manifolds of the same dimension.

We say that $x \in M$ is a <u>regular point</u> of f if the derivative df_x is nonsingular. In this case, f maps a neighborhood of x diffeomorphically onto an open set in N. The point $y \in N$ is called a <u>regular value</u> if $f^{-1}(y)$ contains only negative.

only regular points.

If M is compact and y ∈ N is a regular value, then f⁻¹(y) is a finite set (possibly empty).

For compact M, smooth map $f: M \to N$ and a regular value $y \in N$, we define $\#f^{-1}(y)$ to be the number of points in $f^{-1}(y)$.

→ #f⁻¹(y) is locally constant as a function of y, where y ranges through regular values.

Points, or values, respectively, which are not regular are critical.

Theorem (Morse, Sard)

Let $f: U \to \mathbb{R}^n$ be a smooth map, defined on an open set $U \subset \mathbb{R}^m$ and let C be the set of critical points; that is the set of all $x \in U$ with rank $(df_x) < n$. Then the image $f(C) \subset \mathbb{R}^n$ has measure zero.

Corollary (Brown)

The set of regular values of a smooth map $f: M \to N$ is everywhere dense in N.

Theorem

Let M and N be manifolds of the same dimension, M compact without boundary, N connected and $f: M \rightarrow N$ smooth mapping. If y and z are regular values of f, then

$$\#f^{-1}(y) = \#f^{-1}(z) \pmod{2}.$$

This common residue class (called mod 2 degree of f) depends only on the smooth homotopy class of f.

Let M and N be oriented n-dimensional manifolds without boundary, M compact and N connected.

Let $f: M \to N$ be a smooth map and $x \in M$ a regular point of f, hence $df_x: T_x M \to T_{f(x)}N$ is a linear isomorphism. Define the sign of df_x to be +1 or -1 according as df_x preserves or reverses orientation. For any regular value $y \in N$ define

$$\deg(f, y) = \sum_{x \in f^{-1}(y)} \operatorname{sign}(df_x).$$

- ► Again, deg(f, y) is a locally constant function of y and it is defined on a dense open subset of N.
- ► The integer deg(f, y) does not depend on the choice of regular value y and it is called *degree of f*.
- If f is homotopic to g, then $\deg(f) = \deg(g)$.

• Reflection $r_i: S^n \to S^n$ defined by

$$r_i(x_1,...,x_n) = (x_1,...,x_{i-1},-x_i,x_{i+1},...,x_n)$$

is an orientation reversing diffeomorphism with degree -1.

- ► The antipodal map x → -x of Sⁿ has degree (-1)ⁿ⁺¹, because it is the composition of n + 1 reflections.
- Any map f: Sⁿ → Sⁿ without fixed points has degree (-1)ⁿ⁺¹, because it is homotopic to the antipodal map. The homotopy is for example

$$\varphi(x,t) = \frac{(1-t)f(x)-tx}{\|(1-t)f(x)-tx\|}.$$

Clearly, $\varphi(x,0) = f(x)$ and $\varphi(x,1)$ is the antipodal map.

Existence of homogeneous geodesics in any dimension

We refine the proof of previous Theorem to arbitrary dimension. Recall that $X \mapsto t(X)$ defines a smooth vector field on S^{n-1} . Assume now that $t(X) \neq 0$ everywhere. Putting f(X) = t(X)/||t(X)||, we obtain a smooth map $f: S^{n-1} \to S^{n-1}$ without fixed points. According to a well-known statement from differential topology, the degree of f is $\deg(f) = (-1)^n$. On the other hand, we have v(X) = v(-X) and hence f(X) = f(-X) for each X. If Y is a regular value of f, then the inverse image $f^{-1}(Y)$ consists of even number of elements. Hence deg(f) is an even number, which is a contradiction.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

This implies that there is $\bar{X} \in T_p M$ such that $t(\bar{X}) = 0$ and again, a homogeneous geodesic exists.

Existence of homogeneous geodesics

Theorem

Let $M = (G/H, \nabla)$ be a homogeneous affine manifold and $p \in M$. Then M admits a homogeneous geodesic through p.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

Theorem

Let M = (G/H, g) be a homogeneous pseudo-Riemannian manifold (not necessarily reductive) and $p \in M$. Then M admits a homogeneous geodesic through p.

Equiaffine connections

Definition

Let (M, ∇) be a torsion-free affine manifold. The affine connection ∇ is said to be *equiaffine* if there exists a nonvanishing *n*-form ω which is parallel with respect to ∇ .

- ► A simply connected manifold (M, \(\nabla\)) is equiaffine if and only if the Ricci tensor Ric^{\(\nabla\)} is symmetric.
- Any homogeneous connection with constant Christoffel symbols is equiaffine.
- ► The group SL(2, R) acts naturally on the tangent space of each point and this action induces the natural action on the space of connections with constant Christoffel symbols.
- The only well-known polynomial invariant with respect to this action is the determinant of the Ricci matrix.

Representation of $SL(2,\mathbb{R})$ on \mathbb{R}^6

 ${\mathcal H}$... set of torsion-free connections with constant Christoffel symbols on ${\mathbb R}^2$

$$\begin{split} \Gamma^1_{11} &= A_1, \quad \Gamma^1_{12} = \Gamma^1_{21} = E_1, \quad \Gamma^1_{22} = B_1, \\ \Gamma^2_{11} &= A_2, \quad \Gamma^1_{12} = \Gamma^2_{21} = E_2, \quad \Gamma^2_{22} = B_2. \end{split}$$

 $SL(2,\mathbb{R})$ is acting on frames in the plane $\mathbb{R}^2[u,v]$ and it induces the action on $\mathcal{H} = \mathbb{R}^6[A_1, A_2, B_1, B_2, E_1, E_2]$

$$\begin{split} \bar{A}_1 &= ad^2A_1 + bd^2A_2 + ac^2B_1 + bc^2B_2 - 2\,acdE_1 - 2\,bcdE_2, \\ \bar{A}_2 &= cd^2A_1 + d^3A_2 + c^3B_1 + c^2dB_2 - 2\,c^2dE_1 - 2\,cd^2E_2, \\ \bar{B}_1 &= ab^2A_1 + b^3A_2 + a^3B_1 + a^2bB_2 - 2\,a^2bE_1 - 2\,ab^2E_2, \\ \bar{B}_2 &= b^2cA_1 + b^2dA_2 + a^2cB_1 + a^2dB_2 - 2\,abcE_1 - 2\,abdE_2, \\ \bar{E}_1 &= -abdA_1 - b^2dA_2 - a^2cB_1 - abcB_2 \\ &\quad +a(bc + ad)E_1 + b(bc + ad)E_2, \\ \bar{E}_2 &= -bcdA_1 - bd^2A_2 - ac^2B_1 - acdB_2 \\ &\quad +c(bc + ad)E_1 + d(bc + ad)E_2. \end{split}$$

Invariants of the representation of $SL(2,\mathbb{R})$ on \mathcal{H}

The <u>determinant</u> of the Ricci matrix is

$$I_1 = (A_2E_1 + E_2^2 - A_1E_2 - A_2B_2)(B_1E_2 - B_2E_1 - A_1B_1 + E_1^2) \\ - (A_2B_1 - E_1E_2)^2.$$

• Vector field $X = x \partial_u + y \partial_v$ satisfies $\nabla_X X = 0$ if

$$\begin{array}{rcl} x^2 A_1 + y^2 B_1 + 2xy E_1 &=& 0, \\ x^2 A_2 + y^2 B_2 + 2xy E_2 &=& 0. \end{array}$$

The <u>resultant</u> of these polynomials is

$$I_2 = 4 (A_1 E_2 - E_1 A_2) (B_1 E_2 - E_1 B_2) + (A_1 B_2 - A_2 B_1)^2$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Invariants of the representation of $SL(2,\mathbb{R})$ on \mathcal{H}

 This representation admits 3 independent invariants. Using the computer, we found

$$I_3 = (A_1^2 + A_1E_2 + A_2B_2 + A_2E_1)(A_1B_1 + B_1E_2 + B_2^2 + B_2E_1) -(A_1E_1 + B_2E_2 + 2E_1E_2)^2.$$

Theorem

Polynomials I_1 , I_2 , I_3 form a Hilbert basis of scalar invariants of the representation ρ of $SL(2,\mathbb{R})$.

◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● � � � �

Representation of $SL(2,\mathbb{R})$ on \mathbb{R}^9

 \mathcal{H}' ... space of torsion-free affine connections with constant Christoffel symbols on $\mathbb{R}^{3}[u, v, w]$

$$\begin{aligned} & \Gamma_{11}^{i} = A_{i}, \quad \Gamma_{22}^{i} = B_{i}, \quad \Gamma_{33}^{i} = C_{i}, \\ & \Gamma_{12}^{i} = \Gamma_{21}^{i} = E_{i}, \quad \Gamma_{13}^{i} = \Gamma_{31}^{i} = F_{i}, \quad \Gamma_{23}^{i} = \Gamma_{32}^{i} = G_{i}. \end{aligned}$$

<u>Representation</u> ρ' of $SL(2,\mathbb{R})$ on $\mathcal{H}' = \mathbb{R}^9[A_i, B_i, E_i]$

$$\begin{split} \bar{A}_{1} &= ad^{2}A_{1} + bd^{2}A_{2} + ac^{2}B_{1} + bc^{2}B_{2} - 2 \,acdE_{1} - 2 \,bcdE_{2}, \\ \bar{A}_{2} &= cd^{2}A_{1} + d^{3}A_{2} + c^{3}B_{1} + c^{2}dB_{2} - 2 \,c^{2}dE_{1} - 2 \,cd^{2}E_{2}, \\ \bar{A}_{3} &= d^{2}A_{3} + c^{2}B_{3} - 2 \,cdE_{3}, \\ \bar{B}_{1} &= ab^{2}A_{1} + b^{3}A_{2} + a^{3}B_{1} + a^{2}bB_{2} - 2 \,a^{2}bE_{1} - 2 \,ab^{2}E_{2}, \\ \bar{B}_{2} &= b^{2}cA_{1} + b^{2}dA_{2} + a^{2}cB_{1} + a^{2}dB_{2} - 2 \,abcE_{1} - 2 \,abdE_{2}, \\ \bar{B}_{3} &= b^{2}A_{3} + a^{2}B_{3} - 2 \,abE_{3}, \\ \bar{E}_{1} &= -abdA_{1} - b^{2}dA_{2} - a^{2}cB_{1} - abcB_{2} \\ &\quad +a(bc + ad)E_{1} + b(bc + ad)E_{2}, \\ \bar{E}_{2} &= -bcdA_{1} - bd^{2}A_{2} - ac^{2}B_{1} - acdB_{2} \\ &\quad +c(bc + ad)E_{1} + d(bc + ad)E_{2}, \\ \bar{E}_{3} &= -bdA_{3} - acB_{3} + (ad + bc)E_{3}. \end{split}$$

Invariants of the representation of $SL(2,\mathbb{R})$ on \mathcal{H}'

 \blacktriangleright The representation space \mathcal{H}' of ρ' decomposes

$$\begin{aligned} \mathcal{H}' &= & \mathbb{R}^9[A_i, B_i, E_i] = \\ &= & \mathbb{R}^6[A_1, A_2, B_1, B_2, E_1, E_2] \oplus \mathbb{R}^3[A_3, B_3, E_3] = \\ &= & \mathcal{H} \oplus \widetilde{\mathcal{H}} \end{aligned}$$

and we can denote $\rho' = \rho \oplus \tilde{\rho}$.

- The invariants of ρ are I_1, I_2, I_3 .
- The invariant of $\tilde{\rho}$ is

$$I_4 = A_3 B_3 - E_3^2.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Invariants of the representation of $SL(2,\mathbb{R})$ on \mathcal{H}'

An invariant related with homogeneous geodesics is

$$\begin{split} H_5 &= A_1^2 A_3 B_3^2 + A_2^2 B_3^3 + A_3^3 B_1^2 \\ &+ A_1 \Big(2 A_2 B_3^2 E_3 - 2 A_3^2 B_1 B_3 \\ &+ A_3 \left(4 B_1 E_3^2 + 2 B_2 B_3 E_3 - 4 B_3^2 E_2 - 4 B_3 E_1 E_3 \right) \Big) \\ &+ A_2 \Big(A_3 \left(-6 B_1 B_3 E_3 - 2 B_2 B_3^2 + 4 B_3^2 E_1 \right) \\ &+ 8 B_1 E_3^3 + 4 B_2 B_3 E_3^2 - 4 B_3^2 E_2 E_3 - 8 B_3 E_1 E_3^2 \Big) \\ &+ A_3^2 \Big(2 B_1 \left(B_2 E_3 + 2 B_3 E_2 - 2 E_1 E_3 \right) \\ &+ B_2^2 B_3 - 4 B_2 B_3 E_1 + 4 B_3 E_1^2 \Big) \\ &+ A_3 \Big(-8 B_1 E_2 E_3^2 - 4 B_2 B_3 E_2 E_3 + 4 B_3^2 E_2^2 + 8 B_3 E_1 E_2 E_3 \Big) \end{split}$$

Invariants of the representation of $SL(2,\mathbb{R})$ on \mathcal{H}'

Open problem. The representation ρ' on \mathbb{R}^9 has 6 independent invariants. We know the invariants I_1, \ldots, I_5 . Finding the last invariant of this representation and its geometrical meaning remains an open problem.

Dušek, Z., Kowalski, O., Vlášek, Z.: *Homogeneous geodesics in homogeneous affine manifolds*, Results in Math. (2009).

Dušek, Z., Kowalski, O., Vlášek, Z.: Homogeneous geodesics in 3-dimensional homogeneous affine manifolds, preprint

Dušek, Z.:

Existence of homogeneous geodesics in homogeneous pseudo-Riemannian and affine manifolds, J. Geom. Phys. (2010).

Dušek, Z.:

Scalar invariants on special spaces of equiaffine connections, J. Lie Theory (2010).