Generalized Weierstrass representations for higher dimensional pseudo-Riemannian manifolds

Marie-Amélie Lawn

University of Neuchâtel

Granada, November 2010

Presentation

- Introduction
 - Classical Weierstraß representations
 - Associated families
- Results
 - Higher dimensional representations
 - The para-complex approach for manifolds of split signature
 - Examples

Introduction

Classical Weierstraß representations

Theorem (Weierstraß 1866)

Let M be a Riemannian surface. The two following statements are equivalent :

- 1) The map $F = (F_1, F_2, F_3) : M \to \mathbb{R}^3$ is a minimal conformal immersion.
- 2) There exists a triple $\omega=(\omega_1,\omega_2,\omega_3)$ of holomophic (1,0)-forms on M such that
 - (i) $\sum_{i} \omega_{i}^{2} = 0$, $\sum_{i} \omega_{i} \bar{\omega}_{i} = 0$
 - (ii) The forms $\Re \omega_i$ are exact.

satisfying

$$F(q) = \Re \int_{p}^{q} (\omega_1, \omega_2, \omega_3) + Constant.$$

- The F_i are harmonic : $0 = \Delta F_i$
- $F = \Re(f)$, $f : M \to \mathbb{C}^3$ (holomorphic representative),
- $\omega_i = \phi_i dz$ with $\phi := \frac{\partial f}{\partial z} = (\phi_1, \phi_2, \phi_3)$ in

$$Q = \{(z_1^2, z_2^2, z_3^2) \in \mathbb{C}^3 | z_1^2 + z_2^2 + z_3^2 = 0\},\$$

• There exists an associated family $\{F_{\theta} = \theta \in \mathbb{R}\}$, $F_0 = F$ given by

$$F_{\theta} = \Re(e^{i\theta f})$$

of "isometric deformations".

Other results.

- **Kenmotsu** : Representation for CMC-surfaces in \mathbb{R}^3 .
- Konopelchenko, Kenmotsu, Bobenko : Representations of minimal and CMC surfaces in \mathbb{R}^n ,
- Abresch, Kusner-Schmitt '99, Taimanov...: spinorial Weierstraß representations,
- Dajzer-Gromoll '85-'95, Eschenburg-Tribuzy-Ferreira,...: Kähler submanifolds of spaceforms

Associated families

Definition

Let $f: M^{2m} \to \mathbb{R}^n$ be a Kählerian immersion, α its second fundamental form.

For $\theta \in \mathbb{R}$, define :

$$R_{\theta}: TM \to TM, \quad R_{\theta} = e^{J\theta} = \cos(\theta)I + \sin(\theta)J,$$

An associated family of f is a one-parameter family of Kählerian immersions $f_{\theta}: M^{2m} \to \mathbb{R}^n$, $f_0 = f$, with second fundamental form $\alpha_{f_{\theta}}$ such that

$$\psi_{\theta}(\alpha_{f_{\theta}}(X, Y)) = \alpha_{\theta}(X, Y) := \alpha(R_{\theta}X, R_{\theta}Y),$$

for some bundle isomorphisms $\psi_{\theta}: f_{\theta}^* TN \to f_{\theta}^* TN$.

Theorem

Let $f: M^{2m} \to \mathbb{R}^n$ be a Kählerian immersion. Then there exists an associated family of f if and only if f has parallel pluri-mean curvature.

Remark: Pluri-minimal immersions have an associated family.

Results

Higher dimensional representations

Consider \mathbb{R}^n with standard metric :

$$dx_1^2 + ... + dx_p^2 + dx_{p+1}^2 + ... + dx_n^2$$

Let M^{2m} be complex, $f:M^{2m}\to\mathbb{R}^n$ a smooth map.

$$f(q) = \int_{p}^{q} df + f(p) = \Re \int_{p}^{q} (\omega_1, \dots \omega_n) + f(p),$$

where $\{\omega_i\}_{i=1,\dots,p+q}$ are (1,0)-forms, $\Re \omega_i$ exact.

$$\omega_i(z_1,...z_m) = \sum_{j=1}^m \Omega_{ij}(z_1,...z_m) dz_j, \ \Omega_{ij}(z_1,...z_m) = \left(\frac{\partial f_i}{\partial z_j}\right)_{ij}.$$

Define the maps

$$\phi_j: U \mapsto \mathbb{C}^n$$

$$(z_1,...z_m) \rightarrow \frac{\partial f}{\partial z_j} = \frac{\partial f}{\partial x_j} + i \frac{\partial f}{\partial y_j}, j = 1,...m.$$

Theorem (L.)

Let M^{2m} be a complex manifold. Then the following two conditions are equivalent:

- 1. The map $f: M^{2m} \to \mathbb{R}^n$ is a pluri-conformal immersion.
- 2. There exist maps $\phi_j:U\to\mathbb{C}^n$, j=1,...,m, satisfying the conditions
 - a) The vector $\phi_1(p), \dots \phi_m(p)$ are linearly independent at every $p \in U$.
 - b) $\phi_i \cdot \phi_j = 0$, $i, j = 1 \dots m$,
 - c) $\phi_i \cdot \phi_j > 0$, $i, j = 1 \dots m$, where " · " is the product $v \cdot w := \sum_{i=1}^n v_i w_i$.
 - d) $\frac{\partial \phi_j}{\partial z_k} = \frac{\partial \phi_k}{\partial z_j}$, $\frac{\partial \phi_j}{\partial \overline{z_k}} = \frac{\partial \overline{\phi_k}}{\partial z_j}$ $i, j = 1 \dots n$.

Proposition

A pluri-conformal immersion is pluriminimal if and only if the maps ϕ_i , i = 1, ..., n are holomorphic.

Proposition

Let M^m be a complex manifold and $f:M^m\to\mathbb{R}^n$ be a pluri-conformal immersion. Then the Riemannian metric induced on M is Kähler if and only if the vectors $\frac{\partial}{\partial \overline{z}_j}\phi_k$ are normal. Consequently if f is pluri-minimal the induced metric is Kähler.

Para-complex geometry

The algebra C of para-complex numbers is the real algebra generated by 1 and the para-complex unit e, such that $e^2=1$. For all z=x+ey one define

1) The para-complex conjugation :

$$\overline{\cdot}: C \rightarrow C$$

 $x + ey \mapsto x - ey$

2) real and imaginary parts

$$\Re(z) = \frac{z + \overline{z}}{2} = x, \quad \Im(z) = \frac{(z - \overline{z})e}{2} = y$$

Remark : $C \cong \mathbb{R} \oplus \mathbb{R} \cong \mathcal{C}I_{0,1}$.

Definition

Let V a finite dimensional real vector space. A para-complex structure is an endomorphism $J \in End(V)$, such that

$$J^2 = Id$$
, $dimV^+ = dimV^-$,

with $V^{\pm} = Ker(Id \mp J)$. We call (V, J) a para-complex vector space.

Definition

An almost para-complex structure on a manifold M is an endomorphism field $J \in \Gamma(End(TM))$ such that, for all $p \in M$, J_p is a para-complex structure on T_pM .

J is integrable iff the distributions $T^{\pm}M := \ker(Id \mp J)$ are integrable. An para-complex structure on M is an integrable almost para-complex structure on M. We call (M,J) para-complex manifold. $\dim_C M = \frac{\dim M}{2}$.

Let (M, J) be a para-complex manifold. $TM = TM^+ \oplus TM^-$.

1. "adapted" coordinates: Frobenius

 \Rightarrow There exists an open neighborhood U of M, and functions z_{\pm}^{i} , $i=1,\ldots,n$ on U

- which are constant on the leaves of TM^{\mp} ,
- whose differential dz_{+}^{i} are linearly independent.

$$\Rightarrow$$
 $(z_+^1, \dots, z_+^n, z_-^1, \dots, z_-^n)$ is a local coordinates system.

2. Let

$$x_i = \frac{z_+^i + z_-^i}{2}, \quad y_i = \frac{z_+^i - z_-^i}{2}.$$

It is a system of real local coordinates on U.

3. Para-holomorphic coordinates:

Definition

A smooth map $\phi:(M,J_M)\to (N,J_N)$ is para-holomorphic iff $d\phi J_M=J_N d\phi$.

A para-holomorphic local coordinates system is a system of para-holomorphic functions z^i , $i=1,\ldots,n$ on $U\subset M$, such that $x_i=\Re(z^i),\ y_i=\Im(z^i).$

• (p+,q-)-forms : The decomposition $TM=TM^+\oplus TM^-$ extends to

$$\Lambda^k T^* M = \bigoplus_{k=p+q} \Lambda^{p+,q-} T^* M.$$

and to the differential forms on M:

$$\Omega^k(M) = \bigoplus_{k=p+q} \Omega^{p+,q-}(M).$$

$$d: \Omega^k(M) \to \Omega^{k+1},$$

$$\partial^+: \Omega^{p+,q-}(M) \to \Omega^{(p+1)+,q-}, \quad \partial^-: \Omega^{p+,q-}(M) \to \Omega^{p+,(q+1)-}.$$

• (p,q)-forms : $TM^C := TM \otimes C = TM^{1,0} \oplus TM^{0,1}$, avec

$$T_pM^{1,0} := \{X + eJX | X \in T_pM\}, \ T_pM^{0,1} := \{X - eJX | X \in T_pM\},$$

$$\Rightarrow \Lambda^k T^*M^C = \bigoplus_{k=p+q} \Lambda^{p,q} T^*M, \quad \Omega_C^k(M) = \bigoplus_{k=p+q} \Omega^{p,q}(M).$$

Pseudo-riemannian surfaces in $\mathbb{R}^{2,1}$

Para-complex Weierstraß representations

Theorem (L.)

Let M be a Lorentz surface. The following conditions are equivalent :

- 1) $F:M\to\mathbb{R}^{2,1}$ is a conformal immersion .
- 2) There exists a triple $\omega_+=(\omega_{1+},\omega_{2+},\omega_{3+})$ of (1+,0-)-forms and a triple $\omega_-=(\omega_{1-},\omega_{2-},\omega_{3-})$ of (0+,1-)-forms on M such that

(i)
$$\omega_{1+}^2 + \omega_{2+}^2 - \omega_{3+}^2 = 0$$
, $\omega_{1-}^2 + \omega_{2-}^2 - \omega_{3-}^2 = 0$,

- (ii) $\omega_{1+}\omega_{1-} + \omega_{2+}\omega_{2-} \omega_{3+}\omega_{3-} > 0$.
- (iii) The forms ω_{i+} resp. ω_{i-} are ∂_+ -exact resp. ∂_- -exact.

satisfying equation

$$F(q) = \int_{p}^{q} (\omega_{1+} + \omega_{1-}, \omega_{2+} + \omega_{2-}, \omega_{3+} + \omega_{3-}) + constant.$$

Examples

- M Lorentzian surface in $\mathbb{R}^{2,1}$:
 - Konderak '01 : Para-complex Weierstraß representation for minimal Lorentz surfaces,
 - L. '06: Real and para-complex Weierstrass representation for general Lorentz surfaces
 - \Rightarrow spinorial representation,
 - Analogs of Enneper surface, Catenoid and helicoid (associated families).
- Generalization for higher dimension manifolds of split signature.