Gluing infinitely many minimal surfaces together

Martin Traizet

12 novembre 2010

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1. Breaking periodicity of periodic minimal surfaces.

- 2. Non compact Riemann surfaces.
- 3. Balancing and discrete analysis on graphs.

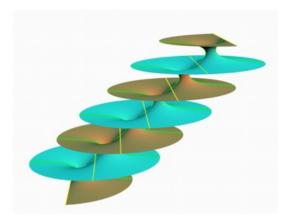
1. Breaking periodicity of periodic minimal surfaces

Example 1 : Adding handles to Riemann examples (w/ F. Morabito)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □目 - のへぐ

Example 1 : Adding handles to Riemann examples (w/ F. Morabito)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

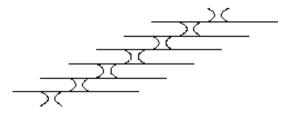


Riemann minimal example (picture by Matthias Weber)

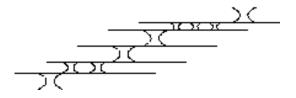


Riemann example with handles (F. Wei 90's) (picture by Matthias Weber)

(日) (同) (日) (日)



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?



 $\cdots 1, 2, 1, 1, 3, 1, \cdots$

 n_k = number of necks at level k, $k \in \mathbb{Z}$.

Claim

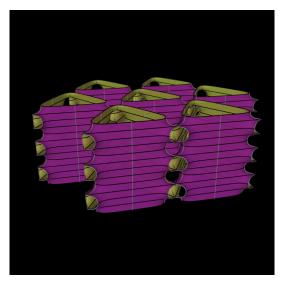
It works provided

- ▶ $(n_k)_{k \in \mathbb{Z}}$ is bounded
- ► $\forall k \in \mathbb{Z}$, $(n_k 1)(n_{k+1} 1) = 0$

Example 2 : flips on Schwartz H surface

▲□▶ ▲圖▶ ★園▶ ★園▶ - 園 - のへで

Example 2 : flips on Schwartz H surface

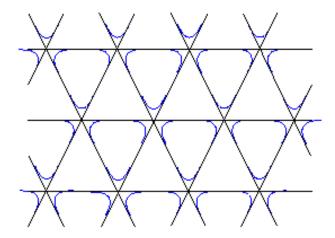


Schwartz triply periodic *H*-surface (picture by Matthias Weber)

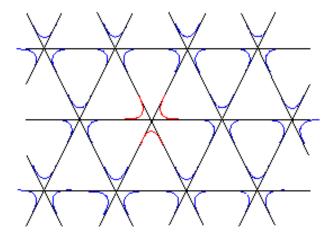
・ロト ・聞ト ・ヨト ・ヨト

э

Construction of the H surface by desingularisation (R. Younes (2009) for the periodic case)

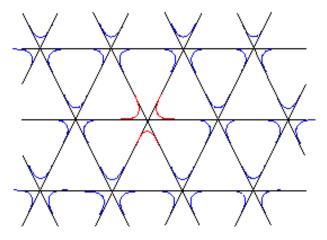


Breaking horizontal periodicity



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Breaking horizontal periodicity



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Claim I can flip at a finite number of vertices.

2. Non-compact Riemann surfaces

・ロト・4日ト・4日ト・4日ト ヨージへで

Weierstrass representation

$$\psi(z) = \operatorname{\mathsf{Re}} \int_{z_0}^z (\phi_1, \phi_2, \phi_3)$$

 ϕ_1,ϕ_2,ϕ_3 : holomorphic 1-forms on a Riemann surface Σ

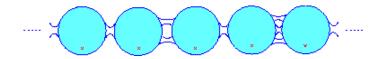
Weierstrass representation

$$\psi(z) = \operatorname{Re} \int_{z_0}^{z} (\phi_1, \phi_2, \phi_3)$$

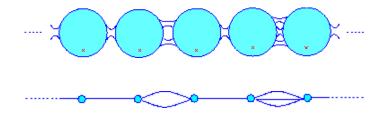
 ϕ_1,ϕ_2,ϕ_3 : holomorphic 1-forms on a Riemann surface Σ

$$\begin{split} \phi_1^2 + \phi_2^2 + \phi_3^2 &= 0 \\ |\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 > 0 \\ \text{Re} \int_{\gamma} \phi_i &= 0 \quad \forall \gamma \in H_1(\Sigma) \end{split}$$

Conformal model for Riemann with handles

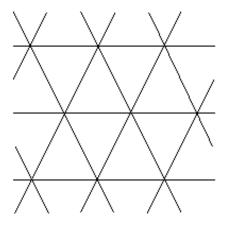


Conformal model for Riemann with handles



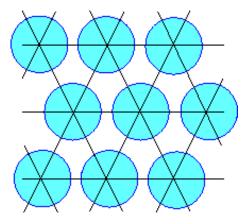
▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Conformal model for Schwartz H-surface



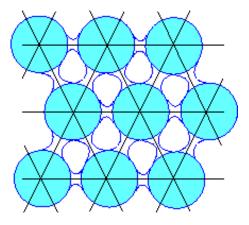
◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Conformal model for Schwartz H-surface

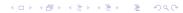


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Conformal model for Schwartz H-surface



 $\Gamma = (V, E)$ oriented graph (possibly infinite)



 $\Gamma = (V, E)$ oriented graph (possibly infinite) For each $v \in V$, consider a Riemann sphere $\overline{\mathbb{C}}_{v}$.

 $\Gamma = (V, E)$ oriented graph (possibly infinite) For each $v \in V$, consider a Riemann sphere $\overline{\mathbb{C}}_{v}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For each $e \in E$ from vertex v to vertex v' pick two points $p_e^- \in \mathbb{C}_v$ and $p_e^+ \in \mathbb{C}_{v'}$ choose a small complex number $|t_e|$.

 $\Gamma = (V, E)$ oriented graph (possibly infinite) For each $v \in V$, consider a Riemann sphere $\overline{\mathbb{C}}_{v}$.

For each $e \in E$ from vertex v to vertex v'pick two points $p_e^- \in \mathbb{C}_v$ and $p_e^+ \in \mathbb{C}_{v'}$ choose a small complex number $|t_e|$.

Remove the disks $|z - p_e^-| < \sqrt{|t_e|}$ and $|z - p_e^+| < \sqrt{|t_e|}$.

Identify the points z and z' on the boundary circles such that

$$(z - p_e^-)(z' - p_e^+) = t_e$$

 $\Gamma = (V, E)$ oriented graph (possibly infinite) For each $v \in V$, consider a Riemann sphere $\overline{\mathbb{C}}_{v}$.

For each $e \in E$ from vertex v to vertex v'pick two points $p_e^- \in \mathbb{C}_v$ and $p_e^+ \in \mathbb{C}_{v'}$ choose a small complex number $|t_e|$.

Remove the disks $|z - p_e^-| < \sqrt{|t_e|}$ and $|z - p_e^+| < \sqrt{|t_e|}$.

Identify the points z and z' on the boundary circles such that

$$(z-p_e^-)(z'-p_e^+)=t_e$$

If $t_e \neq 0$ this creates a neck connecting $\overline{\mathbb{C}}_v$ and $\overline{\mathbb{C}}_{v'}$. If $t_e = 0$ this identifies p_e^- and p_e^+ and creates a node. This defines a Riemann surface Σ possibly with nodes.

How can we define a holomorphic 1-form ω on Σ ?

How can we define a holomorphic 1-form ω on Σ ?

Let
$$\gamma_e = C(p_e^+, \varepsilon) = -C(p_e^-, \varepsilon).$$

How can we define a holomorphic 1-form ω on Σ ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let
$$\gamma_e = C(p_e^+, \varepsilon) = -C(p_e^-, \varepsilon)$$
.

We want to prescribe $\int_{\gamma_e} \omega = \alpha_e$

How can we define a holomorphic 1-form ω on Σ ?

Let
$$\gamma_e = C(p_e^+, \varepsilon) = -C(p_e^-, \varepsilon)$$
.

We want to prescribe $\int_{\gamma_e} \omega = \alpha_e$ Necessary condition (Cauchy theorem in $\overline{\mathbb{C}}_{\nu}$)

$$\forall \mathbf{v} \in \mathbf{V}, \sum_{\mathbf{e} \in \mathbf{E}_{\mathbf{v}}^+} \alpha_{\mathbf{e}} = \sum_{\mathbf{e} \in \mathbf{E}_{\mathbf{v}}^-} \alpha_{\mathbf{e}}$$
(1)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\begin{array}{l} E_{v}^{-} : \text{edges which start at } v \\ E_{v}^{+} : \text{edges which end at } v \\ E_{v} = E_{v}^{-} \cup E_{v}^{+} \end{array}$

Finite case : Γ finite graph.

Theorem (Fay)

 $\omega \mapsto (\int_{\gamma_e} \omega)_{e \in E}$ is an isomorphism from $\Omega^1(\Sigma)$ to the set of vectors $(\alpha_e)_{e \in E} \in \mathbb{C}^E$ which satisfy (1).

Finite case : Γ finite graph.

Theorem (Fay)

 $\omega \mapsto (\int_{\gamma_e} \omega)_{e \in E}$ is an isomorphism from $\Omega^1(\Sigma)$ to the set of vectors $(\alpha_e)_{e \in E} \in \mathbb{C}^E$ which satisfy (1).

 $\Omega^1(\Sigma)$ is the space of regular differentials.

Finite case : Γ finite graph.

Theorem (Fay)

 $\omega \mapsto (\int_{\gamma_e} \omega)_{e \in E}$ is an isomorphism from $\Omega^1(\Sigma)$ to the set of vectors $(\alpha_e)_{e \in E} \in \mathbb{C}^E$ which satisfy (1).

$\Omega^1(\Sigma)$ is the space of regular differentials.

Definition (Bers)

A differential ω is regular if it is holomorphic away from the nodes and for each node, it has simple poles at p_e^- and p_e^+ , with opposite residues.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Infinite case : Γ infinite graph.

▲□▶ ▲圖▶ ▲≧▶ ▲≣▶ = 目 - のへで

N admissible norm on \mathbb{C}^V (sequences $(u_v)_{v \in V}$)

N admissible norm on \mathbb{C}^V (sequences $(u_v)_{v \in V}$) Examples of admissible norms

▶
$$\ell^p$$
 norms, $1 \le p \le \infty$

• weighted ℓ^p norm with weight w satisfying $\frac{w(v)}{w(v')} \leq c$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

N admissible norm on \mathbb{C}^V (sequences $(u_v)_{v \in V}$) Examples of admissible norms

▶
$$\ell^p$$
 norms, $1 \le p \le \infty$

• weighted ℓ^p norm with weight w satisfying $\frac{w(v)}{w(v')} \leq c$

Define norms

$$||\alpha|| = N\left(\left(\sum_{e \in E_{\nu}} |\alpha_e|\right)_{\nu \in V}\right)$$
$$||\omega|| = N\left(\left(\sup_{z \in \Omega_{\nu}} \left|\frac{\omega(z)}{dz}\right|\right)_{\nu \in V}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

N admissible norm on \mathbb{C}^V (sequences $(u_v)_{v \in V}$) Examples of admissible norms

▶
$$\ell^p$$
 norms, $1 \le p \le \infty$

• weighted ℓ^p norm with weight w satisfying $\frac{w(v)}{w(v')} \leq c$

Define norms

$$||\alpha|| = N\left(\left(\sum_{e \in E_{v}} |\alpha_{e}|\right)_{v \in V}\right)$$
$$|\omega|| = N\left(\left(\sup_{z \in \Omega_{v}} \left|\frac{\omega(z)}{dz}\right|\right)_{v \in V}\right)$$

Theorem (T)

 $\omega \mapsto (\int_{\gamma_e} \omega)_{e \in E}$ is an isomorphism of Banach spaces from the space of regular differentials ω with finite norm to the space of sequences $(\alpha_e)_{e \in E}$ with finite norm and satisfying (1).

◆□ > ◆圖 > ◆臣 > ◆臣 > ―臣 = ∽��?

3. Balancing and discrete analysis on graphs

▲□▶ ▲圖▶ ★園▶ ★園▶ - 園 - のへで

Balancing for Riemann example with handles

Configuration : $p_{k,i} \in \mathbb{C}$, for $k \in \mathbb{Z}$, $1 \leq i \leq n_k$

Balancing for Riemann example with handles

$$\label{eq:configuration} \begin{split} \text{Configuration} : p_{k,i} \in \mathbb{C} \text{, for } k \in \mathbb{Z} \text{ ,} 1 \leq i \leq n_k \\ \text{Forces} : \end{split}$$

$$F_{k,i} = 2\sum_{\substack{j=1\\j\neq i}}^{n_k} \frac{c_k^2}{p_{k,i} - p_{k,j}} - \sum_{j=1}^{n_{k-1}} \frac{c_k c_{k-1}}{p_{k,i} - p_{k-1,j}} - \sum_{j=1}^{n_{k+1}} \frac{c_k c_{k+1}}{p_{k,i} - p_{k+1,j}}$$

with $c_k = \frac{1}{n_k}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Balancing for Riemann example with handles

$$\label{eq:configuration} \begin{split} \text{Configuration} : p_{k,i} \in \mathbb{C} \text{, for } k \in \mathbb{Z} \text{ ,} 1 \leq i \leq n_k \\ \text{Forces} : \end{split}$$

$$F_{k,i} = 2\sum_{\substack{j=1\\j\neq i}}^{n_k} \frac{c_k^2}{p_{k,i} - p_{k,j}} - \sum_{j=1}^{n_{k-1}} \frac{c_k c_{k-1}}{p_{k,i} - p_{k-1,j}} - \sum_{j=1}^{n_{k+1}} \frac{c_k c_{k+1}}{p_{k,i} - p_{k+1,j}}$$
with $c_k = \frac{1}{n_k}$.

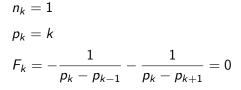
Definition

The configuration $(p_{k,i})_{k \in \mathbb{Z}, 1 \le i \le n_k}$ is balanced if $F_{k,i} = 0$ for all k, i.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

 $n_k = 1$ $p_k = k$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $n_{k} = 1$ $p_{k} = k$ $F_{k} = -\frac{1}{p_{k} - p_{k-1}} - \frac{1}{p_{k} - p_{k+1}} = 0$ $dF_{k} \cdot h = 2h_{k} - h_{k-1} - h_{k+1}$ $dF = -\Delta \quad (\text{discrete Laplacian on } \mathbb{Z})$

 $n_{k} = 1$ $p_{k} = k$ $F_{k} = -\frac{1}{p_{k} - p_{k-1}} - \frac{1}{p_{k} - p_{k+1}} = 0$ $dF_{k} \cdot h = 2h_{k} - h_{k-1} - h_{k+1}$ $dF = -\Delta \quad (\text{discrete Laplacian on } \mathbb{Z})$

Problem : $\Delta : \ell^{\infty}(\mathbb{Z}) \to \ell^{\infty}(\mathbb{Z})$ neither injective nor surjective.

$$F_k = G_{k+1} - G_k$$
 with $G_k = rac{1}{p_k - p_{k-1}}$

$$F_k = G_{k+1} - G_k$$
 with $G_k = rac{1}{p_k - p_{k-1}}$

Change of variable $\ell_k = p_k - p_{k-1}$

$$G_k = \frac{1}{\ell_k}$$

$$F_k = G_{k+1} - G_k$$
 with $G_k = rac{1}{p_k - p_{k-1}}$

Change of variable $\ell_k = p_k - p_{k-1}$

 $G_k = \frac{1}{\ell_k}$ $dG_k \cdot h = -h_k$ dG = -id

$$F_k = G_{k+1} - G_k$$
 with $G_k = rac{1}{p_k - p_{k-1}}$

Change of variable $\ell_k = p_k - p_{k-1}$ $G_k = \frac{1}{\ell_k}$ $dG_k \cdot h = -h_k$ dG = -id

Conclusion : we can use the ℓ^∞ norm for this problem.

 $\Gamma = (V, E)$ graph of regular tiling by equilateral triangles

 $\Gamma = (V, E)$ graph of regular tiling by equilateral triangles Define the unbalancing at vertex v by

$$F_{\mathbf{v}} = \sum_{\mathbf{v}' \sim \mathbf{v}} rac{\mathbf{v}' - \mathbf{v}}{||\mathbf{v}' - \mathbf{v}||}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\Gamma = (V, E)$ graph of regular tiling by equilateral triangles Define the unbalancing at vertex v by

$$F_{\mathbf{v}} = \sum_{\mathbf{v}' \sim \mathbf{v}} \frac{\mathbf{v}' - \mathbf{v}}{||\mathbf{v}' - \mathbf{v}||}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $F_v = 0$ for the regular tiling by symmetry.

 $\Gamma = (V, E)$ graph of regular tiling by equilateral triangles Define the unbalancing at vertex v by

$$F_{\mathbf{v}} = \sum_{\mathbf{v}' \sim \mathbf{v}} \frac{\mathbf{v}' - \mathbf{v}}{||\mathbf{v}' - \mathbf{v}||}$$

 $F_v = 0$ for the regular tiling by symmetry.

Linearised operator

Perturb Γ by a function $h: V \to \mathbb{R}^2$, namely $v(t) = v + th_v$

$$L_{v} = \frac{d}{dt} F_{v}(t)|_{t=0}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\Gamma = (V, E)$ graph of regular tiling by equilateral triangles Define the unbalancing at vertex v by

$$F_{\mathbf{v}} = \sum_{\mathbf{v}' \sim \mathbf{v}} \frac{\mathbf{v}' - \mathbf{v}}{||\mathbf{v}' - \mathbf{v}||}$$

 $F_v = 0$ for the regular tiling by symmetry.

Linearised operator

Perturb Γ by a function $h: V \to \mathbb{R}^2$, namely $v(t) = v + th_v$

$$L_{\nu} = \frac{d}{dt} F_{\nu}(t)|_{t=0}$$

Question : find norms so that *L* is an invertible operator.

Discrete Laplacian on \mathbb{Z}^d

- ◆ □ ▶ → 個 ▶ → 目 ▶ → 目 → のへで

Discrete Laplacian on \mathbb{Z}^d

Consider a function $u:\mathbb{Z}^d
ightarrow \mathbb{R}$

- ▶ D_iu(x) = u(x + e_i) u(x) denotes its discrete derivative in direction e_i
- D denotes any 1st order discrete derivative
- D^k denotes any k-th order discrete derivative
- $\Delta u : \mathbb{Z}^d \to \mathbb{R}$ denotes its discrete Laplacian

$$\Delta u(x) = \sum_{i=1}^{d} u(x + e_i) + u(x - e_i) - 2u(x)$$

Consider the weight w(x) = 1 + |x|.

$$||u||_{\ell^p_\beta} = \left(\sum_{x\in\mathbb{Z}^d} |u(x)|^p w(x)^{\beta p}\right)^{1/p}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider the weight w(x) = 1 + |x|.

$$||u||_{\ell^p_\beta} = \left(\sum_{x\in\mathbb{Z}^d} |u(x)|^p w(x)^{\beta p}\right)^{1/p}$$

$$||u||_{W^{k,p}_{\beta}} = \sum_{j=0}^{k} ||D^{j}u||_{\ell^{p}_{\beta+j}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider the weight w(x) = 1 + |x|.

$$||u||_{\ell^p_\beta} = \left(\sum_{x\in\mathbb{Z}^d} |u(x)|^p w(x)^{\beta p}\right)^{1/p}$$

$$||u||_{W^{k,p}_{eta}} = \sum_{j=0}^{k} ||D^{j}u||_{\ell^{p}_{eta+j}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (T)
If
$$d \ge 3$$
, $1 and $2 - \frac{d}{p} < \beta < d - \frac{d}{p}$, then
 $\Delta : W^{2,p}_{\beta-2}(\mathbb{Z}^d) \to \ell^p_{\beta}(\mathbb{Z}^d)$$

is a Banach isomorphism

Consider the weight w(x) = 1 + |x|.

$$||u||_{\ell^p_\beta} = \left(\sum_{x\in\mathbb{Z}^d} |u(x)|^p w(x)^{\beta p}\right)^{1/p}$$

$$||u||_{W^{k,p}_{\beta}} = \sum_{j=0}^{k} ||D^{j}u||_{\ell^{p}_{\beta+j}}$$

Theorem (T)
If
$$d \ge 3$$
, $1 and $2 - \frac{d}{p} < \beta < d - \frac{d}{p}$, then
 $\Delta : W^{2,p}_{\beta-2}(\mathbb{Z}^d) \to \ell^p_{\beta}(\mathbb{Z}^d)$$

is a Banach isomorphism

Discrete version of same result for \mathbb{R}^d (Bartnik...)

Back to our problem

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ → □ ● − の < ↔

 Γ regular tiling by equilateral triangles.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Γ regular tiling by equilateral triangles.

- Γ is a lattice, so one can
 - define discrete derivatives of any order
 - define weighted discrete Sobolev spaces of any order
 - ▶ use Fourier transform to invert the linearized operator *L*.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 Γ regular tiling by equilateral triangles.

- Γ is a lattice, so one can
 - define discrete derivatives of any order
 - define weighted discrete Sobolev spaces of any order
 - use Fourier transform to invert the linearized operator *L*.

Conclusion : we can use weighted discrete Sobolev spaces for this problem.