Gluing infinitely many minimal surfaces together

Martin Traizet

12 novembre 2010

1. Breaking periodicity of periodic minimal surfaces.
2. Non compact Riemann surfaces.
3. Balancing and discrete analysis on graphs.
4. Breaking periodicity of periodic minimal surfaces

Example 1 : Adding handles to Riemann examples

 (w/ F. Morabito)
Example 1 : Adding handles to Riemann examples

 (w/ F. Morabito)

Riemann minimal example (picture by Matthias Weber)

Riemann example with handles (F. Wei 90's) (picture by Matthias Weber)

$$
\cdots 1,2,1,1,3,1, \cdots
$$

$n_{k}=$ number of necks at level $k, k \in \mathbb{Z}$.
Claim
It works provided

- $\left(n_{k}\right)_{k \in \mathbb{Z}}$ is bounded
- $\forall k \in \mathbb{Z},\left(n_{k}-1\right)\left(n_{k+1}-1\right)=0$

Example 2 : flips on Schwartz H surface

Example 2 : flips on Schwartz H surface

Schwartz triply periodic H -surface (picture by Matthias Weber)

Construction of the H surface by desingularisation (R. Younes (2009) for the periodic case)

Breaking horizontal periodicity

Breaking horizontal periodicity

Claim
I can flip at a finite number of vertices.
2. Non-compact Riemann surfaces

Weierstrass representation

$\psi(z)=\operatorname{Re} \int_{z_{0}}^{z}\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$
$\phi_{1}, \phi_{2}, \phi_{3}$: holomorphic 1-forms on a Riemann surface Σ

Weierstrass representation

$\psi(z)=\operatorname{Re} \int_{z_{0}}^{z}\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$
$\phi_{1}, \phi_{2}, \phi_{3}$: holomorphic 1-forms on a Riemann surface Σ
$\phi_{1}^{2}+\phi_{2}^{2}+\phi_{3}^{2}=0$
$\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}+\left|\phi_{3}\right|^{2}>0$
$\operatorname{Re} \int_{\gamma} \phi_{i}=0 \quad \forall \gamma \in H_{1}(\Sigma)$

Conformal model for Riemann with handles

Conformal model for Riemann with handles

Conformal model for Schwartz H-surface

Conformal model for Schwartz H-surface

Conformal model for Schwartz H-surface

Opening nodes

Opening nodes

$$
\Gamma=(V, E) \text { oriented graph (possibly infinite) }
$$

Opening nodes

$\Gamma=(V, E)$ oriented graph (possibly infinite)
For each $v \in V$, consider a Riemann sphere $\overline{\mathbb{C}}_{v}$.

Opening nodes

$\Gamma=(V, E)$ oriented graph (possibly infinite)
For each $v \in V$, consider a Riemann sphere $\overline{\mathbb{C}}_{v}$.
For each $e \in E$ from vertex v to vertex v^{\prime} pick two points $p_{e}^{-} \in \mathbb{C}_{v}$ and $p_{e}^{+} \in \mathbb{C}_{v^{\prime}}$ choose a small complex number $\left|t_{e}\right|$.

Opening nodes

$\Gamma=(V, E)$ oriented graph (possibly infinite)
For each $v \in V$, consider a Riemann sphere $\overline{\mathbb{C}}_{V}$.
For each $e \in E$ from vertex v to vertex v^{\prime} pick two points $p_{e}^{-} \in \mathbb{C}_{v}$ and $p_{e}^{+} \in \mathbb{C}_{v^{\prime}}$ choose a small complex number $\left|t_{e}\right|$.
Remove the disks $\left|z-p_{e}^{-}\right|<\sqrt{\left|t_{e}\right|}$ and $\left|z-p_{e}^{+}\right|<\sqrt{\left|t_{e}\right|}$. Identify the points z and z^{\prime} on the boundary circles such that

$$
\left(z-p_{e}^{-}\right)\left(z^{\prime}-p_{e}^{+}\right)=t_{e}
$$

Opening nodes

$\Gamma=(V, E)$ oriented graph (possibly infinite)
For each $v \in V$, consider a Riemann sphere $\overline{\mathbb{C}}_{V}$.
For each $e \in E$ from vertex v to vertex v^{\prime} pick two points $p_{e}^{-} \in \mathbb{C}_{v}$ and $p_{e}^{+} \in \mathbb{C}_{v^{\prime}}$ choose a small complex number $\left|t_{e}\right|$.
Remove the disks $\left|z-p_{e}^{-}\right|<\sqrt{\left|t_{e}\right|}$ and $\left|z-p_{e}^{+}\right|<\sqrt{\left|t_{e}\right|}$. Identify the points z and z^{\prime} on the boundary circles such that

$$
\left(z-p_{e}^{-}\right)\left(z^{\prime}-p_{e}^{+}\right)=t_{e}
$$

If $t_{e} \neq 0$ this creates a neck connecting $\overline{\mathbb{C}}_{v}$ and $\overline{\mathbb{C}}_{v^{\prime}}$.
If $t_{e}=0$ this identifies p_{e}^{-}and p_{e}^{+}and creates a node.
This defines a Riemann surface Σ possibly with nodes.

Holomorphic 1-forms

How can we define a holomorphic 1-form ω on Σ ?

Holomorphic 1-forms

How can we define a holomorphic 1-form ω on Σ ?
Let $\gamma_{e}=C\left(p_{e}^{+}, \varepsilon\right)=-C\left(p_{e}^{-}, \varepsilon\right)$.

Holomorphic 1-forms

How can we define a holomorphic 1 -form ω on Σ ?
Let $\gamma_{e}=C\left(p_{e}^{+}, \varepsilon\right)=-C\left(p_{e}^{-}, \varepsilon\right)$.
We want to prescribe $\int_{\gamma_{e}} \omega=\alpha_{e}$

Holomorphic 1-forms

How can we define a holomorphic 1-form ω on Σ ?
Let $\gamma_{e}=C\left(p_{e}^{+}, \varepsilon\right)=-C\left(p_{e}^{-}, \varepsilon\right)$.
We want to prescribe $\int_{\gamma_{e}} \omega=\alpha_{e}$
Necessary condition (Cauchy theorem in $\overline{\mathbb{C}}_{v}$)

$$
\begin{equation*}
\forall v \in V, \sum_{e \in E_{v}^{+}} \alpha_{e}=\sum_{e \in E_{v}^{-}} \alpha_{e} \tag{1}
\end{equation*}
$$

E_{v}^{-}: edges which start at v
E_{v}^{+}: edges which end at v
$E_{v}=E_{v}^{-} \cup E_{v}^{+}$

Finite case : 「 finite graph.

Theorem (Fay)
$\omega \mapsto\left(\int_{\gamma_{e}} \omega\right)_{e \in E}$ is an isomorphism from $\Omega^{1}(\Sigma)$ to the set of vectors $\left(\alpha_{e}\right)_{e \in E} \in \mathbb{C}^{E}$ which satisfy (1).

Finite case : 「 finite graph.

Theorem (Fay)
$\omega \mapsto\left(\int_{\gamma_{e}} \omega\right)_{e \in E}$ is an isomorphism from $\Omega^{1}(\Sigma)$ to the set of vectors $\left(\alpha_{e}\right)_{e \in E} \in \mathbb{C}^{E}$ which satisfy (1).
$\Omega^{1}(\Sigma)$ is the space of regular differentials.

Finite case : 「 finite graph.

Theorem (Fay)
$\omega \mapsto\left(\int_{\gamma_{e}} \omega\right)_{e \in E}$ is an isomorphism from $\Omega^{1}(\Sigma)$ to the set of vectors $\left(\alpha_{e}\right)_{e \in E} \in \mathbb{C}^{E}$ which satisfy (1).
$\Omega^{1}(\Sigma)$ is the space of regular differentials.
Definition (Bers)
A differential ω is regular if it is holomorphic away from the nodes and for each node, it has simple poles at p_{e}^{-}and p_{e}^{+}, with opposite residues.

Infinite case: Г infinite graph.

Infinite case: Г infinite graph.

N admissible norm on \mathbb{C}^{V} (sequences $\left.\left(u_{v}\right)_{v \in V}\right)$

Infinite case : Г infinite graph.

N admissible norm on \mathbb{C}^{V} (sequences $\left.\left(u_{v}\right)_{v \in V}\right)$
Examples of admissible norms

- ℓ^{p} norms, $1 \leq p \leq \infty$
- weighted ℓ^{p} norm with weight w satisfying $\frac{w(v)}{w\left(v^{\prime}\right)} \leq c$

Infinite case : Г infinite graph.

N admissible norm on \mathbb{C}^{V} (sequences $\left.\left(u_{v}\right)_{v \in V}\right)$
Examples of admissible norms

- ℓ^{p} norms, $1 \leq p \leq \infty$
- weighted ℓ^{p} norm with weight w satisfying $\frac{w(v)}{w\left(v^{\prime}\right)} \leq c$

Define norms

$$
\begin{gathered}
\|\alpha\|=N\left(\left(\sum_{e \in E_{v}}\left|\alpha_{e}\right|\right)_{v \in V}\right) \\
\|\omega\|=N\left(\left(\sup _{z \in \Omega_{v}}\left|\frac{\omega(z)}{d z}\right|\right)_{v \in V}\right)
\end{gathered}
$$

Infinite case: Г infinite graph.

N admissible norm on \mathbb{C}^{V} (sequences $\left(u_{v}\right)_{v \in V}$)
Examples of admissible norms

- ℓ^{p} norms, $1 \leq p \leq \infty$
- weighted ℓ^{p} norm with weight w satisfying $\frac{w(v)}{w\left(v^{\prime}\right)} \leq c$

Define norms

$$
\begin{gathered}
\|\alpha\|=N\left(\left(\sum_{e \in E_{v}}\left|\alpha_{e}\right|\right)_{v \in V}\right) \\
\|\omega\|=N\left(\left(\sup _{z \in \Omega_{v}}\left|\frac{\omega(z)}{d z}\right|\right)_{v \in V}\right)
\end{gathered}
$$

Theorem (T)
$\omega \mapsto\left(\int_{\gamma_{e}} \omega\right)_{e \in E}$ is an isomorphism of Banach spaces from the space of regular differentials ω with finite norm to the space of sequences $\left(\alpha_{e}\right)_{e \in E}$ with finite norm and satisfying (1).
3. Balancing and discrete analysis on graphs

Balancing for Riemann example with handles

Configuration : $p_{k, i} \in \mathbb{C}$, for $k \in \mathbb{Z}, 1 \leq i \leq n_{k}$

Balancing for Riemann example with handles

Configuration : $p_{k, i} \in \mathbb{C}$, for $k \in \mathbb{Z}, 1 \leq i \leq n_{k}$
Forces :

$$
F_{k, i}=2 \sum_{\substack{j=1 \\ j \neq i}}^{n_{k}} \frac{c_{k}^{2}}{p_{k, i}-p_{k, j}}-\sum_{j=1}^{n_{k-1}} \frac{c_{k} c_{k-1}}{p_{k, i}-p_{k-1, j}}-\sum_{j=1}^{n_{k+1}} \frac{c_{k} c_{k+1}}{p_{k, i}-p_{k+1, j}}
$$

with $c_{k}=\frac{1}{n_{k}}$.

Balancing for Riemann example with handles

Configuration : $p_{k, i} \in \mathbb{C}$, for $k \in \mathbb{Z}, 1 \leq i \leq n_{k}$
Forces :

$$
F_{k, i}=2 \sum_{\substack{j=1 \\ j \neq i}}^{n_{k}} \frac{c_{k}^{2}}{p_{k, i}-p_{k, j}}-\sum_{j=1}^{n_{k-1}} \frac{c_{k} c_{k-1}}{p_{k, i}-p_{k-1, j}}-\sum_{j=1}^{n_{k+1}} \frac{c_{k} c_{k+1}}{p_{k, i}-p_{k+1, j}}
$$

with $c_{k}=\frac{1}{n_{k}}$.
Definition
The configuration $\left(p_{k, i}\right)_{k \in \mathbb{Z}, 1 \leq i \leq n_{k}}$ is balanced if $F_{k, i}=0$ for all k, i.

Example: Riemann example

$$
n_{k}=1
$$

$$
p_{k}=k
$$

Example: Riemann example

$$
\begin{aligned}
& n_{k}=1 \\
& p_{k}=k \\
& F_{k}=-\frac{1}{p_{k}-p_{k-1}}-\frac{1}{p_{k}-p_{k+1}}=0
\end{aligned}
$$

Example: Riemann example

$$
\begin{aligned}
& n_{k}=1 \\
& p_{k}=k \\
& F_{k}=-\frac{1}{p_{k}-p_{k-1}}-\frac{1}{p_{k}-p_{k+1}}=0 \\
& d F_{k} \cdot h=2 h_{k}-h_{k-1}-h_{k+1}
\end{aligned}
$$

$$
d F=-\Delta \quad(\text { discrete Laplacian on } \mathbb{Z})
$$

Example: Riemann example
$n_{k}=1$
$p_{k}=k$
$F_{k}=-\frac{1}{p_{k}-p_{k-1}}-\frac{1}{p_{k}-p_{k+1}}=0$
$d F_{k} \cdot h=2 h_{k}-h_{k-1}-h_{k+1}$
$d F=-\Delta \quad($ discrete Laplacian on $\mathbb{Z})$
Problem : $\Delta: \ell^{\infty}(\mathbb{Z}) \rightarrow \ell^{\infty}(\mathbb{Z})$ neither injective nor surjective.

$$
F_{k}=G_{k+1}-G_{k} \text { with } G_{k}=\frac{1}{p_{k}-p_{k-1}}
$$

Configuration is balanced if G_{k} is constant.
$F_{k}=G_{k+1}-G_{k}$ with $G_{k}=\frac{1}{p_{k}-p_{k-1}}$
Configuration is balanced if G_{k} is constant.
Change of variable $\ell_{k}=p_{k}-p_{k-1}$
$G_{k}=\frac{1}{\ell_{k}}$
$F_{k}=G_{k+1}-G_{k}$ with $G_{k}=\frac{1}{p_{k}-p_{k-1}}$
Configuration is balanced if G_{k} is constant.
Change of variable $\ell_{k}=p_{k}-p_{k-1}$
$G_{k}=\frac{1}{\ell_{k}}$
$d G_{k} \cdot h=-h_{k}$
$d G=-i d$
$F_{k}=G_{k+1}-G_{k}$ with $G_{k}=\frac{1}{p_{k}-p_{k-1}}$
Configuration is balanced if G_{k} is constant.
Change of variable $\ell_{k}=p_{k}-p_{k-1}$
$G_{k}=\frac{1}{\ell_{k}}$
$d G_{k} \cdot h=-h_{k}$
$d G=-i d$
Conclusion : we can use the ℓ^{∞} norm for this problem.

Balancing for the H surface

$\Gamma=(V, E)$ graph of regular tiling by equilateral triangles

Balancing for the H surface

$\Gamma=(V, E)$ graph of regular tiling by equilateral triangles
Define the unbalancing at vertex v by

$$
F_{v}=\sum_{v^{\prime} \sim v} \frac{v^{\prime}-v}{\left\|v^{\prime}-v\right\|}
$$

Balancing for the H surface

$\Gamma=(V, E)$ graph of regular tiling by equilateral triangles
Define the unbalancing at vertex v by

$$
F_{v}=\sum_{v^{\prime} \sim v} \frac{v^{\prime}-v}{\left\|v^{\prime}-v\right\|}
$$

$F_{V}=0$ for the regular tiling by symmetry.

Balancing for the H surface

$\Gamma=(V, E)$ graph of regular tiling by equilateral triangles
Define the unbalancing at vertex v by

$$
F_{v}=\sum_{v^{\prime} \sim v} \frac{v^{\prime}-v}{\left\|v^{\prime}-v\right\|}
$$

$F_{V}=0$ for the regular tiling by symmetry.
Linearised operator
Perturb Γ by a function $h: V \rightarrow \mathbb{R}^{2}$, namely $v(t)=v+t h_{v}$

$$
L_{v}=\left.\frac{d}{d t} F_{v}(t)\right|_{t=0}
$$

Balancing for the H surface

$\Gamma=(V, E)$ graph of regular tiling by equilateral triangles
Define the unbalancing at vertex v by

$$
F_{v}=\sum_{v^{\prime} \sim v} \frac{v^{\prime}-v}{\left\|v^{\prime}-v\right\|}
$$

$F_{V}=0$ for the regular tiling by symmetry.
Linearised operator
Perturb Γ by a function $h: V \rightarrow \mathbb{R}^{2}$, namely $v(t)=v+t h_{v}$

$$
L_{v}=\left.\frac{d}{d t} F_{v}(t)\right|_{t=0}
$$

Question : find norms so that L is an invertible operator.

Discrete Laplacian on \mathbb{Z}^{d}

Discrete Laplacian on \mathbb{Z}^{d}

Consider a function $u: \mathbb{Z}^{d} \rightarrow \mathbb{R}$

- $D_{i} u(x)=u\left(x+e_{i}\right)-u(x)$ denotes its discrete derivative in direction e_{i}
- D denotes any 1st order discrete derivative
- D^{k} denotes any k-th order discrete derivative
- $\Delta u: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ denotes its discrete Laplacian

$$
\Delta u(x)=\sum_{i=1}^{d} u\left(x+e_{i}\right)+u\left(x-e_{i}\right)-2 u(x)
$$

Discrete weighted Sobolev spaces

Consider the weight $w(x)=1+|x|$.

$$
\|u\|_{\ell_{\beta}^{p}}=\left(\sum_{x \in \mathbb{Z}^{d}}|u(x)|^{p} w(x)^{\beta p}\right)^{1 / p}
$$

Discrete weighted Sobolev spaces

Consider the weight $w(x)=1+|x|$.

$$
\begin{gathered}
\|u\|_{\ell_{\beta}^{p}}=\left(\sum_{x \in \mathbb{Z}^{d}}|u(x)|^{p} w(x)^{\beta p}\right)^{1 / p} \\
\|u\|_{W_{\beta}^{k, p}}=\sum_{j=0}^{k}\left\|D^{j} u\right\|_{\ell_{\beta+j}^{p}}
\end{gathered}
$$

Discrete weighted Sobolev spaces

Consider the weight $w(x)=1+|x|$.

$$
\begin{gathered}
\|u\|_{\ell_{\beta}^{p}}=\left(\sum_{x \in \mathbb{Z}^{d}}|u(x)|^{p} w(x)^{\beta p}\right)^{1 / p} \\
\|u\|_{W_{\beta}^{k, p}}=\sum_{j=0}^{k}\left\|D^{j} u\right\|_{\ell_{\beta+j}^{p}}
\end{gathered}
$$

Theorem (T)
If $d \geq 3,1<p<\infty$ and $2-\frac{d}{p}<\beta<d-\frac{d}{p}$, then

$$
\Delta: W_{\beta-2}^{2, p}\left(\mathbb{Z}^{d}\right) \rightarrow \ell_{\beta}^{p}\left(\mathbb{Z}^{d}\right)
$$

is a Banach isomorphism

Discrete weighted Sobolev spaces

Consider the weight $w(x)=1+|x|$.

$$
\begin{gathered}
\|u\|_{\ell_{\beta}^{p}}=\left(\sum_{x \in \mathbb{Z}^{d}}|u(x)|^{p} w(x)^{\beta p}\right)^{1 / p} \\
\|u\|_{W_{\beta}^{k, p}}=\sum_{j=0}^{k}\left\|D^{j} u\right\|_{\ell_{\beta+j}^{p}}
\end{gathered}
$$

Theorem (T)
If $d \geq 3,1<p<\infty$ and $2-\frac{d}{p}<\beta<d-\frac{d}{p}$, then

$$
\Delta: W_{\beta-2}^{2, p}\left(\mathbb{Z}^{d}\right) \rightarrow \ell_{\beta}^{p}\left(\mathbb{Z}^{d}\right)
$$

is a Banach isomorphism
Discrete version of same result for \mathbb{R}^{d} (Bartnik...)

Back to our problem

Back to our problem

「 regular tiling by equilateral triangles.

Back to our problem

「 regular tiling by equilateral triangles.
Γ is a lattice, so one can

- define discrete derivatives of any order
- define weighted discrete Sobolev spaces of any order
- use Fourier transform to invert the linearized operator L.

Back to our problem

「 regular tiling by equilateral triangles.
Γ is a lattice, so one can

- define discrete derivatives of any order
- define weighted discrete Sobolev spaces of any order
- use Fourier transform to invert the linearized operator L.

Conclusion: we can use weighted discrete Sobolev spaces for this problem.

