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1. Breaking periodicity of periodic minimal surfaces



Example 1 : Adding handles to Riemann examples
(w/ F. Morabito)

Riemann minimal example
(picture by Matthias Weber)
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Riemann example with handles (F. Wei 90’s)
(picture by Matthias Weber)





· · · 1, 2, 1, 1, 3, 1, · · ·



nk = number of necks at level k, k ∈ Z.

Claim
It works provided

I (nk)k∈Z is bounded

I ∀k ∈ Z, (nk − 1)(nk+1 − 1) = 0



Example 2 : flips on Schwartz H surface

Schwartz triply periodic H-surface
(picture by Matthias Weber)
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(picture by Matthias Weber)



Construction of the H surface by desingularisation
(R. Younes (2009) for the periodic case)



Breaking horizontal periodicity

Claim
I can flip at a finite number of vertices.
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2. Non-compact Riemann surfaces



Weierstrass representation

ψ(z) = Re

∫ z

z0

(φ1, φ2, φ3)

φ1, φ2, φ3 : holomorphic 1-forms on a Riemann surface Σ

φ2
1 + φ2

2 + φ2
3 = 0

|φ1|2 + |φ2|2 + |φ3|2 > 0

Re
∫
γ φi = 0 ∀γ ∈ H1(Σ)
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Conformal model for Riemann with handles



Conformal model for Riemann with handles



Conformal model for Schwartz H-surface
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Conformal model for Schwartz H-surface



Opening nodes

Γ = (V ,E ) oriented graph (possibly infinite)
For each v ∈ V , consider a Riemann sphere Cv .

For each e ∈ E from vertex v to vertex v ′

pick two points p−e ∈ Cv and p+
e ∈ Cv ′

choose a small complex number |te |.

Remove the disks |z − p−e | <
√
|te | and |z − p+

e | <
√
|te |.

Identify the points z and z ′ on the boundary circles such that

(z − p−e )(z ′ − p+
e ) = te

If te 6= 0 this creates a neck connecting Cv and Cv ′ .
If te = 0 this identifies p−e and p+

e and creates a node.
This defines a Riemann surface Σ possibly with nodes.
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Holomorphic 1-forms

How can we define a holomorphic 1-form ω on Σ ?

Let γe = C (p+
e , ε) = −C (p−e , ε).

We want to prescribe
∫
γe
ω = αe

Necessary condition (Cauchy theorem in Cv )

∀v ∈ V ,
∑

e∈E+
v

αe =
∑

e∈E−
v

αe (1)

E−v : edges which start at v
E+

v : edges which end at v
Ev = E−v ∪ E+

v
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Finite case : Γ finite graph.

Theorem (Fay)

ω 7→ (
∫
γe
ω)e∈E is an isomorphism from Ω1(Σ) to the set of

vectors (αe)e∈E ∈ CE which satisfy (1).

Ω1(Σ) is the space of regular differentials.

Definition (Bers)

A differential ω is regular if it is holomorphic away from the nodes
and for each node, it has simple poles at p−e and p+

e , with opposite
residues.
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Infinite case : Γ infinite graph.

N admissible norm on CV (sequences (uv )v∈V )
Examples of admissible norms

I `p norms, 1 ≤ p ≤ ∞

I weighted `p norm with weight w satisfying
w(v)

w(v ′)
≤ c

Define norms

||α|| = N

(
∑
e∈Ev

|αe |)v∈V


||ω|| = N

(
( sup
z∈Ωv

∣∣∣∣ω(z)

dz

∣∣∣∣)v∈V

)

Theorem (T)

ω 7→ (
∫
γe
ω)e∈E is an isomorphism of Banach spaces from the

space of regular differentials ω with finite norm to the space of
sequences (αe)e∈E with finite norm and satisfying (1).
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3. Balancing and discrete analysis on graphs



Balancing for Riemann example with handles

Configuration : pk,i ∈ C, for k ∈ Z ,1 ≤ i ≤ nk

Forces :

Fk,i = 2

nk∑
j=1
j 6=i

c2
k

pk,i − pk,j
−

nk−1∑
j=1

ckck−1

pk,i − pk−1,j
−

nk+1∑
j=1

ckck+1

pk,i − pk+1,j

with ck = 1
nk

.

Definition
The configuration (pk,i )k∈Z,1≤i≤nk

is balanced if Fk,i = 0 for all
k, i .
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Example : Riemann example

nk = 1

pk = k

Fk = − 1

pk − pk−1
− 1

pk − pk+1
= 0

dFk · h = 2hk − hk−1 − hk+1

dF = −∆ (discrete Laplacian on Z)

Problem : ∆ : `∞(Z) → `∞(Z) neither injective nor surjective.
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Fk = Gk+1 − Gk with Gk =
1

pk − pk−1

Configuration is balanced if Gk is constant.

Change of variable `k = pk − pk−1

Gk =
1

`k

dGk · h = −hk

dG = −id

Conclusion : we can use the `∞ norm for this problem.
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Balancing for the H surface

Γ = (V ,E ) graph of regular tiling by equilateral triangles

Define the unbalancing at vertex v by

Fv =
∑
v ′∼v

v ′ − v

||v ′ − v ||

Fv = 0 for the regular tiling by symmetry.

Linearised operator
Perturb Γ by a function h : V → R2, namely v(t) = v + thv

Lv =
d

dt
Fv (t)|t=0

Question : find norms so that L is an invertible operator.
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Discrete Laplacian on Zd

Consider a function u : Zd → R
I Diu(x) = u(x + ei )− u(x) denotes its discrete derivative in

direction ei

I D denotes any 1st order discrete derivative

I Dk denotes any k-th order discrete derivative

I ∆u : Zd → R denotes its discrete Laplacian

∆u(x) =
d∑

i=1

u(x + ei ) + u(x − ei )− 2u(x)
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Discrete weighted Sobolev spaces
Consider the weight w(x) = 1 + |x |.

||u||`p
β

=

 ∑
x∈Zd

|u(x)|pw(x)βp

1/p

||u||
W k,p

β
=

k∑
j=0

||D ju||`p
β+j

Theorem (T)

If d ≥ 3, 1 < p <∞ and 2− d
p < β < d − d

p , then

∆ : W 2,p
β−2(Z

d) → `pβ(Zd)

is a Banach isomorphism

Discrete version of same result for Rd (Bartnik...)
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Back to our problem

Γ regular tiling by equilateral triangles.

Γ is a lattice, so one can

I define discrete derivatives of any order

I define weighted discrete Sobolev spaces of any order

I use Fourier transform to invert the linearized operator L.

Conclusion : we can use weighted discrete Sobolev spaces for this
problem.
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