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The ambient space M2(c) × R

The ambient space M2(c)× R

B. Nelli, H. Rosenberg, Minimal surfaces in H2 × R, Bull. Braz.
Math. Soc. 33 (2) (2002), 263–292.
H. Rosenberg, Minimal surfaces in M2 × R, Illinois J. Math. 46

(4) (2002), 1177–1195.

Space forms with constant sectional curvature c :

c = 1 ⇒ M2(c) = S2 ⇒ the ambient space S2 × R
c = −1 ⇒ M2(c) = H2 ⇒ the ambient space H2 × R
c = 0 ⇒ M2(c) = R2 ⇒ the ambient space R2 × R = R3
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The ambient space M2(c) × R Constant Angle Surfaces in M2(c) × R

Problem 1: Constant Angle Surfaces

A problem studied until now consists of the classification and
characterization of Constant Angle Surfaces (CAS) in different ambient
spaces. A CAS is an orientable surface whose unit normal makes a
constant angle, denoted by θ, with a fixed direction.
The complete classification:

F. Dillen, J. Fastenakels, J. Van der Veken, L. Vrancken, Constant
Angle Surfaces in S2 × R, Monaths. Math. 152 (2) (2007), 89–96.

F. Dillen, M.I.M., Constant Angle Surfaces in H2 × R, Bull. Braz.
Math. Soc. 40 (1) (2009), 85–97.
M.I.M., A.I. Nistor, A new approach on constant angle surfaces in E3,
Turk. J. Math. 33 (2) (2009), 169–178.
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The ambient space M2(c) × R Constant Angle Surfaces in M2(c) × R

Problem 2: Canonical directions

When the ambient is of the form M2 × R, a favored direction is R. It is
known that for a constant angle surface in E3, S2 × R or in H2 × R, the
projection of ∂

∂t (where t is the global parameter on R) onto the tangent
plane of the immersed surface, denoted by T , is a principal direction with
the corresponding principal curvature identically zero.

Question

Study surfaces in M2×R such that T remains a principal direction but with
the corresponding principal curvature different from 0.
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Surfaces in S2 × R

First answer in S2 × R

F. Dillen, J. Fastenakels, J. Van der Veken, Surfaces in S2 × R
with a canonical principal direction, Ann. Glob. Anal. Geom. 35
(4) (2009), 381–396.
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Surfaces in S2 × R

First answer in S2 × R

The characterization of surfaces with a principal direction:

Theorem (Dillen, Fastenakels, Van der Veken, 2009)

Let M be an immersed surface in S2 × R and p a point of M for which
θ(p) 6= {0, π2 }. Then T is a principal direction if and only if M considered
as a surface in E4 is normally flat.
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Surfaces in S2 × R

First answer in S2 × R
Proposition (classification result) - Dillen, Fastenakels, Van der Veken, 2009

A surface M immersed in S2 × R is a surface for which T is a principal
direction if and only if the immersion F is (up to isometries of S2 × R) in
the neighborhood of a point p where θ(p) /∈ {0, π2 } given by

F : M → S2 × R : (x , y) 7→ (F1(x , y), F2(x , y), F3(x , y), F4(x))

with Fj(x , y) =

y∫
y0

αj(v) sin(ψ(x) + φ(v))dv

for j = 1, 2, 3 where φ′(x) = cos(θ(x)), F ′
4(x) = sin(θ(x)), (α1, α2, α3) is a

curve in S2 and F 2
1 + F 2

2 + F 2
3 = 1. Moreover, α1, α2, α3,ψ and φ are related by

α′
j(y) = − cos(ψ(x) + φ(y))

y∫
y0

αj(v) cos(ψ(x) + φ(v))dv

− sin(ψ(x) + φ(y))

y∫
y0

αj(v) sin(ψ(x) + φ(v))dv .
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Surfaces in H2 × R

General things in H2 × R

Notations:
• M̃ = H2 × R the Riemannian product of

(
H2(−1), gH

)
and R

• g̃ = gH + dt2 the product metric, t the (global) coordinate on R
• ∇̃ the Levi Civita connection of g̃
• ∂t = ∂

∂t the unit vector field tangent to the R-direction

• R̃ either the curvature tensor R̃(X ,Y ) = [∇̃X , ∇̃Y ]− ∇̃[X ,Y ], or the

Riemann-Christoffel tensor on M̃ defined by eR(W ,Z ,X ,Y ) = eg(W , eR(X ,Y )Z).
• F : M −→ M̃ - isometric immersion (dim M = 2)

• ξ - a unit normal vector to M, A - its shape operator

• g = g̃ |M - metric on M, ∇ - corresponding Levi Civita connection

(G) ∇̃XY = ∇XY + h(X ,Y ), h the second fundamental form of M
(W) ∇̃X ξ = −AξX +∇⊥

X ξ
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Surfaces in H2 × R

Some useful formulas

Since ∂t := ∂
∂t is of unit length, we decompose it as ∂t = T + cos θ ξ

where • T is the projection on T (M) with |T | = sin θ and
• θ is the angle function : cos θ = g̃(∂t , ξ).

(E.G.)
R(X ,Y ,Z ,W ) = g(AX ,W )g(AY ,Z )− g(AX ,Z )g(AY ,W )−

g(X ,W )g(Y ,Z ) + g(X ,Z )g(Y ,W )+
g(X ,W )g(Y ,T )g(Z ,T ) + g(Y ,Z )g(X ,T )g(W ,T )−
g(X ,Z )g(Y ,T )g(W ,T )− g(Y ,W )g(X ,T )g(Z ,T )

(E.C.) (∇XA)Y − (∇Y A) X = cos θ (g(X ,T )Y − g(Y ,T )X )

Computing the Gaussian curvature K , from the equation of Gauss it
follows

K = det A− cos2 θ.

Knowing that any vector field X ∈ T (M) can be decomposed as
X = XH + g(X ,T )∂t we get
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Surfaces in H2 × R

Proposition (Dillen, M., 2009)

Let X be an arbitrary tangent vector to M. Then we have

∇XT = cos θAX (1)

X (cos θ) = −g(AX ,T ). (2)

If θ = const., then (2) yields g(AT ,X ) = 0, ∀ X ∈ T (M). Hence:
• if T = 0 on M, then ∂t is always normal, so M ⊆ H2 × {t0}, t0 ∈ R.
• if T 6= 0 then T is a principal direction with principal curvature 0.

Question

Study surfaces in H2 × R such that T remains a principal direction
but with the corresponding principal curvature different from 0.
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Surfaces in H2 × R

First answers

In the following we suppose that θ is different from 0 and π
2 .

Proposition (Dillen, M., Nistor, to appear Taiwan. J. Math.)

If θ 6= 0, π2 , then we can choose local coordinates (x , y) on the surface M

isometrically immersed in M̃ with ∂x in the direction of T s.t.

g(x , y) =
1

sin2 θ
dx2 + β2(x , y)dy2 (3)

A =

(
θx sin θ θy sin θ

θy
sin θβ2

sin2 θβx

cos θβ

)
(4)

and the functions θ and β are related by the PDE

sin2 θ

cos θ

βxx

β
+

sin θθx
cos2 θ

βx

β
+

θy
sin θ

βy

β3
+

(
2
cos θθ2

y

sin2 θ
− θyy

sin θ

)
1

β2
− cos θ = 0. (5)
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Surfaces in H2 × R

An analogue result formulated for surfaces in H2 ×R having T as principal
direction, is the following

Proposition (Dillen, M., Nistor, 2009)

Let M be isometrically immersed in H2 × R with T a principal direction.
Then, we can choose the local coordinates (x , y) such that ∂x is in the
direction of T ,

g = dx2 + β2(x , y)dy2 (6)

A =

(
θx 0

0 tan θ βx

β

)
. (7)

Moreover, the functions θ and β are related by the PDE

βxx + tan θθxβx − β cos2 θ = 0 (8)

and θy = 0.
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Surfaces in H2 × R

Canonical coordinates

Remark

For every two functions θ and β defined on a smooth simply connected
surface M such that θy = 0 and βxx + tan θθxβx − β cos2 θ = 0 for certain
coordinates (x , y), we can construct an isometric immersion F : M →
H2×R with the shape operator (7) and such that it has a canonical principal
direction.

Remark

Let M be an isometrically immersed surface in H2 × R such that T is a
principal direction. Coordinates (x , y) on M such that ∂x is collinear with
T and the metric g has the form g = dx2 + β2(x , y)dy2 will be called
canonical coordinates. Of course, they are not unique. More precisely, if
(x , y) and (x , y) are both canonical coordinates, then they are related by
x = ± x + c and y = y(y), where c is a real constant.
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Surfaces in H2 × R Minkowski model of H2

Minkowski model of the hyperbolic plane H2

Models for the hyperbolic plane:

1 the Klein model
2 the Poincaré disk
3 the upper half plane H+

4 Minkowski model H

H2 = {(x1, x2, x3) ∈ R3
1 | x2

1 + x2
2 − x2

3 = −1, x3 > 0}

with Lorentzian metric

〈 , 〉 = dx2
1 + dx2

2 − dx2
3

having constant Gaussian curvature −1.
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Surfaces in H2 × R Minkowski model of H2

Characterization theorem

In order to study under which conditions T is a canonical principal
direction, we regard the surface M as a surface immersed in R3

1 × R (also
denoted R4

1) having codimension 2.
The metric on the ambient space is given by g̃ = dx2

1 + dx2
2 − dx2

3 + dt2.
M is given by the immersion F : M → R3

1 × R, F = (F1, F2, F3, F4).

Theorem (Dillen, M., Nistor, 2009)

Let M be a surface isometrically immersed in H2 × R. T is a principal
direction if and only if M is normally flat in R4

1.

Proof.
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Surfaces in H2 × R Minkowski model of H2

Classification theorem - version 1

Theorem (Dillen, M., Nistor, 2009)
If F : M → H2 × R is an isometric immersion with θ 6= 0, π2 , then T is a
principal direction if and only if F is given, up to isometries of H2 × R, by

F (x , y) = (F1(x , y), F2(x , y), F3(x , y), F4(x))

with Fj(x , y) = Aj(y) sinhφ(x) + Bj(y) coshφ(x), j = 1, 3 and

F4(x) =

∫ x

0
sin θ(τ)dτ , where φ′(x) = cos θ. The six functions Aj and Bj

are found in one of the following cases
Case 1.

Aj (y) =

Z y

0
Hj (τ) coshψ(τ)dτ + c1j

Bj (y) =

Z y

0
Hj (τ) sinhψ(τ)dτ + c2j

H′
j (y) = Bj (y) sinhψ(y)− Aj (y) coshψ(y)
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Surfaces in H2 × R Minkowski model of H2

Case 2.

Aj (y) =

Z y

0
Hj (τ) sinhψ(τ)dτ + c1j

Bj (y) =

Z y

0
Hj (τ) coshψ(τ)dτ + c2j

H′
j (y) = −Aj (y) sinhψ(y) + Bj (y) coshψ(y)

Case 3.

Aj (y) = ±
Z y

0
Hj (τ)dτ + c1j

Bj (y) =

Z y

0
Hj (τ)dτ + c2j

H′
j (y) = c2j ∓ c1j

where H = (H1,H2,H3) is a curve on the de Sitter space S2
1, ψ is a

smooth function on M and c1 = (c11, c12, c13), c2 = (c21, c22, c23) are
constant vectors.
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Surfaces in H2 × R Minkowski model of H2

Clasiffication theorem - version 2

Theorem (Dillen, M., Nistor, 2009)

If F : M → H2 × R is an isometric immersion with angle function
θ 6= 0, π2 , then T is a principal direction if and only if F is given locally, up
to isometries of the ambient space by

F (x , y) = (A(y) sinhφ(x) + B(y) coshφ(x), χ(x))

where A(y) is a regular curve in S2
1, B(y) is a regular curve in H2

1, such
that 〈A,B〉 = 0, A′||B ′ and where (φ(x), χ(x)) is a regular curve in R2.
The angle function θ of M depends only on x and coincides with the angle
function of the curve (φ, χ). In particular we can arc length reparametrize
(φ, χ); then (x , y) are canonical coordinates and θ′(x) = κ(x), the
curvature of (φ, χ).
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Surfaces in H2 × R Minkowski model of H2

Clasiffication theorem - version 3

Theorem (Dillen, M., Nistor, 2009)

Let F : M → H2 × R be an isometrically immersed surface M in H2 × R,
with θ 6= 0, π2 . Then M has T as a principal direction if and only if F is
given, up to rigid motions of the ambient space, either by

F (x , y) =
(
f (y) coshφ(x) + Nf (y) sinhφ(x), χ(x)

)
(9)

where f (y) is a regular curve in H2
1 and Nf (y) = f (y)�f ′(y)√

〈f ′(y),f ′(y)〉
represents

the normal of f . Moreover, (φ, χ) is a regular curve in R2 and the angle
function θ of this curve is the same as the angle function of the surface
parameterized by F .
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Surfaces in H2 × R Minkowski model of H2

Examples

Now, we would like to give some examples of surfaces that can be
retrieved from the classification theorem. Let us consider first ψ(y) = 0
for all y in Case 1, getting

Aj(y) =

∫ y

0
Hj(τ)dτ + c1j , Bj(y) = c2j , H ′

j (y) = −
∫ y

0
Hj(τ)dτ − c1j .

The parametrization F in this case is given by

Example (rotational surface)

F (x , y) =

(
sin y sinh

(∫ x

0
cos θ(τ)dτ

)
, cos y sinh

(∫ x

0
cos θ(τ)dτ

)
,

cosh
(∫ x

0
cos θ(τ)dτ

)
,

∫ x

0
sin θ(τ)dτ

)
.
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Surfaces in H2 × R Minkowski model of H2

Examples

Concerning Case 3 in classification theorem, let us choose for example
c1 = (0, 1, 0), c2 = (0, 0, 1) and c3 = (1, 0, 0). The parametrization in this
case is given by

Example

F (x , y) =
(
A(y) sinh

(∫ x

0
cos θ(τ)dτ

)
+

B(y) cosh
(∫ x

0
cos θ(τ)dτ

)
,

∫ x

0
sin θ(τ)dτ

)
where A(y) =

(
y , 1− y2

2
,

y2

2

)
and B(y) =

(
y , −y2

2
, 1 +

y2

2

)
.
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Surfaces in H2 × R Minkowski model of H2

Examples

If θ(x) = x2, the surface is

Example

F (x , y) =

(
A(y) sinh

(√
π
2 C

(√
2
π x
))

+ B(y) cosh
(√

π
2 C

(√
2
π x
))
,√

π
2 S
(√

2
π x
))

where C and S are the traditional notations for the Fresnel integrals

C (z) =

∫ z

0
cos

(
πt2

2

)
dt respectively S(z) =

∫ z

0
sin

(
πt2

2

)
dt. The

curve involved in the classification theorem is given in this case by
(φ(x), χ(x)) = (C (x), S(x)), known as Cornu spiral.

Marian Ioan Munteanu (UAIC) Surfaces in homogeneous 3-spaces Granada, Nov. 24, 2010 21 / 46



Surfaces in H2 × R Minimality and Flatness

Minimality

Theorem (Dillen, M., Nistor, 2009)

Let M be a surface isometrically immersed in H2 ×R, with θ 6= 0, π2 . Then
M is minimal with T as principal direction if and only if the immersion is,
up to isometries of the ambient space, locally given by
F : M −→ H2 × R

F (x , y) =

0B@ b(x)q
1 + c2

1 − c2
2

,

p
a2(x) + 1q

1 + c2
1 − c2

2

sinh y ,

p
a2(x) + 1q

1 + c2
1 − c2

2

cosh y , χ(x)

1CA (10.a)

F (x , y) =

0B@ p
a2(x) + 1q

c2
2 − c2

1 − 1
cos y ,

p
a2(x) + 1q

c2
2 − c2

1 − 1
sin y ,

b(x)q
c2
2 − c2

1 − 1
, χ(x)

1CA (10.b)

F (x , y) =

�
b(x) y ,

b(x)

2
(1− y2)−

1

2b(x)
,

b(x)

2
(1 + y2) +

1

2b(x)
, χ(x)

�
(10.c)
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Surfaces in H2 × R Minimality and Flatness

Minimality

Theorem (cont.)

Let M be a surface isometrically immersed in H2 ×R, with θ 6= 0, π2 . Then
M is minimal with T as principal direction if and only if the immersion is,
up to isometries of the ambient space, locally given by
where

χ(x) =

x∫
0

1√
a2(τ) + 1

dτ

with a(x) = c1 cosh x + c2 sinh x, b(x) = a′(x) and c1, c2 ∈ R.
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Surfaces in H2 × R Minimality and Flatness

Minimality in short

Remark

Since
F (x , y) = (A(y) sinhφ(x) + B(y) coshφ(x), χ(x)) ,

in general, under minimality assumption the curve (φ(x), χ(x)) is
determined up to c1, c2 ∈ R by θ = arctan

(
1

c1 cosh x+c2 sinh x

)
, since

φ′(x) = cos θ and χ′(x) = sin θ. Moreover, in each case of the previ-
ous theorem the curves A and B are given by

A(y) = (1, 0, 0) B(y) = (0, sinh y , cosh y)

A(y) = (cos y , sin y , 0) B(y) = (0, 0, 1)

A(y) =

(
y , 1− y2

2
,

y2

2

)
B(y) =

(
y , −y2

2
, 1 +

y2

2

)
.
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Surfaces in H2 × R Minimality and Flatness

Flatness

Theorem (Dillen, M., Nistor, 2009)

Let M be a surface isometrically immersed in H2 ×R, with θ 6= 0, π2 . Then
M is flat with T as principal direction if and only if the immersion is, up
to isometries of the ambient space, locally given by
F : M −→ H2 × R

F (x , y) =

 
x

√
c + 1

cos y ,
x

√
c + 1

sin y ,

√
x2 + c + 1
√

c + 1
, χ(x)

!

F (x , y) =

 √
x2 + c + 1
√
−c − 1

,
x

√
−c − 1

sinh y ,
x

√
−c − 1

cosh y , χ(x)

!

F (x , y) =

�
xy ,

x

2
(1− y2)−

1

2x
,

x

2
(1 + y2) +

1

2x
, χ(x)

�

where

χ(x) =

x∫ √
τ2 + c√

τ2 + c + 1
dτ, c ∈ R.
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Surfaces in H2 × R Minimality and Flatness

The upper half plane model of H2

Models for the hyperbolic plane:

1 the Klein model
2 the Poincaré disk
3 the upper half plane H+

4 Minkowski model H

H+ = {(X ,Y ) ∈ R2 | Y > 0}

with metric

〈 , 〉 =
dX 2 + dY 2

Y 2

having constant Gaussian curvature −1.
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Surfaces in H2 × R Minimality and Flatness

The upper half plane model of H2

Method 1: Use Cayley transformations from H to H+

x1 =
X

Y
X =

x1

x3 − x2

x2 =
X 2 + Y 2 − 1

2Y
Y =

1

x3 − x2
.

x3 =
X 2 + Y 2 + 1

2Y
.

Method 2: Analytical approach - solving the problem in H+ and then
showing the consistence of results with H:

A.I. Nistor, On some special surfaces in H+ × R, preprint 2010.
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Surfaces in Euclidean space E3

Surfaces in E3 - minimality

Proposition (M., Nistor 2009)

Let M be a minimal isometric immersion in E3. We can choose (x , y)-local
coordinates on M such that ∂x is in direction of T , the metric of the surface
can be expressed as

g =
1

sin2 θ
(dx2 + dy2) (12)

and the shape operator A in the basis {∂x , ∂y} has the following expression

A = sin θ

(
θx θy
θy −θx

)
. (13)

Moreover, the function log

(
tan

θ

2

)
is harmonic.
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Surfaces in Euclidean space E3

Example

log

(
tan

θ

2

)
is harmonic ⇐⇒ ∆ log(tan θ

2) = 0 ⇐⇒

cos θ(θ2
x + θ2

y )− sin θ(θxx + θyy ) = 0.

Under assumption θx = cθy one gets that

θ = 2arctan(ed(cx+y)+d0)

gives a minimal surface in E3.
Moreover, for any harmonic function f on M,

θ = 2arctan(ef )

gives a minimal surface in E3.
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Surfaces in Euclidean space E3

Canonical coordinates in E3

The characterization theorem:

Theorem (M., Nistor, 2009)

Let M be an isometrically immersed surface in E3. Let (x , y) be
orthogonal coordinates on M such that T is collinear to ∂x . Then, T is a
principal direction on M everywhere if and only if θy = 0.
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Surfaces in Euclidean space E3

Canonical coordinates in E3

The classification theorem:

Theorem (M., Nistor, 2009)

A surface M isometrically immersed in E3 with T a canonical principal
direction is given (up to isometries of E3) by one of the following cases:

Case 1.

r : M → E3, r(x , y) =

(
φ(x)(cos y , sin y) + γ(y),

∫ x

0

sin θ(τ)dτ

)
where γ(y) =

(
−
∫ y

0

ψ(τ) sin τdτ,

∫ y

0

ψ(τ) cos τdτ

)

Case 2. (Cylinders)

r : M → E3, r(x , y) =

(
φ(x) cos y0, φ(x) sin y0,

∫ x

0

sin θ(τ)dτ

)
+ yγ0

where γ0 = (− sin y0, cos y0, 0) , y0 ∈ R, φ′(x) = cos θ.
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Surfaces in Euclidean space E3

Canonical coordinates in E3 - minimality

Theorem (M., Nistor, 2009)

Let M be a surface isometrically immersed in E3. M is a minimal surface
with T a principal direction if and only if the immersion is, up to
isometries of the ambient space, given by

r : M → E3

r(x , y) =
(√

x2 + c2(cos y , sin y), ln
(
x +

√
x2 + c2

))
, c ∈ R.

Remark

Moreover, we notice that this surface can be obtained rotating the catenary
around the Oz-axis. Hence, we obtain that the only minimal surface in the
Euclidean space with a canonical principal direction is the catenoid.
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Surfaces in Euclidean space E3

Canonical coordinates in E3 - flatness

Theorem (M., Nistor, 2009)

Let M be a surface isometrically immersed in E3. M is a flat surface with
T a principal direction if and only if the immersion is, up to isometries of
the ambient space, given by

r : M → E3, r(x , y) =

(
φ(x) cos y0, φ(x) sin y0,

∫ x

0
sin θ(τ)dτ

)
+yγ0

where γ0 =
(
− sin y0, cos y0, 0

)
, y0 ∈ R.

Here φ(x) represents a primitive of cos θ.

Notice that this is Case 2. (Cylinders) from the classification theorem.

Go to Sol
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Some remarks

Sketch of proof

Proof.

With the previous considerations, for any X ∈ T (M) we compute

D⊥
X ξ̃ = − cos θ 〈X ,T 〉 ξ which implies D⊥

X ξ = cos θ 〈X ,T 〉 ξ̃.

Since Proposition 7 holds, the metric is given by (3) and using the
previous expressions one has

R⊥(∂x , ∂y )ξ = sin θθy ξ̃ and R⊥(∂x , ∂y )ξ̃ = − sin θθyξ.

Taking into account that ξ and ξ̃ are unitary and sin θ cannot vanish, we
get from the expressions above that M is normally flat if and only if
θy = 0. On the other hand, T is a canonical principal direction if and only
if θy = 0. This follows from expression (4) of the Weingarten operator A.
Hence we get the conclusion.

back
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C.A.S. in Sol

The geometry of Sol3

Sol3: simply connected homogeneous 3-dimensional manifold whose
isometry group has dimension 3.

It is one of the eight models of geometry of Thurston.

As Riemannian manifold : R3 equipped with the metric

g̃ = e2zdx2 + e−2zdy2 + dz2

The group operation

(x , y , z) ∗ (x ′, y ′, z ′) = (x + e−zx ′, y + ezy ′, z + z ′)
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C.A.S. in Sol

The geometry of Sol3

The following transformations

(x , y , z) 7→ (y ,−x ,−z) and (x , y , z) 7→ (−x , y , z)

span a group of isometries of (Sol3, g).

This group is isomorphic to the dihedral group (with 8 elements) D4.
It is, in fact, the complete group of isotropy:

(x , y , x) 7−→ (±e−cx + a,±ecy + b, z + c)

(x , y , z) 7−→ (±e−cy + a,±ecx + b, z + c).

M. Troyanov, L’horizon de SOL, Exposition. Math. 16 (1998),
441–479.
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C.A.S. in Sol

The geometry of Sol3

With respect to the metric g̃ an orthonormal basis of left-invariant vector
fields is given by

e1 = e−z ∂

∂x
, e2 = ez ∂

∂y
, e3 =

∂

∂z
.

The Levi Civita connection ∇̃ of Sol3 with respect to {e1, e2, e3} is given
by

∇̃e1e1 = −e3 ∇̃e1e2 = 0 ∇̃e1e3 = e1

∇̃e2e1 = 0 ∇̃e2e2 = e3 ∇̃e2e3 = −e2

∇̃e3e1 = 0 ∇̃e3e2 = 0 ∇̃e3e3 = 0.
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C.A.S. in Sol

Motivation

Constant angle surfaces were recently studied in product spaces
Qε × R. The angle is considered between the normal of the surface
and R.

It is known, for Sol3, that H1 = {dy ≡ 0} and H2 = {dx ≡ 0} are totally
geodesic foliations whose leaves are the hyperbolic plane.

On the other hand, for Qε × R, the foliation {dt ≡ 0} is totally geodesic
too (t is the global parameter on R). Trivial examples for constant angle
surfaces in Qε × R are furnished by totally geodesic surfaces Qε × {t0}.
Let us consider H2. It follows that the tangent plane to H2 (the leaf at
each x = x0) is spanned by ∂

∂y and ∂
∂z , while the unit normal is e1. So, this

surface corresponds to Qε × {t0}, case in which the constant angle is 0.

An oriented surface M, isometrically immersed in Sol3, is called constant
angle surface if the angle between its normal and e1 is constant in each
point of the surface M.
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An oriented surface M, isometrically immersed in Sol3, is called
constant angle surface if the angle between its normal and e1 is
constant in each point of the surface M.
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C.A.S. in Sol

First computations

López, M. - 2010: arXiv:1004.3889v1 [math.DG]

Denote by θ ∈ [0, π) the angle between the unit normal N and e1. Hence

g̃(N, e1) = cos θ.

Let T be the projection of e1 on the tangent plane:

e1 = T + cos θN.

Case θ = 0. Then N = e1 and hence the surface M is isometric to the
hyperbolic plane H2 = {dx ≡ 0}.
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C.A.S. in Sol

First computations

From now on θ 6= 0

AT = −g̃(N, e3)T , hence T is a principal direction on the surface

Let E1 = 1
sin θ T . Consider E2 tangent to M, orthogonal to E1 and such

that the basis {e1, e2, e3} and {E1,E2,N} have the same orientation.

It follows that
e1 = sin θ E1 + cos θ N
e2 = cosα cos θ E1 + sinα E2 − cosα sin θ N
e3 = − sinα cos θ E1 + cosα E2 + sinα sin θ N
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C.A.S. in Sol

First computations

Case θ = π
2 . In this case e1 is tangent to M and T = E1.

h(E1,E1) = − sinα N, h(E1,E2) = 0, h(E2,E2) = σ N

E1(α) = 0 and E2(α) = sinα− σ.

Remark

The surface M is minimal if and only if σ = sinα. Since E1 and E2

are linearly independent, it follows that α is constant. Moreover, M is
totally geodesic if and only if α = 0, case in which M coincides with
H1.
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C.A.S. in Sol

First computations

Due the fact that the Lie brackets of E1 and E2 is [E1,E2] = cosα E1, one
can choose local coordinates u and v such that

E2 =
∂

∂u
and E1 = β(u, v)

∂

∂v
.

Denote by

F : U ⊂ R2 −→ M ↪→ Sol3 (u, v) 7−→
(
F1(u, v), F2(u, v), F3(u, v)

)
the immersion of the surface M in Sol3.

It follows

F1(v) =

∫ v 1

ρ(τ)
dτ

F2(u) =

∫ u (
sinα(τ)e

R τ cosα(s)ds
)
dτ

F3(u) =

∫ u

cosα(τ)dτ.
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C.A.S. in Sol

First results

Changing the v parameter, one gets the following parametrization

F (u, v) =
(
v , φ(u), χ(u)

)
which represents a cylinder over the plane curve γ(u) =

(
0, φ(u), χ(u)

)
where φ(u) =

∫ u (
sinα(τ)e

R τ cosα(s)ds
)
dτ and χ(u) =

∫ u

cosα(τ)dτ .

Notice that the surface is the group product between the curve
v 7→ (v , 0, 0) and the curve γ.

•
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C.A.S. in Sol

First results

θ arbitrary: we distinguish some particular situations for α:

Case sinα = 0. Then cosα = ±1 and the principal curvature
corresponding to the principal direction T vanishes. Straightforward
computations yield θ = π

2 case which was discussed before.
Case cosα = 0. Such surface is minimal.

Proposition

The surface M given by the parametrization

F (u, v) =
(
tan θ eu cos θ, v , − u cos θ

)
is a constant angle surface in Sol3.

This surface is a (group) product between the curve v 7→ (0, v , 0)
and the plane curve γ(u) = (tan θ eu cos θ, 0, − u cos θ).
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C.A.S. in Sol

General situation

The matrix of the Weingarten operator A with respect to the basis
{E1,E2} has the following expression

A =

(
− sinα sin θ 0

0 σ

)
for a certain function σ ∈ C∞(M).

Moreover, the Gauss formula yields

E1(α) = 2 cos θ cosα E2(α) = sinα− σ

sin θ

and the compatibility condition

(∇E1E2 −∇E2E1) (α) = [E1,E2](α) = E1(E2(α))− E2(E1(α))

gives rise to the following differential equation

E1(σ) + σ cos θ sinα+ σ2 cot θ = 2 sin θ cos θ sin2 α.
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C.A.S. in Sol

Difficult computations

coordinate u such that ∂
∂u = E1.

∂uα = 2 cos θ cosα.

Solving this PDE one gets

sinα = tanh(2u cos θ + ψ(v))

take v in such way that ∂α
∂v = 0, namely ψ is a constant

Denote: I (u) =

u∫ √
cosh(2τ cos θ + ψ0)dτ ,

J(u) =

u∫
cosh−

3
2 (2τ cos θ + ψ0)dτ
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C.A.S. in Sol

Classification result

Theorem (López, M., 2010)

A general constant angle surface in Sol3 can be parameterized as

F (u, v) = γ1(v) ∗ γ2(u)

where

γ1(v) =
(

sin θ

v∫
ξ(τ)e−ζ(τ)dτ, ± cos θ

v∫
ξ(τ)eζ(τ)dτ, ζ(v)

)
γ2(u) =

(
sin θ I (u), ± cos θ J(u), − 1

2
log cosh ū

)
and ζ, ξ are arbitrary functions depending on v.

The curve γ2 is parametrized by arclength.
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The end

T h a n k y o u f o r
a t t e n t i o n !
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