On the geometry of certain surfaces in homogeneous 3-spaces

Marian Ioan Munteanu

University Al. I. Cuza Iasi, Romania

Seminario de Geometría, Departamento de Geometría y Topología

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

Outline

Canonical coordinates and principal directions

(1) The ambient space $\mathbb{M}^2(c) \times \mathbb{R}$

• Constant Angle Surfaces in $\mathbb{M}^2(c) \times \mathbb{R}$

2 Surfaces in $\mathbb{S}^2 \times \mathbb{R}$

- **3** Surfaces in $\mathbb{H}^2 \times \mathbb{R}$
 - Minkowski model of \mathbb{H}^2
 - Minimality and Flatness
- **4** Surfaces in Euclidean space \mathbb{E}^3

C.A.S. in Sol

Space forms with constant sectional curvature *c*:

• $c = 1 \Rightarrow M^{2}(c) = S^{*} \Rightarrow$ the ambient space $S^{*} \times \mathbb{R}$ • $c = -1 \Rightarrow M^{2}(c) = \mathbb{H}^{2} \Rightarrow$ the ambient space $\mathbb{H}^{2} \times \mathbb{R}$ • $c = 0 \Rightarrow M^{2}(c) = \mathbb{R}^{2} \Rightarrow$ the ambient space $\mathbb{R}^{2} \times \mathbb{R}$

- B. Nelli, H. Rosenberg, Minimal surfaces in H² × ℝ, Bull. Braz. Math. Soc. 33 (2) (2002), 263–292.
 H. Rosenberg, Minimal surfaces in M² × ℝ, Illinois J. Math. 46
 - (4) (2002), 1177–1195.

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Space forms with constant sectional curvature *c*:

• $c = 1 \Rightarrow \mathbb{M}^2(c) = \mathbb{S}^2 \Rightarrow$ the ambient space $\mathbb{S}^2 \times \mathbb{R}$

• $c=-1 \Rightarrow \mathbb{M}^2(c)=\mathbb{H}^2 \Rightarrow$ the ambient space $\mathbb{H}^2 imes \mathbb{R}$

ullet $c=0 \Rightarrow \mathbb{M}^2(c)=\mathbb{R}^2 \Rightarrow$ the ambient space $\mathbb{R}^2 imes\mathbb{R}=\mathbb{R}^3$

B. Nelli, H. Rosenberg, *Minimal surfaces in* H² × ℝ, Bull. Braz. Math. Soc. 33 (2) (2002), 263–292.
 H. Rosenberg, *Minimal surfaces in* M² × ℝ, Illinois J. Math. 46 (4) (2002), 1177–1195.

3 / 46

・ロット (雪) (日) (日) (日)

Space forms with constant sectional curvature *c*:

- $c = 1 \Rightarrow \mathbb{M}^2(c) = \mathbb{S}^2 \Rightarrow$ the ambient space $\mathbb{S}^2 \times \mathbb{R}$
- $c = -1 \Rightarrow \mathbb{M}^2(c) = \mathbb{H}^2 \Rightarrow$ the ambient space $\mathbb{H}^2 imes \mathbb{R}$
- $c=0 \Rightarrow \mathbb{M}^2(c)=\mathbb{R}^2 \Rightarrow$ the ambient space $\mathbb{R}^2 imes \mathbb{R}=\mathbb{R}^3$

B. Nelli, H. Rosenberg, *Minimal surfaces in* H² × ℝ, Bull. Braz. Math. Soc. 33 (2) (2002), 263–292.
 H. Rosenberg, *Minimal surfaces in* M² × ℝ, Illinois J. Math. 46 (4) (2002), 1177–1195.

3 / 46

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Space forms with constant sectional curvature *c*:

- $c = 1 \Rightarrow \mathbb{M}^2(c) = \mathbb{S}^2 \Rightarrow$ the ambient space $\mathbb{S}^2 \times \mathbb{R}$
- $c = -1 \Rightarrow \mathbb{M}^2(c) = \mathbb{H}^2 \Rightarrow$ the ambient space $\mathbb{H}^2 \times \mathbb{R}$
- $c = 0 \Rightarrow \mathbb{M}^2(c) = \mathbb{R}^2 \Rightarrow$ the ambient space $\mathbb{R}^2 \times \mathbb{R} = \mathbb{R}^3$

B. Nelli, H. Rosenberg, *Minimal surfaces in* H² × ℝ, Bull. Braz. Math. Soc. 33 (2) (2002), 263–292.
 H. Rosenberg, *Minimal surfaces in* M² × ℝ, Illinois J. Math. 46 (4) (2002), 1177–1195.

A problem studied until now consists of the classification and characterization of Constant Angle Surfaces (CAS) in different ambient spaces. A CAS is an orientable surface whose unit normal makes a constant angle, denoted by θ , with a fixed direction.

The complete classification:

F. Dillen, J. Fastenakels, J. Van der Veken, L. Vrancken, Constant Angle Surfaces in S² × ℝ, Monaths. Math. 152 (2) (2007), 89–96.

F. Dillen, M.I.M., Constant Angle Surfaces in $\mathbb{H}^2 \times \mathbb{R}$, Bull. Braz. Math. Soc. **40** (1) (2009), 85–97.

M.I.M., A.I. Nistor, A new approach on constant angle surfaces in E³, Turk. J. Math. 33 (2) (2009), 169–178.

A problem studied until now consists of the classification and characterization of Constant Angle Surfaces (CAS) in different ambient spaces. A CAS is an orientable surface whose unit normal makes a constant angle, denoted by θ , with a fixed direction. The complete classification:

F. Dillen, J. Fastenakels, J. Van der Veken, L. Vrancken, Constant Angle Surfaces in S² × ℝ, Monaths. Math. 152 (2) (2007), 89–96.

F. Dillen, M.I.M., Constant Angle Surfaces in $\mathbb{H}^2 \times \mathbb{R}$, Bull. Braz. Math. Soc. **40** (1) (2009), 85–97.

M.I.M., A.I. Nistor, A new approach on constant angle surfaces in E³, Turk. J. Math. 33 (2) (2009), 169–178.

A problem studied until now consists of the classification and characterization of Constant Angle Surfaces (CAS) in different ambient spaces. A CAS is an orientable surface whose unit normal makes a constant angle, denoted by θ , with a fixed direction. The complete classification:

F. Dillen, J. Fastenakels, J. Van der Veken, L. Vrancken, Constant Angle Surfaces in S² × ℝ, Monaths. Math. 152 (2) (2007), 89–96.

F. Dillen, M.I.M., Constant Angle Surfaces in $\mathbb{H}^2 \times \mathbb{R}$, Bull. Braz. Math. Soc. **40** (1) (2009), 85–97.

M.I.M., A.I. Nistor, A new approach on constant angle surfaces in \mathbb{E}^3 , Turk. J. Math. **33** (2) (2009), 169–178.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

A problem studied until now consists of the classification and characterization of Constant Angle Surfaces (CAS) in different ambient spaces. A CAS is an orientable surface whose unit normal makes a constant angle, denoted by θ , with a fixed direction. The complete classification:

F. Dillen, J. Fastenakels, J. Van der Veken, L. Vrancken, Constant Angle Surfaces in $\mathbb{S}^2 \times \mathbb{R}$, Monaths. Math. **152** (2) (2007), 89–96.

F. Dillen, M.I.M., Constant Angle Surfaces in $\mathbb{H}^2 \times \mathbb{R}$, Bull. Braz. Math. Soc. 40 (1) (2009), 85-97.

A problem studied until now consists of the classification and characterization of Constant Angle Surfaces (CAS) in different ambient spaces. A CAS is an orientable surface whose unit normal makes a constant angle, denoted by θ , with a fixed direction. The complete classification:

- F. Dillen, J. Fastenakels, J. Van der Veken, L. Vrancken, Constant Angle Surfaces in S² × ℝ, Monaths. Math. 152 (2) (2007), 89–96.
- F. Dillen, M.I.M., Constant Angle Surfaces in ℍ² × ℝ, Bull. Braz. Math. Soc. 40 (1) (2009), 85–97.

M.I.M., A.I. Nistor, A new approach on constant angle surfaces in ℝ³, Turk. J. Math. 33 (2) (2009), 169–178.

Problem 2: Canonical directions

When the ambient is of the form $\mathbb{M}^2 \times \mathbb{R}$, a favored direction is \mathbb{R} . It is known that for a constant angle surface in \mathbb{E}^3 , $\mathbb{S}^2 \times \mathbb{R}$ or in $\mathbb{H}^2 \times \mathbb{R}$, the projection of $\frac{\partial}{\partial t}$ (where *t* is the global parameter on \mathbb{R}) onto the tangent plane of the immersed surface, denoted by *T*, is a principal direction with the corresponding principal curvature identically zero.

Question

Study surfaces in $\mathbb{M}^2 \times \mathbb{R}$ such that \mathcal{T} remains a principal direction but with the corresponding principal curvature different from 0.

5 / 46

Problem 2: Canonical directions

When the ambient is of the form $\mathbb{M}^2 \times \mathbb{R}$, a favored direction is \mathbb{R} . It is known that for a constant angle surface in \mathbb{E}^3 , $\mathbb{S}^2 \times \mathbb{R}$ or in $\mathbb{H}^2 \times \mathbb{R}$, the projection of $\frac{\partial}{\partial t}$ (where *t* is the global parameter on \mathbb{R}) onto the tangent plane of the immersed surface, denoted by *T*, is a principal direction with the corresponding principal curvature identically zero.

Question

Study surfaces in $\mathbb{M}^2 \times \mathbb{R}$ such that \mathcal{T} remains a principal direction but with the corresponding principal curvature different from 0.

First answer in $\mathbb{S}^2 \times \mathbb{R}$

First answer in $\mathbb{S}^2 \times \mathbb{R}$

The characterization of surfaces with a principal direction:

Theorem (Dillen, Fastenakels, Van der Veken, 2009) Let *M* be an immersed surface in $\mathbb{S}^2 \times \mathbb{R}$ and *p* a point of *M* for which $\theta(p) \neq \{0, \frac{\pi}{2}\}$. Then *T* is a principal direction if and only if *M* considered as a surface in \mathbb{E}^4 is normally flat.

First answer in $\mathbb{S}^2 \times \mathbb{R}$

Proposition (classification result) - Dillen, Fastenakels, Van der Veken, 2009

A surface M immersed in $\mathbb{S}^2 \times \mathbb{R}$ is a surface for which T is a principal direction if and only if the immersion F is (up to isometries of $\mathbb{S}^2 \times \mathbb{R}$) in the neighborhood of a point p where $\theta(p) \notin \{0, \frac{\pi}{2}\}$ given by

$$F: M \to \mathbb{S}^2 \times \mathbb{R}: \ (x, y) \mapsto (F_1(x, y), \ F_2(x, y), \ F_3(x, y), \ F_4(x))$$

$$F_j(x,y) = \int_{y_0}^{y} \alpha_j(v) \sin(\psi(x) + \phi(v)) dv$$

for j = 1, 2, 3 where $\phi'(x) = \cos(\theta(x))$, $F'_4(x) = \sin(\theta(x))$, $(\alpha_1, \alpha_2, \alpha_3)$ is a curve in \mathbb{S}^2 and $F_1^2 + F_2^2 + F_3^2 = 1$. Moreover, $\alpha_1, \alpha_2, \alpha_3, \psi$ and ϕ are related by

$$lpha_j'(y) = -\cos(\psi(x) + \phi(y)) \int\limits_{y_0}^{j} lpha_j(v) \cos(\psi(x) + \phi(v)) dv$$

$$-\sin(\psi(x)+\phi(y))\int_{v_0}^{\cdot}\alpha_j(v)\sin(\psi(x)+\phi(v))dv.$$

General things in $\mathbb{H}^2 \times \mathbb{R}$

Notations:

- $\widetilde{M} = \mathbb{H}^2 \times \mathbb{R}$ the Riemannian product of $(\mathbb{H}^2(-1), g_H)$ and \mathbb{R}
- $\tilde{g} = g_H + dt^2$ the product metric, t the (global) coordinate on \mathbb{R}
- $\overline{
 abla}$ the Levi Civita connection of \widetilde{g}
- $\partial_t = \frac{\partial}{\partial t}$ the unit vector field tangent to the \mathbb{R} -direction
- \widetilde{R} either the curvature tensor $\widetilde{R}(X, Y) = [\widetilde{\nabla}_X, \widetilde{\nabla}_Y] \widetilde{\nabla}_{[X,Y]}$, or the

Riemann-Christoffel tensor on \widetilde{M} defined by $\widetilde{R}(W, Z, X, Y) = \widetilde{g}(W, \widetilde{R}(X, Y)Z)$.

- $F: M \longrightarrow M$ isometric immersion (dim M = 2)
- ξ a unit normal vector to M, A its shape operator
- $g = \widetilde{g}|_M$ metric on M, ∇ corresponding Levi Civita connection

(G) $\widetilde{\nabla}_X Y = \nabla_X Y + h(X, Y)$, *h* the second fundamental form of *M* (W) $\widetilde{\nabla}_X \xi = -A_\xi X + \nabla_X^{\perp} \xi$

7 / 46

<ロ> <四> <四> <三</td>

General things in $\mathbb{H}^2 \times \mathbb{R}$

Notations:

- $M = \mathbb{H}^2 \times \mathbb{R}$ the Riemannian product of $(\mathbb{H}^2(-1), g_H)$ and \mathbb{R}
- $\tilde{g} = g_H + dt^2$ the product metric, t the (global) coordinate on \mathbb{R}
- ∇ the Levi Civita connection of \tilde{g}
- $\partial_t = \frac{\partial}{\partial t}$ the unit vector field tangent to the \mathbb{R} -direction
- \widetilde{R} either the curvature tensor $\widetilde{R}(X, Y) = [\widetilde{\nabla}_X, \widetilde{\nabla}_Y] \widetilde{\nabla}_{[X, Y]}$, or the

Riemann-Christoffel tensor on \widetilde{M} defined by $\widetilde{R}(W, Z, X, Y) = \widetilde{g}(W, \widetilde{R}(X, Y)Z)$.

- $F: M \longrightarrow M$ isometric immersion (dim M = 2)
- ξ a unit normal vector to M, A its shape operator
- $g = \widetilde{g}|_M$ metric on M, ∇ corresponding Levi Civita connection

(G) $\widetilde{\nabla}_X Y = \nabla_X Y + h(X, Y)$, *h* the second fundamental form of *M* (W) $\widetilde{\nabla}_{X}\xi = -A_{\xi}X + \nabla_{Y}^{\perp}\xi$

Since $\partial_t := \frac{\partial}{\partial t}$ is of unit length, we decompose it as $\partial_t = T + \cos \theta \xi$ where • *T* is the projection on *T*(*M*) with $|T| = \sin \theta$ and • θ is the angle function : $\cos \theta = \tilde{g}(\partial_t, \xi)$. (E.G.) R(X, Y, Z, W) = g(AX, W)g(AY, Z) - g(AX, Z)g(AY, W) - g(X, W)g(Y, Z) + g(X, Z)g(Y, W) + g(X, W)g(Y, T)g(Z, T) + g(Y, Z)g(X, T)g(W, T) - g(X, W)g(Y, T)g(Z, T) + g(Y, Z)g(X, T)g(W, T) - g(X, Z)g(Y, T)g(W, T) - g(Y, W)g(X, T)g(Z, T)(E.C.) $(\nabla_X A) Y - (\nabla_Y A) X = \cos \theta (g(X, T)Y - g(Y, T)X)$

Computing the Gaussian curvature K, from the equation of Gauss it follows

 $K = \det A - \cos^2 \theta.$

Knowing that any vector field $X \in T(M)$ can be decomposed as $X = X_H + g(X, T)\partial_t$ we get

Marian Ioan Munteanu (UAIC)

Since $\partial_t := \frac{\partial}{\partial t}$ is of unit length, we decompose it as $\partial_t = T + \cos\theta \xi$ where • *T* is the projection on *T*(*M*) with $|T| = \sin\theta$ and • θ is the angle function : $\cos\theta = \tilde{g}(\partial_t, \xi)$. (E.G.) R(X, Y, Z, W) = g(AX, W)g(AY, Z) - g(AX, Z)g(AY, W) - g(X, W)g(Y, Z) + g(X, Z)g(Y, W) + g(X, W)g(Y, T)g(Z, T) + g(Y, Z)g(X, T)g(W, T) - g(X, W)g(Y, T)g(Z, T) + g(Y, Z)g(X, T)g(W, T) - g(X, Z)g(Y, T)g(W, T) - g(Y, W)g(X, T)g(Z, T)(E.C.) $(\nabla_X A) Y - (\nabla_Y A) X = \cos\theta (g(X, T)Y - g(Y, T)X)$

Computing the Gaussian curvature K, from the equation of Gauss it follows

 $K = \det A - \cos^2 \theta.$

Knowing that any vector field $X \in T(M)$ can be decomposed as $X = X_H + g(X, T)\partial_t$ we get

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Since $\partial_t := \frac{\partial}{\partial t}$ is of unit length, we decompose it as $\partial_t = T + \cos\theta \xi$ where • *T* is the projection on *T*(*M*) with $|T| = \sin\theta$ and • θ is the angle function : $\cos\theta = \tilde{g}(\partial_t, \xi)$. (E.G.) R(X, Y, Z, W) = g(AX, W)g(AY, Z) - g(AX, Z)g(AY, W) - g(X, W)g(Y, Z) + g(X, Z)g(Y, W) + g(X, W)g(Y, T)g(Z, T) + g(Y, Z)g(X, T)g(W, T) - g(X, Z)g(Y, T)g(W, T) - g(Y, W)g(X, T)g(Z, T)(E.C.) $(\nabla_X A) Y - (\nabla_Y A) X = \cos\theta (g(X, T)Y - g(Y, T)X)$

Computing the Gaussian curvature K, from the equation of Gauss it follows

 $K = \det A - \cos^2 \theta.$

Knowing that any vector field $X \in T(M)$ can be decomposed as $X = X_H + g(X, T)\partial_t$ we get

Marian Ioan Munteanu (UAIC)

Since $\partial_t := \frac{\partial}{\partial t}$ is of unit length, we decompose it as $\partial_t = T + \cos\theta \xi$ where • *T* is the projection on *T*(*M*) with $|T| = \sin\theta$ and • θ is the angle function : $\cos\theta = \tilde{g}(\partial_t, \xi)$. (E.G.) R(X, Y, Z, W) = g(AX, W)g(AY, Z) - g(AX, Z)g(AY, W) - g(X, W)g(Y, Z) + g(X, Z)g(Y, W) + g(X, W)g(Y, T)g(Z, T) + g(Y, Z)g(X, T)g(W, T) - g(X, Z)g(Y, T)g(W, T) - g(Y, W)g(X, T)g(Z, T)(E.C.) $(\nabla_X A) Y - (\nabla_Y A) X = \cos\theta (g(X, T)Y - g(Y, T)X)$

Computing the Gaussian curvature K, from the equation of Gauss it follows

 $K = \det A - \cos^2 \theta.$

Knowing that any vector field $X \in T(M)$ can be decomposed as $X = X_H + g(X, T)\partial_t$ we get

Marian Ioan Munteanu (UAIC)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Proposition (Dillen, M., 2009)

Let X be an arbitrary tangent vector to M. Then we have

 $\nabla_X T = \cos\theta A X \tag{1}$

$$X(\cos\theta)=-g(AX,T).$$

If $\theta = const.$, then (2) yields g(AT, X) = 0, $\forall X \in T(M)$. Hence: • if T = 0 on M, then ∂_t is always normal, so $M \subseteq \mathbb{H}^2 \times \{t_0\}$, $t_0 \in \mathbb{R}$. • if $T \neq 0$ then T is a principal direction with principal curvature 0.

Question

Study surfaces in $\mathbb{H}^2 \times \mathbb{R}$ such that T remains a principal direction but with the corresponding principal curvature different from 0.

(2)

Proposition (Dillen, M., 2009)

Let X be an arbitrary tangent vector to M. Then we have

 $\nabla_X T = \cos \theta A X \tag{1}$ $X(\cos \theta) = -g(AX, T). \tag{2}$

If $\theta = const.$, then (2) yields g(AT, X) = 0, $\forall X \in T(M)$. Hence:

- if T = 0 on M, then ∂_t is always normal, so $M \subseteq \mathbb{H}^2 \times \{t_0\}$, $t_0 \in \mathbb{R}$.
- if $T \neq 0$ then T is a principal direction with principal curvature 0.

Question

Study surfaces in $\mathbb{H}^2 \times \mathbb{R}$ such that \mathcal{T} remains a principal direction but with the corresponding principal curvature different from 0.

Marian Ioan Munteanu (UAIC)

First answers

In the following we suppose that θ is different from 0 and $\frac{\pi}{2}$.

Proposition (Dillen, M., Nistor, to appear Taiwan. J. Math.)

If $\theta \neq 0, \frac{\pi}{2}$, then we can choose local coordinates (x, y) on the surface M isometrically immersed in \widetilde{M} with ∂_x in the direction of T s.t.

$$g(x,y) = \frac{1}{\sin^2 \theta} dx^2 + \beta^2(x,y) dy^2$$
(3)

$$A = \begin{pmatrix} \theta_x \sin \theta & \theta_y \sin \theta \\ \frac{\theta_y}{\sin \theta \beta^2} & \frac{\sin^2 \theta \beta_x}{\cos \theta \beta} \end{pmatrix}$$

and the functions θ and β are related by the PDE

$$\frac{\sin^2\theta}{\cos\theta}\frac{\beta_{xx}}{\beta} + \frac{\sin\theta\theta_x}{\cos^2\theta}\frac{\beta_x}{\beta} + \frac{\theta_y}{\sin\theta}\frac{\beta_y}{\beta^3} + \left(2\frac{\cos\theta\theta_y^2}{\sin^2\theta} - \frac{\theta_{yy}}{\sin\theta}\right)\frac{1}{\beta^2} - \cos\theta = 0.$$
(5)

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

(4

An analogue result formulated for surfaces in $\mathbb{H}^2 \times \mathbb{R}$ having T as principal direction, is the following

Proposition (Dillen, M., Nistor, 2009)

Let M be isometrically immersed in $\mathbb{H}^2 \times \mathbb{R}$ with T a principal direction. Then, we can choose the local coordinates (x, y) such that ∂_x is in the direction of T,

$$g = dx^{2} + \beta^{2}(x, y)dy^{2}$$

$$A = \begin{pmatrix} \theta_{x} & 0 \\ 0 & \tan \theta \frac{\beta_{x}}{\beta} \end{pmatrix}.$$
(6)
(7)

Moreover, the functions θ and β are related by the PDE

$$\beta_{xx} + \tan \theta \theta_x \beta_x - \beta \cos^2 \theta = 0 \tag{8}$$

and $\theta_y = 0$.

Canonical coordinates

Remark

For every two functions θ and β defined on a smooth simply connected surface M such that $\theta_y = 0$ and $\beta_{xx} + \tan \theta \theta_x \beta_x - \beta \cos^2 \theta = 0$ for certain coordinates (x, y), we can construct an isometric immersion $F : M \to \mathbb{H}^2 \times \mathbb{R}$ with the shape operator (7) and such that it has a canonical principal direction.

Remark

Let M be an isometrically immersed surface in $\mathbb{H}^2 \times \mathbb{R}$ such that T is a principal direction. Coordinates (x, y) on M such that ∂_x is collinear with T and the metric g has the form $g = dx^2 + \beta^2(x, y)dy^2$ will be called *canonical coordinates*. Of course, they are not unique. More precisely, if (x, y) and $(\overline{x}, \overline{y})$ are both canonical coordinates, then they are related by $\overline{x} = \pm x + c$ and $\overline{y} = \overline{y}(y)$, where c is a real constant.

Minkowski model of the hyperbolic plane \mathbb{H}^2

Models for the hyperbolic plane:

- the Klein model
- 2 the Poincaré disk
- \bigcirc the upper half plane \mathbb{H}^+
- Minkowski model \mathcal{H}

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

Minkowski model of the hyperbolic plane \mathbb{H}^2

Models for the hyperbolic plane:

- the Klein model
- 2 the Poincaré disk
- ${f 3}$ the upper half plane ${\Bbb H}^+$
 - Minkowski model H

$$\mathbb{H}^2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3_1 \mid x_1^2 + x_2^2 - x_3^2 = -1, x_3 > 0\}$$

with Lorentzian metric

$$\langle \ , \ \rangle = dx_1^2 + dx_2^2 - dx_3^2$$

having constant Gaussian curvature -1.

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

Characterization theorem

In order to study under which conditions T is a canonical principal direction, we regard the surface M as a surface immersed in $\mathbb{R}^3_1 \times \mathbb{R}$ (also denoted \mathbb{R}^4_1) having codimension 2.

The metric on the ambient space is given by $\tilde{g} = dx_1^2 + dx_2^2 - dx_3^2 + dt^2$. *M* is given by the immersion $F : M \to \mathbb{R}^3_1 \times \mathbb{R}$, $F = (F_1, F_2, F_3, F_4)$.

Theorem (Dillen, M., Nistor, 2009)

Let M be a surface isometrically immersed in $\mathbb{H}^2 \times \mathbb{R}$. T is a principal direction if and only if M is normally flat in \mathbb{R}^4_1 .

▶ Proof.

Classification theorem - version 1

Theorem (Dillen, M., Nistor, 2009)

If $F : M \to \mathbb{H}^2 \times \mathbb{R}$ is an isometric immersion with $\theta \neq 0, \frac{\pi}{2}$, then T is a principal direction if and only if F is given, up to isometries of $\mathbb{H}^2 \times \mathbb{R}$, by

$$F(x, y) = (F_1(x, y), F_2(x, y), F_3(x, y), F_4(x))$$

with $F_j(x, y) = A_j(y) \sinh \phi(x) + B_j(y) \cosh \phi(x)$, $j = \overline{1,3}$ and $F_4(x) = \int_0^x \sin \theta(\tau) d\tau$, where $\phi'(x) = \cos \theta$. The six functions A_j and B_j are found in one of the following cases

• Case 1.

$$\begin{aligned} A_j(y) &= \int_0^y H_j(\tau) \cosh \psi(\tau) d\tau + c_{1j} \\ B_j(y) &= \int_0^y H_j(\tau) \sinh \psi(\tau) d\tau + c_{2j} \\ H_j'(y) &= B_j(y) \sinh \psi(y) - A_j(y) \cosh \psi(y) \end{aligned}$$

▲母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ●

$$\begin{aligned} A_j(y) &= \int_0^y H_j(\tau) \sinh \psi(\tau) d\tau + c_{1j} \\ B_j(y) &= \int_0^y H_j(\tau) \cosh \psi(\tau) d\tau + c_{2j} \\ H_j'(y) &= -A_j(y) \sinh \psi(y) + B_j(y) \cosh \psi(y) \end{aligned}$$

$$\begin{array}{lll} A_j(y) &=& \pm \int_0^y H_j(\tau) d\tau + c_{1j} \\ B_j(y) &=& \int_0^y H_j(\tau) d\tau + c_{2j} \\ H_j'(y) &=& c_{2j} \mp c_{1j} \end{array}$$

where $H = (H_1, H_2, H_3)$ is a curve on the de Sitter space \mathbb{S}_1^2 , ψ is a smooth function on M and $c_1 = (c_{11}, c_{12}, c_{13})$, $c_2 = (c_{21}, c_{22}, c_{23})$ are constant vectors.

Marian Ioan Munteanu (UAIC)

Clasiffication theorem - version 2

Theorem (Dillen, M., Nistor, 2009)

If $F : M \to \mathbb{H}^2 \times \mathbb{R}$ is an isometric immersion with angle function $\theta \neq 0, \frac{\pi}{2}$, then T is a principal direction if and only if F is given locally, up to isometries of the ambient space by

 $F(x, y) = (A(y) \sinh \phi(x) + B(y) \cosh \phi(x), \chi(x))$

where A(y) is a regular curve in \mathbb{S}_1^2 , B(y) is a regular curve in \mathbb{H}_1^2 , such that $\langle A, B \rangle = 0$, A' || B' and where $(\phi(x), \chi(x))$ is a regular curve in \mathbb{R}^2 . The angle function θ of M depends only on x and coincides with the angle function of the curve (ϕ, χ) . In particular we can arc length reparametrize (ϕ, χ) ; then (x, y) are canonical coordinates and $\theta'(x) = \kappa(x)$, the curvature of (ϕ, χ) .

Marian Ioan Munteanu (UAIC)

Clasiffication theorem - version 3

Theorem (Dillen, M., Nistor, 2009)

Let $F : M \to \mathbb{H}^2 \times \mathbb{R}$ be an isometrically immersed surface M in $\mathbb{H}^2 \times \mathbb{R}$, with $\theta \neq 0, \frac{\pi}{2}$. Then M has T as a principal direction if and only if F is given, up to rigid motions of the ambient space, either by

$$F(x,y) = \left(f(y)\cosh\phi(x) + N_f(y)\sinh\phi(x), \chi(x)\right)$$
(9)

where f(y) is a regular curve in \mathbb{H}_1^2 and $N_f(y) = \frac{f(y)\boxtimes f'(y)}{\sqrt{\langle f'(y), f'(y) \rangle}}$ represents the normal of f. Moreover, (ϕ, χ) is a regular curve in \mathbb{R}^2 and the angle function θ of this curve is the same as the angle function of the surface parameterized by F.

Marian Ioan Munteanu (UAIC)

通 ト イヨ ト イヨ ト 三 ヨ

Examples

Now, we would like to give some examples of surfaces that can be retrieved from the classification theorem. Let us consider first $\psi(y) = 0$ for all y in **Case 1**, getting

$$A_j(y) = \int_0^y H_j(\tau) d\tau + c_{1j}, \ B_j(y) = c_{2j}, \ H'_j(y) = -\int_0^y H_j(\tau) d\tau - c_{1j}.$$

The parametrization F in this case is given by

Example (rotational surface)

$$F(x,y) = \left(\sin y \sinh\left(\int_0^x \cos\theta(\tau)d\tau\right), \ \cos y \sinh\left(\int_0^x \cos\theta(\tau)d\tau\right), \\ \cosh\left(\int_0^x \cos\theta(\tau)d\tau\right), \ \int_0^x \sin\theta(\tau)d\tau\right).$$

Marian Ioan Munteanu (UAIC)

Examples

Concerning **Case 3** in classification theorem, let us choose for example $c_1 = (0, 1, 0)$, $c_2 = (0, 0, 1)$ and $c_3 = (1, 0, 0)$. The parametrization in this case is given by

Example

$$F(x,y) = \left(A(y)\sinh\left(\int_0^x\cos\theta(\tau)d\tau\right) + B(y)\cosh\left(\int_0^x\cos\theta(\tau)d\tau\right), \int_0^x\sin\theta(\tau)d\tau\right)$$

where $A(y) = \left(y, \ 1 - \frac{y^2}{2}, \ \frac{y^2}{2}\right)$ and $B(y) = \left(y, \ -\frac{y^2}{2}, \ 1 + \frac{y^2}{2}\right).$

Marian Ioan Munteanu (UAIC)

- 3

・ 同 ト ・ ヨ ト ・ ヨ ト

Examples

If $\theta(x) = x^2$, the surface is

Example

$$F(x,y) = \left(A(y)\sinh\left(\sqrt{\frac{\pi}{2}} C\left(\sqrt{\frac{2}{\pi}} x\right)\right) + B(y)\cosh\left(\sqrt{\frac{\pi}{2}} C\left(\sqrt{\frac{2}{\pi}} x\right)\right),$$

$$\sqrt{\frac{\pi}{2}} S\left(\sqrt{\frac{2}{\pi}} x\right)\right)$$

where *C* and *S* are the traditional notations for the Fresnel integrals $C(z) = \int_0^z \cos\left(\frac{\pi t^2}{2}\right) dt \text{ respectively } S(z) = \int_0^z \sin\left(\frac{\pi t^2}{2}\right) dt.$ The curve involved in the classification theorem is given in this case by $(\phi(x), \chi(x)) = (C(x), S(x)),$ known as *Cornu spiral*.

Marian Ioan Munteanu (UAIC)

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ● ● ●

Minimality

Theorem (Dillen, M., Nistor, 2009)

Let M be a surface isometrically immersed in $\mathbb{H}^2 \times \mathbb{R}$, with $\theta \neq 0, \frac{\pi}{2}$. Then M is minimal with T as principal direction if and only if the immersion is, up to isometries of the ambient space, locally given by $F: M \longrightarrow \mathbb{H}^2 \times \mathbb{R}$

$$F(x,y) = \left(\frac{b(x)}{\sqrt{1+c_1^2-c_2^2}}, \frac{\sqrt{a^2(x)+1}}{\sqrt{1+c_1^2-c_2^2}} \sinh y, \frac{\sqrt{a^2(x)+1}}{\sqrt{1+c_1^2-c_2^2}} \cosh y, \chi(x)\right) (10.a)$$

$$F(x,y) = \left(\frac{\sqrt{a^2(x)+1}}{\sqrt{c_2^2-c_1^2-1}} \cos y, \frac{\sqrt{a^2(x)+1}}{\sqrt{c_2^2-c_1^2-1}} \sin y, \frac{b(x)}{\sqrt{c_2^2-c_1^2-1}}, \chi(x)\right) (10.b)$$

$$F(x,y) = \left(b(x) \ y, \ \frac{b(x)}{2} \ (1-y^2) - \frac{1}{2b(x)}, \ \frac{b(x)}{2} \ (1+y^2) + \frac{1}{2b(x)}, \ \chi(x)\right) (10.c)$$

Marian Ioan Munteanu (UAIC)

Minimality

Theorem (cont.)

Let M be a surface isometrically immersed in $\mathbb{H}^2 \times \mathbb{R}$, with $\theta \neq 0, \frac{\pi}{2}$. Then M is minimal with T as principal direction if and only if the immersion is, up to isometries of the ambient space, locally given by

where

$$\chi(x) = \int_0^x \frac{1}{\sqrt{a^2(\tau) + 1}} d\tau$$

with $a(x) = c_1 \cosh x + c_2 \sinh x$, b(x) = a'(x) and $c_1, c_2 \in \mathbb{R}$.

Marian Ioan Munteanu (UAIC)

✓ ♂ ▷ < ≧ ▷ < ≧ ▷</p>
Granada, Nov. 24, 2010

Minimality in short

Remark

Since

$$F(x,y) = (A(y) \sinh \phi(x) + B(y) \cosh \phi(x), \chi(x)),$$

in general, under minimality assumption the curve $(\phi(x), \chi(x))$ is determined up to $c_1, c_2 \in \mathbb{R}$ by $\theta = \arctan\left(\frac{1}{c_1 \cosh x + c_2 \sinh x}\right)$, since $\phi'(x) = \cos \theta$ and $\chi'(x) = \sin \theta$. Moreover, in each case of the previous theorem the curves A and B are given by

$$A(y) = (1, 0, 0) \qquad B(y) = (0, \sinh y, \cosh y)$$

$$A(y) = (\cos y, \sin y, 0) \qquad B(y) = (0, 0, 1)$$

$$A(y) = \left(y, 1 - \frac{y^2}{2}, \frac{y^2}{2}\right) \qquad B(y) = \left(y, -\frac{y^2}{2}, 1 + \frac{y^2}{2}\right).$$

Marian Ioan Munteanu (UAIC)

Flatness

Theorem (Dillen, M., Nistor, 2009)

Let M be a surface isometrically immersed in $\mathbb{H}^2 \times \mathbb{R}$, with $\theta \neq 0, \frac{\pi}{2}$. Then M is flat with T as principal direction if and only if the immersion is, up to isometries of the ambient space, locally given by $F: M \longrightarrow \mathbb{H}^2 \times \mathbb{R}$

$$F(x, y) = \left(\frac{x}{\sqrt{c+1}}\cos y, \frac{x}{\sqrt{c+1}}\sin y, \frac{\sqrt{x^2+c+1}}{\sqrt{c+1}}, \chi(x)\right)$$
$$F(x, y) = \left(\frac{\sqrt{x^2+c+1}}{\sqrt{-c-1}}, \frac{x}{\sqrt{-c-1}}\sinh y, \frac{x}{\sqrt{-c-1}}\cosh y, \chi(x)\right)$$
$$F(x, y) = \left(xy, \frac{x}{2}(1-y^2) - \frac{1}{2x}, \frac{x}{2}(1+y^2) + \frac{1}{2x}, \chi(x)\right)$$

where

$$\chi(x) = \int^x rac{\sqrt{ au^2 + c}}{\sqrt{ au^2 + c + 1}} \ d au, \ c \in \mathbb{R}.$$

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Models for the hyperbolic plane:

- the Klein model
- 2 the Poincaré disk
- ${f 0}$ the upper half plane ${\mathbb H}^+$
- Minkowski model H

 $\mathbb{H}^+ = \{(X, Y) \in \mathbb{R}^2 \mid Y > 0\}$

with metric

$$\left\langle , \right\rangle = rac{dX^2 + dY^2}{Y^2}$$

having constant Gaussian curvature -1

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Models for the hyperbolic plane:

- the Klein model
- 2 the Poincaré disk
- ${f 0}$ the upper half plane ${\mathbb H}^+$
 - Minkowski model H

$$\mathbb{H}^+ = \{ (X, Y) \in \mathbb{R}^2 \mid Y > 0 \}$$

with metric

$$\langle , \rangle = \frac{dX^2 + dY^2}{Y^2}$$

having constant Gaussian curvature -1.

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

Method 1: Use **Cayley transformations** from \mathcal{H} to H^+

$$\begin{aligned} x_1 &= \frac{X}{Y} & X &= \frac{x_1}{x_3 - x_2} \\ x_2 &= \frac{X^2 + Y^2 - 1}{2Y} & Y &= \frac{1}{x_3 - x_2} \\ x_3 &= \frac{X^2 + Y^2 + 1}{2Y} & . \end{aligned}$$

Method 2: Analytical approach - solving the problem in \mathbb{H}^+ and then showing the consistence of results with \mathcal{H} :

A.I. Nistor, On some special surfaces in $\mathbb{H}^+ \times \mathbb{R}$, preprint 202

Method 2: Analytical approach - solving the problem in \mathbb{H}^+ and then showing the consistence of results with \mathcal{H} :

A.I. Nistor, On some special surfaces in $\mathbb{H}^+ \times \mathbb{R}$, preprint 2010.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Surfaces in \mathbb{E}^3 - minimality

Proposition (M., Nistor 2009)

Let *M* be a **minimal** isometric immersion in \mathbb{E}^3 . We can choose (x, y)-local coordinates on *M* such that ∂_x is in direction of *T*, the metric of the surface can be expressed as

$$g = \frac{1}{\sin^2 \theta} (dx^2 + dy^2)$$
(12)

and the shape operator A in the basis $\{\partial_x, \partial_y\}$ has the following expression

$$A = \sin \theta \begin{pmatrix} \theta_x & \theta_y \\ \theta_y & -\theta_x \end{pmatrix}.$$
 (13)

Moreover, the function $\log\left(\tan\frac{\theta}{2}\right)$ is harmonic.

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

Example

$$\log\left(\tan\frac{\theta}{2}\right) \text{ is harmonic } \Longleftrightarrow \Delta\log(\tan\frac{\theta}{2}) = 0 \iff \\ \cos\theta(\theta_x^2 + \theta_y^2) - \sin\theta(\theta_{xx} + \theta_{yy}) = 0.$$

Under assumption $\theta_x = c\theta_y$ one gets that

 $\theta = 2 \arctan(e^{d(cx+y)+d_0})$

gives a **minimal** surface in \mathbb{E}^3 . Moreover, for any **harmonic** function f on M,

 $\theta = 2 \arctan(e^{f})$

gives a **minimal** surface in \mathbb{E}^3 .

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

- ∢ ≣ →

28 / 46

Granada, Nov. 24, 2010

Canonical coordinates in \mathbb{E}^3

The characterization theorem:

Theorem (M., Nistor, 2009)

Let M be an isometrically immersed surface in \mathbb{E}^3 . Let (x, y) be orthogonal coordinates on M such that T is collinear to ∂_x . Then, T is a principal direction on M everywhere if and only if $\theta_y = 0$.

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

Canonical coordinates in \mathbb{E}^3

The classification theorem:

Theorem (M., Nistor, 2009)

A surface M isometrically immersed in \mathbb{E}^3 with T a canonical principal direction is given (up to isometries of \mathbb{E}^3) by one of the following cases:

• Case 1.

w

$$r: M \to \mathbb{E}^3, \ r(x, \ y) = \left(\phi(x)(\cos y, \ \sin y) + \gamma(y), \ \int_0^x \sin \theta(\tau)d\tau\right)$$

here
$$\gamma(y) = \left(-\int_0^y \psi(\tau)\sin \tau d\tau, \ \int_0^y \psi(\tau)\cos \tau d\tau\right)$$

• Case 2. (Cylinders)

$$r: M \to \mathbb{E}^3, \ r(x, \ y) = \left(\phi(x) \cos y_0, \phi(x) \sin y_0, \ \int_0^x \sin \theta(\tau) d\tau\right) + y \gamma_0$$

where $\gamma_0 = (-\sin y_0, \cos y_0, 0)$, $y_0 \in \mathbb{R}$, $\phi'(x) = \cos \theta$.

Canonical coordinates in \mathbb{E}^3 - minimality

Theorem (M., Nistor, 2009)

Let M be a surface isometrically immersed in \mathbb{E}^3 . M is a minimal surface with T a principal direction if and only if the immersion is, up to isometries of the ambient space, given by

 $r: M \to \mathbb{E}^3$

$$r(x, y) = \left(\sqrt{x^2 + c^2}(\cos y, \sin y), \ln\left(x + \sqrt{x^2 + c^2}\right)\right), \ c \in \mathbb{R}$$

Remark

Moreover, we notice that this surface can be obtained rotating the catenary around the *Oz*-axis. Hence, we obtain that the only minimal surface in the Euclidean space with a canonical principal direction is the **catenoid**.

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Canonical coordinates in \mathbb{E}^3 - flatness

Theorem (M., Nistor, 2009)

Let M be a surface isometrically immersed in \mathbb{E}^3 . M is a flat surface with T a principal direction if and only if the immersion is, up to isometries of the ambient space, given by

$$r: M \to \mathbb{E}^{3}, \quad r(x, y) = \left(\phi(x) \cos y_{0}, \phi(x) \sin y_{0}, \int_{0}^{x} \sin \theta(\tau) d\tau\right) + y\gamma_{0}$$

where $\gamma_{0} = \left(-\sin y_{0}, \cos y_{0}, 0\right), y_{0} \in \mathbb{R}.$
Here $\phi(x)$ represents a primitive of $\cos \theta$.

Notice that this is **Case 2. (Cylinders)** from the classification theorem.

► Go to Sol

Sketch of proof

Proof.

With the previous considerations, for any $X \in T(M)$ we compute

 $D_X^{\perp} \tilde{\xi} = -\cos\theta \langle X, T \rangle \xi$ which implies $D_X^{\perp} \xi = \cos\theta \langle X, T \rangle \tilde{\xi}$.

Since *Proposition* 7 holds, the metric is given by (3) and using the previous expressions one has

 $R^{\perp}(\partial_x, \ \partial_y)\xi = \sin\theta\theta_y\tilde{\xi}$ and $R^{\perp}(\partial_x, \ \partial_y)\tilde{\xi} = -\sin\theta\theta_y\xi.$

Taking into account that ξ and $\tilde{\xi}$ are unitary and $\sin \theta$ cannot vanish, we get from the expressions above that M is normally flat if and only if $\theta_y = 0$. On the other hand, T is a canonical principal direction if and only if $\theta_y = 0$. This follows from expression (4) of the Weingarten operator A. Hence we get the conclusion.

ba

• *Sol*₃: simply connected homogeneous 3-dimensional manifold whose isometry group has dimension 3.

- It is one of the eight models of geometry of Thurston.
- ullet As Riemannian manifold : \mathbb{R}^3 equipped with the metric

$$\widetilde{g} = e^{2z} dx^2 + e^{-2z} dy^2 + dz^2$$

• The group operation

 $(x, y, z) * (x', y', z') = (x + e^{-z}x', y + e^{z}y', z + z')$

Marian Ioan Munteanu (UAIC)

- *Sol*₃: simply connected homogeneous 3-dimensional manifold whose isometry group has dimension 3.
- It is one of the eight models of geometry of Thurston.
- ullet As Riemannian manifold : \mathbb{R}^3 equipped with the metric

$$\widetilde{g} = e^{2z} dx^2 + e^{-2z} dy^2 + dz^2$$

• The group operation

 $(x, y, z) * (x', y', z') = (x + e^{-z}x', y + e^{z}y', z + z')$

Marian Ioan Munteanu (UAIC)

- *Sol*₃: simply connected homogeneous 3-dimensional manifold whose isometry group has dimension 3.
- It is one of the eight models of geometry of Thurston.
- \bullet As Riemannian manifold : \mathbb{R}^3 equipped with the metric

$$\widetilde{g} = e^{2z} dx^2 + e^{-2z} dy^2 + dz^2$$

• The group operation

 $(x, y, z) * (x', y', z') = (x + e^{-z}x', y + e^{z}y', z + z')$

Marian Ioan Munteanu (UAIC)

Granada, Nov. 24, 2010

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

- *Sol*₃: simply connected homogeneous 3-dimensional manifold whose isometry group has dimension 3.
- It is one of the eight models of geometry of Thurston.
- As Riemannian manifold : \mathbb{R}^3 equipped with the metric

$$\widetilde{g} = e^{2z} dx^2 + e^{-2z} dy^2 + dz^2$$

• The group operation

$$(x, y, z) * (x', y', z') = (x + e^{-z}x', y + e^{z}y', z + z')$$

• The following transformations

 $(x, y, z) \mapsto (y, -x, -z)$ and $(x, y, z) \mapsto (-x, y, z)$

span a group of isometries of (Sol_3, g) .

• This group is isomorphic to the dihedral group (with 8 elements) *D*₄. It is, in fact, the complete group of isotropy:

 $(x, y, x) \longmapsto (\pm e^{-c}x + a, \pm e^{c}y + b, z + c)$

 $(x, y, z) \longmapsto (\pm e^{-c}y + a, \pm e^{c}x + b, z + c).$

M. Troyanov, L'horizon de SOL, Exposition. Math. 16 (1998), 441–479.

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

• The following transformations

 $(x, y, z) \mapsto (y, -x, -z)$ and $(x, y, z) \mapsto (-x, y, z)$

span a group of isometries of (Sol_3, g) .

• This group is isomorphic to the dihedral group (with 8 elements) *D*₄. It is, in fact, the complete group of isotropy:

$$(x, y, x) \longmapsto (\pm e^{-c}x + a, \pm e^{c}y + b, z + c)$$
$$(x, y, z) \longmapsto (\pm e^{-c}y + a, \pm e^{c}x + b, z + c).$$

M. Troyanov, L'horizon de SOL, Exposition. Math. 16 (1998), 441–479.

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010 34 / 46

With respect to the metric \tilde{g} an orthonormal basis of left-invariant vector fields is given by

$$e_1 = e^{-z} \frac{\partial}{\partial x}, \quad e_2 = e^z \frac{\partial}{\partial y}, \quad e_3 = \frac{\partial}{\partial z}.$$

The Levi Civita connection $\widetilde{\nabla}$ of Sol_3 with respect to $\{e_1, e_2, e_3\}$ is given by

$$\begin{split} & \nabla_{e_1} e_1 = -e_3 \quad \nabla_{e_1} e_2 = 0 \quad \nabla_{e_1} e_3 = e_1 \\ & \nabla_{e_2} e_1 = 0 \quad \nabla_{e_2} e_2 = e_3 \quad \nabla_{e_2} e_3 = -e_2 \\ & \nabla_{e_3} e_1 = 0 \quad \nabla_{e_3} e_2 = 0 \quad \nabla_{e_3} e_3 = 0. \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Constant angle surfaces were recently studied in product spaces $\mathbb{Q}_{\epsilon} \times \mathbb{R}$. The angle is considered between the normal of the surface and \mathbb{R} .

Constant angle surfaces were recently studied in product spaces $\mathbb{Q}_{\epsilon} imes \mathbb{R}$.

It is known, for Sol₃, that $\mathcal{H}^1 = \{ dy \equiv 0 \}$ and $\mathcal{H}^2 = \{ dx \equiv 0 \}$ are totally geodesic foliations whose leaves are the hyperbolic plane.

- 3

Constant angle surfaces were recently studied in product spaces $\mathbb{Q}_{\epsilon} \times \mathbb{R}$. The angle is considered between the normal of the surface and \mathbb{R} . It is known, for *Sol*₃, that $\mathcal{H}^1 = \{ dy \equiv 0 \}$ and $\mathcal{H}^2 = \{ dx \equiv 0 \}$ are totally

On the other hand, for $\mathbb{Q}_{\epsilon} \times \mathbb{R}$, the foliation $\{dt \equiv 0\}$ is totally geodesic too (*t* is the global parameter on \mathbb{R}). Trivial examples for constant angle surfaces in $\mathbb{Q}_{\epsilon} \times \mathbb{R}$ are furnished by totally geodesic surfaces $\mathbb{Q}_{\epsilon} \times \{t_0\}$.

Let us consider \mathcal{H}^{2} . It follows that the tangent plane to \mathbb{H}^{2} (the leaf at each $x = x_{0}$) is spanned by $\frac{\partial}{\partial y}$ and $\frac{\partial}{\partial z}$, while the unit normal is e_{1} . So, this surface corresponds to $\mathbb{Q}_{\epsilon} \times \{t_{0}\}$, case in which the constant angle is 0. An oriented surface M, isometrically immersed in *Sol*₃, is called constant angle surface if the angle between its normal and e_{1} is constant in each point of the surface M.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のQ@

Constant angle surfaces were recently studied in product spaces $\mathbb{Q}_{\epsilon} imes \mathbb{R}$. The angle is considered between the normal of the surface and \mathbb{R} .

It is known, for Sol₃, that $\mathcal{H}^1=\{dy\equiv 0\}$ and $\mathcal{H}^2=\{dx\equiv 0\}$ are totally geodesic foliations whose leaves are the hyperbolic plane.

On the other hand, for $\mathbb{Q}_t \times \mathbb{R}$, the foliation $\{dt \equiv 0\}$ is totally geodesic too $(t \text{ is the global parameter on } \mathbb{R})$. Trivial examples for constant angle surfaces in the are furnished by totally geodesic surfaces

Let us consider \mathcal{H}^2 . It follows that the tangent plane to \mathbb{H}^2 (the leaf at each $x = x_0$) is spanned by $\frac{\partial}{\partial y}$ and $\frac{\partial}{\partial z}$, while the unit normal is e_1 . So, this surface corresponds to $\mathbb{Q}_{\epsilon} \times \{t_0\}$, case in which the constant angle is 0.

An oriented surface M, isometrically immersed in Sol_3 , is called constant angle surface if the angle between its normal and e_1 is constant in each point of the surface M.

Constant angle surfaces were recently studied in product spaces $\mathbb{Q}_{\epsilon} imes \mathbb{R}$. The angle is considered between the normal of the surface and \mathbb{R} .

It is known, for Sol₃, that $\mathcal{H}^1=\{dy\equiv 0\}$ and $\mathcal{H}^2=\{dx\equiv 0\}$ are totally geodesic foliations whose leaves are the hyperbolic plane.

On the other hand, for $\mathbb{Q}_{i} \times \mathbb{R}$, the foliation $\{dt \equiv 0\}$ is totally geodesic too $(t \text{ is the global parameter on } \mathbb{R})$. Trivial examples for constant angle surfaces in the furnished by totally geodesic surfaces

Let us consider \mathcal{H}^2 . It follows that the tangent plane to \mathbb{H}^2 (the leaf at each $x = x_0$) is spanned by $\frac{\partial}{\partial y}$ and $\frac{\partial}{\partial z}$, while the unit normal is e_1 . So, this surface corresponds to $\mathbb{Q}_e \times \{t_0\}$, case in which the constant angle is 0.

An oriented surface M, isometrically immersed in Sol_3 , is called constant angle surface if the angle between its normal and e_1 is constant in each point of the surface M.

López, M. - 2010: arXiv:1004.3889v1 [math.DG]

Denote by $\theta \in [0, \pi)$ the angle between the unit normal N and e_1 . Hence

 $\widetilde{g}(N, e_1) = \cos \theta.$

Let T be the projection of e_1 on the tangent plane:

 $e_1 = T + \cos\theta N$.

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● Granada, Nov. 24, 2010

López, M. - 2010: arXiv:1004.3889v1 [math.DG]

Denote by $\theta \in [0, \pi)$ the angle between the unit normal N and e_1 . Hence

 $\widetilde{g}(N, e_1) = \cos \theta.$

Let T be the projection of e_1 on the tangent plane:

 $e_1 = T + \cos\theta N$.

Case $\theta = 0$. Then $N = e_1$ and hence the surface M is isometric to the hyperbolic plane $\mathcal{H}^2 = \{ dx \equiv 0 \}.$

From now on $\theta \neq 0$

$AT = -\tilde{g}(N, e_3)T$, hence T is a principal direction on the surface

Let $E_1 = \frac{1}{\sin \theta} T$. Consider E_2 tangent to M, orthogonal to E_1 and such that the basis $\{e_1, e_2, e_3\}$ and $\{E_1, E_2, N\}$ have the same orientation.

It follows that

 $\begin{cases} e_1 = \sin \theta \ E_1 + \cos \theta \ N \\ e_2 = \cos \alpha \cos \theta \ E_1 + \sin \alpha \ E_2 - \cos \alpha \sin \theta \ N \\ e_3 = -\sin \alpha \cos \theta \ E_1 + \cos \alpha \ E_2 + \sin \alpha \sin \theta \ N \end{cases}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

From now on $\theta \neq 0$

 $AT = -\widetilde{g}(N, e_3)T$, hence T is a principal direction on the surface

Let $E_1 = \frac{1}{\sin \theta} T$. Consider E_2 tangent to M, orthogonal to E_1 and such that the basis $\{e_1, e_2, e_3\}$ and $\{E_1, E_2, N\}$ have the same orientation.

It follows that

$$\begin{cases} e_1 = \sin \theta \ E_1 & + \cos \theta \ N \\ e_2 = \cos \alpha \cos \theta \ E_1 & + \sin \alpha \ E_2 & - \cos \alpha \sin \theta \ N \\ e_3 = -\sin \alpha \cos \theta \ E_1 & + \cos \alpha \ E_2 & + \sin \alpha \sin \theta \ N \end{cases}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Case $\theta = \frac{\pi}{2}$. In this case e_1 is tangent to M and $T = E_1$.

 $h(E_1, E_1) = -\sin \alpha N, \ h(E_1, E_2) = 0, \ h(E_2, E_2) = \sigma N$

$$E_1(\alpha) = 0$$
 and $E_2(\alpha) = \sin \alpha - \sigma$.

Remark

The surface M is minimal if and only if $\sigma = \sin \alpha$. Since E_1 and E_2 are linearly independent, it follows that α is constant. Moreover, M is totally geodesic if and only if $\alpha = 0$, case in which M coincides with \mathcal{H}^1 .

Due the fact that the Lie brackets of E_1 and E_2 is $[E_1, E_2] = \cos \alpha E_1$, one can choose local coordinates u and v such that

$$E_2 = \frac{\partial}{\partial u}$$
 and $E_1 = \beta(u, v) \frac{\partial}{\partial v}$.

Denote by

 $F: U \subset \mathbb{R}^2 \longrightarrow M \hookrightarrow Sol_3 \quad (u, v) \longmapsto (F_1(u, v), \ F_2(u, v), \ F_3(u, v))$

the immersion of the surface M in Sol_3 .

It follows

$$F_{1}(v) = \int^{v} \frac{1}{\rho(\tau)} d\tau$$

$$F_{2}(u) = \int^{u} \left(\sin \alpha(\tau) e^{\int^{\tau} \cos \alpha(s) ds}\right) d\tau$$

$$F_{3}(u) = \int^{u} \cos \alpha(\tau) d\tau.$$

Marian Ioan Munteanu (UAIC)

Granada, Nov. 24, 2010

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

First results

Changing the v parameter, one gets the following parametrization

$$F(u,v) = \left(v, \phi(u), \chi(u)\right)$$

which represents a cylinder over the plane curve $\gamma(u) = (0, \phi(u), \chi(u))$ where $\phi(u) = \int^{u} (\sin \alpha(\tau) e^{\int^{\tau} \cos \alpha(s) ds}) d\tau$ and $\chi(u) = \int^{u} \cos \alpha(\tau) d\tau$.

Notice that the surface is the group product between the curve $v \mapsto (v, 0, 0)$ and the curve γ .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

First results

heta arbitrary: we distinguish some particular situations for lpha:

Case sin $\alpha = 0$. Then $\cos \alpha = \pm 1$ and the principal curvature corresponding to the principal direction T vanishes. Straightforward computations yield $\theta = \frac{\pi}{2}$ case which was discussed before.

Case $\cos \alpha = 0$. Such surface is minimal.

Proposition

The surface *M* given by the parametrization

$$F(u,v) = \left(an heta \ e^{u \cos heta}, \ v, \ -u \cos heta
ight)$$

is a constant angle surface in Sol₃.

This surface is a (group) product between the curve $v \mapsto (0, v, 0)$ and the plane curve $\gamma(u) = (\tan \theta \ e^{u \cos \theta}, 0, -u \cos \theta)$.

First results

θ arbitrary: we distinguish some particular situations for α :

Case sin $\alpha = 0$. Then $\cos \alpha = \pm 1$ and the principal curvature corresponding to the principal direction *T* vanishes. Straightforward computations yield $\theta = \frac{\pi}{2}$ case which was discussed before. **Case** $\cos \alpha = 0$. Such surface is minimal.

Proposition

The surface M given by the parametrization

$$F(u,v) = \left(\tan \theta \ e^{u \cos \theta}, \ v, \ -u \cos \theta
ight)$$

is a constant angle surface in Sol_3 .

This surface is a (group) product between the curve $v \mapsto (0, v, 0)$ and the plane curve $\gamma(u) = (\tan \theta \ e^{u \cos \theta}, 0, -u \cos \theta)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

General situation

The matrix of the Weingarten operator A with respect to the basis $\{E_1, E_2\}$ has the following expression

$$A = \left(\begin{array}{cc} -\sin\alpha\sin\theta & 0\\ 0 & \sigma \end{array}\right)$$

for a certain function $\sigma \in C^{\infty}(M)$. Moreover, the Gauss formula yields

$$E_1(\alpha) = 2\cos\theta\cos\alpha$$
 $E_2(\alpha) = \sin\alpha - \frac{\sigma}{\sin\theta}$

and the compatibility condition

 $(\nabla_{E_1} E_2 - \nabla_{E_2} E_1)(\alpha) = [E_1, E_2](\alpha) = E_1(E_2(\alpha)) - E_2(E_1(\alpha))$

gives rise to the following differential equation

$$E_1(\sigma) + \sigma \cos \theta \sin \alpha + \sigma^2 \cot \theta = 2 \sin \theta \cos \theta \sin^2 \alpha.$$

- ▲ 同 ▶ ▲ 目 ▶ ▲ 目 ● ● ● ●

Difficult computations

coordinate *u* such that $\frac{\partial}{\partial u} = E_1$.

 $\partial_u \alpha = 2\cos\theta\cos\alpha.$

Solving this PDE one gets

 $\sin \alpha = \tanh(2u\cos\theta + \psi(v))$

take v in such way that $\frac{\partial \alpha}{\partial v} = 0$, namely ψ is a constant Denote: $I(u) = \int^{u} \sqrt{\cosh(2\tau\cos\theta + \psi_0)} d\tau$, $J(u) = \int^{u} \cosh^{-\frac{3}{2}}(2\tau\cos\theta + \psi_0)d\tau$

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

▲□ ▲ □ ▲ □ ▲ □ ● ● ●

Classification result

Theorem (López, M., 2010)

A general constant angle surface in Sol₃ can be parameterized as

 $F(u,v) = \gamma_1(v) * \gamma_2(u)$

where

$$\gamma_{1}(v) = \left(\sin\theta \int^{v} \xi(\tau)e^{-\zeta(\tau)}d\tau, \pm \cos\theta \int^{v} \xi(\tau)e^{\zeta(\tau)}d\tau, \zeta(v)\right)$$
$$\gamma_{2}(u) = \left(\sin\theta \ I(u), \pm \cos\theta \ J(u), -\frac{1}{2}\log\cosh\bar{u}\right)$$
and ζ, ξ are arbitrary functions depending on v .

The curve γ_2 is parametrized by arclength.

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Thank you for attention!

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

v. 24, 2010 46 / 46

Thank you for attention!

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

LO 46 / 46

Thank you for attention!

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

4, 2010 46 / 46

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

v. 24, 2010 46 / 46

Thank you for

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

Thank you for attention!

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

, 2010 46 / 46

Thank you for attention!

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

24, 2010 46 / 46

Thank you for attention!

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

Thank you for attention!

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

4, 2010 46 / 46

Thank you for attention!

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

Thank you for attention!

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

Thank you for attention!

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

v. 24, 2010 46 / 46

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ のQ@

Marian Ioan Munteanu (UAIC)

Surfaces in homogeneous 3-spaces

Granada, Nov. 24, 2010

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ のQ@