On the geometry of certain surfaces in homogeneous 3 -spaces

Marian Ioan Munteanu

University AI. I. Cuza lasi, Romania

Seminario de Geometría, Departamento de Geometría y Topología

Canonical coordinates and principal directions

(1) The ambient space $\mathbb{M}^{2}(c) \times \mathbb{R}$

- Constant Angle Surfaces in $\mathbb{M}^{2}(c) \times \mathbb{R}$
(2) Surfaces in $\mathbb{S}^{2} \times \mathbb{R}$
(3) Surfaces in $\mathbb{H}^{2} \times \mathbb{R}$
- Minkowski model of \mathbb{H}^{2}
- Minimality and Flatness

4) Surfaces in Euclidean space \mathbb{E}^{3}
(5) C.A.S. in Sol

The ambient space $\mathbb{M}^{2}(c) \times \mathbb{R}$

Space forms with constant sectional curvature c :

B. Nelli, H. Rosenberg, Minimal surfaces in $\mathbb{H}^{2} \times \mathbb{R}$, Bull. Braz. Math. Soc. 33 (2) (2002), 263-292.
H. Rosenberg, Minimal surfaces in $\mathbb{M}^{2} \times \mathbb{R}$, Illinois J. Math. 46 (4) (2002), 1177-1195.

The ambient space $\mathbb{M}^{2}(c) \times \mathbb{R}$

Space forms with constant sectional curvature c :

- $c=1 \Rightarrow \mathbb{M}^{2}(c)=\mathbb{S}^{2} \Rightarrow$ the ambient space $\mathbb{S}^{2} \times \mathbb{R}$
B. Nelli, H. Rosenberg, Minimal surfaces in $\mathbb{H}^{2} \times \mathbb{R}$, Bull. Braz. Math. Soc. 33 (2) (2002), 263-292.
直 H. Rosenberg, Minimal surfaces in $\mathbb{M}^{2} \times \mathbb{R}$, Illinois J. Math. 46 (4) (2002), 1177-1195.

The ambient space $\mathbb{M}^{2}(c) \times \mathbb{R}$

Space forms with constant sectional curvature c :

- $c=1 \Rightarrow \mathbb{M}^{2}(c)=\mathbb{S}^{2} \Rightarrow$ the ambient space $\mathbb{S}^{2} \times \mathbb{R}$
- $c=-1 \Rightarrow \mathbb{M}^{2}(c)=\mathbb{H}^{2} \Rightarrow$ the ambient space $\mathbb{H}^{2} \times \mathbb{R}$

妻
B. Nelli, H. Rosenberg, Minimal surfaces in $\mathbb{H}^{2} \times \mathbb{R}$, Bull. Braz. Math. Soc. 33 (2) (2002), 263-292.
R. Rosenberg, Minimal surfaces in $\mathbb{M}^{2} \times \mathbb{R}$, Illinois J. Math. 46 (4) (2002), 1177-1195.

The ambient space $\mathbb{M}^{2}(c) \times \mathbb{R}$

Space forms with constant sectional curvature c :

- $c=1 \Rightarrow \mathbb{M}^{2}(c)=\mathbb{S}^{2} \Rightarrow$ the ambient space $\mathbb{S}^{2} \times \mathbb{R}$
- $c=-1 \Rightarrow \mathbb{M}^{2}(c)=\mathbb{H}^{2} \Rightarrow$ the ambient space $\mathbb{H}^{2} \times \mathbb{R}$
- $c=0 \Rightarrow \mathbb{M}^{2}(c)=\mathbb{R}^{2} \Rightarrow$ the ambient space $\mathbb{R}^{2} \times \mathbb{R}=\mathbb{R}^{3}$

圊 B. Nelli, H. Rosenberg, Minimal surfaces in $\mathbb{H}^{2} \times \mathbb{R}$, Bull. Braz. Math. Soc. 33 (2) (2002), 263-292.
直 H. Rosenberg, Minimal surfaces in $\mathbb{M}^{2} \times \mathbb{R}$, Illinois J. Math. 46 (4) (2002), 1177-1195.

Problem 1: Constant Angle Surfaces

A problem studied until now consists of the classification and characterization of Constant Angle Surfaces (CAS) in different ambient spaces. A CAS is an orientable surface whose unit normal makes a constant angle, denoted by θ, with a fixed direction.

F. Dillen, J. Fastenakels, J

\square

Problem 1: Constant Angle Surfaces

A problem studied until now consists of the classification and characterization of Constant Angle Surfaces (CAS) in different ambient spaces. A CAS is an orientable surface whose unit normal makes a constant angle, denoted by θ, with a fixed direction.
The complete classification:

F. Dillen, J. Fastenakels, J

\square

Problem 1: Constant Angle Surfaces

A problem studied until now consists of the classification and characterization of Constant Angle Surfaces (CAS) in different ambient spaces. A CAS is an orientable surface whose unit normal makes a constant angle, denoted by θ, with a fixed direction.
The complete classification:
(i) F. Dillen, J. Fastenakels, J. Van der Veken, L. Vrancken, Constant Angle Surfaces in $\mathbb{S}^{2} \times \mathbb{R}$, Monaths. Math. 152 (2) (2007), 89-96.

Problem 1: Constant Angle Surfaces

A problem studied until now consists of the classification and characterization of Constant Angle Surfaces (CAS) in different ambient spaces. A CAS is an orientable surface whose unit normal makes a constant angle, denoted by θ, with a fixed direction.
The complete classification:
F. Dillen, J. Fastenakels, J. Van der Veken, L. Vrancken, Constant Angle Surfaces in $\mathbb{S}^{2} \times \mathbb{R}$, Monaths. Math. 152 (2) (2007), 89-96.

固 F. Dillen, M.I.M., Constant Angle Surfaces in $\mathbb{H}^{2} \times \mathbb{R}$, Bull. Braz. Math. Soc. 40 (1) (2009), 85-97.

Problem 1: Constant Angle Surfaces

A problem studied until now consists of the classification and characterization of Constant Angle Surfaces (CAS) in different ambient spaces. A CAS is an orientable surface whose unit normal makes a constant angle, denoted by θ, with a fixed direction.
The complete classification:
F. Dillen, J. Fastenakels, J. Van der Veken, L. Vrancken, Constant Angle Surfaces in $\mathbb{S}^{2} \times \mathbb{R}$, Monaths. Math. 152 (2) (2007), 89-96.

目 F. Dillen, M.I.M., Constant Angle Surfaces in $\mathbb{H}^{2} \times \mathbb{R}$, Bull. Braz. Math. Soc. 40 (1) (2009), 85-97.

图 M.I.M., A.I. Nistor, A new approach on constant angle surfaces in \mathbb{E}^{3}, Turk. J. Math. 33 (2) (2009), 169-178.

Problem 2: Canonical directions

When the ambient is of the form $\mathbb{M}^{2} \times \mathbb{R}$, a favored direction is \mathbb{R}. It is known that for a constant angle surface in $\mathbb{E}^{3}, \mathbb{S}^{2} \times \mathbb{R}$ or in $\mathbb{H}^{2} \times \mathbb{R}$, the projection of $\frac{\partial}{\partial t}$ (where t is the global parameter on \mathbb{R}) onto the tangent plane of the immersed surface, denoted by T, is a principal direction with the corresponding principal curvature identically zero.

Problem 2: Canonical directions

When the ambient is of the form $\mathbb{M}^{2} \times \mathbb{R}$, a favored direction is \mathbb{R}. It is known that for a constant angle surface in $\mathbb{E}^{3}, \mathbb{S}^{2} \times \mathbb{R}$ or in $\mathbb{H}^{2} \times \mathbb{R}$, the projection of $\frac{\partial}{\partial t}$ (where t is the global parameter on \mathbb{R}) onto the tangent plane of the immersed surface, denoted by T, is a principal direction with the corresponding principal curvature identically zero.

Question

Study surfaces in $\mathbb{M}^{2} \times \mathbb{R}$ such that T remains a principal direction but with the corresponding principal curvature different from 0.

First answer in $\mathbb{S}^{2} \times \mathbb{R}$

F. Dillen, J. Fastenakels, J. Van der Veken, Surfaces in $\mathbb{S}^{2} \times \mathbb{R}$ with a canonical principal direction, Ann. Glob. Anal. Geom. 35 (4) (2009), 381-396.

First answer in $\mathbb{S}^{2} \times \mathbb{R}$

The characterization of surfaces with a principal direction:

Theorem (Dillen, Fastenakels, Van der Veken, 2009)
Let M be an immersed surface in $\mathbb{S}^{2} \times \mathbb{R}$ and p a point of M for which $\theta(p) \neq\left\{0, \frac{\pi}{2}\right\}$. Then T is a principal direction if and only if M considered as a surface in \mathbb{E}^{4} is normally flat.

First answer in $\mathbb{S}^{2} \times \mathbb{R}$

Proposition (classification result) - Dillen, Fastenakels, Van der Veken, 2009

A surface M immersed in $\mathbb{S}^{2} \times \mathbb{R}$ is a surface for which T is a principal direction if and only if the immersion F is (up to isometries of $\mathbb{S}^{2} \times \mathbb{R}$) in the neighborhood of a point p where $\theta(p) \notin\left\{0, \frac{\pi}{2}\right\}$ given by

$$
F: M \rightarrow \mathbb{S}^{2} \times \mathbb{R}:(x, y) \mapsto\left(F_{1}(x, y), F_{2}(x, y), F_{3}(x, y), F_{4}(x)\right)
$$

with

$$
F_{j}(x, y)=\int_{y_{0}}^{y} \alpha_{j}(v) \sin (\psi(x)+\phi(v)) d v
$$

for $j=1,2,3$ where $\phi^{\prime}(x)=\cos (\theta(x)), F_{4}^{\prime}(x)=\sin (\theta(x)),\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is a curve in \mathbb{S}^{2} and $F_{1}^{2}+F_{2}^{2}+F_{3}^{2}=1$. Moreover, $\alpha_{1}, \alpha_{2}, \alpha_{3}, \psi$ and ϕ are related by

$$
\begin{aligned}
\alpha_{j}^{\prime}(y)= & -\cos (\psi(x)+\phi(y)) \int_{y_{0}}^{y} \alpha_{j}(v) \cos (\psi(x)+\phi(v)) d v \\
& -\sin (\psi(x)+\phi(y)) \int^{y} \alpha_{j}(v) \sin (\psi(x)+\phi(v)) d v .
\end{aligned}
$$

General things in $\mathbb{H}^{2} \times \mathbb{R}$

Notations:

- $\widetilde{M}=\mathbb{H}^{2} \times \mathbb{R}$ the Riemannian product of $\left(\mathbb{H}^{2}(-1), g_{H}\right)$ and \mathbb{R}
- $\widetilde{g}=g_{H}+d t^{2}$ the product metric, t the (global) coordinate on \mathbb{R}
- $\widetilde{\nabla}$ the Levi Civita connection of \widetilde{g}
- $\partial_{t}=\frac{\partial}{\partial t}$ the unit vector field tangent to the \mathbb{R}-direction
- \widetilde{R} either the curvature tensor $\widetilde{R}(X, Y)=\left[\widetilde{\nabla}_{X}, \widetilde{\nabla}_{Y}\right]-\widetilde{\nabla}_{[X, Y]}$, or the Riemann-Christoffel tensor on \widetilde{M} defined by $\widetilde{R}(W, Z, X, Y)=\widetilde{g}(W, \widetilde{R}(X, Y) Z)$.

General things in $\mathbb{H}^{2} \times \mathbb{R}$

Notations:

- $\widetilde{M}=\mathbb{H}^{2} \times \mathbb{R}$ the Riemannian product of $\left(\mathbb{H}^{2}(-1), g_{H}\right)$ and \mathbb{R}
- $\widetilde{g}=g_{H}+d t^{2}$ the product metric, t the (global) coordinate on \mathbb{R}
- ∇ the Levi Civita connection of \widetilde{g}
- $\partial_{t}=\frac{\partial}{\partial t}$ the unit vector field tangent to the \mathbb{R}-direction
- \widetilde{R} either the curvature tensor $\widetilde{R}(X, Y)=\left[\widetilde{\nabla}_{X}, \widetilde{\nabla}_{Y}\right]-\widetilde{\nabla}_{[X, Y]}$, or the Riemann-Christoffel tensor on \widetilde{M} defined by $\widetilde{R}(W, Z, X, Y)=\widetilde{g}(W, \widetilde{R}(X, Y) Z)$.
- $F: M \longrightarrow \widetilde{M}$ - isometric immersion $(\operatorname{dim} M=2)$
- ξ - a unit normal vector to M, A - its shape operator
- $g=\left.\widetilde{g}\right|_{M}$ - metric on M, ∇ - corresponding Levi Civita connection
(G) $\widetilde{\nabla}_{x} Y=\nabla_{X} Y+h(X, Y)$, h the second fundamental form of M (W) $\widetilde{\nabla}_{X} \xi=-A_{\xi} X+\nabla \frac{1}{X} \xi$

Some useful formulas

Since $\partial_{t}:=\frac{\partial}{\partial t}$ is of unit length, we decompose it as $\partial_{t}=T+\cos \theta \xi$ where

- T is the projection on $T(M)$ with $|T|=\sin \theta$ and
- θ is the angle function : $\cos \theta=\widetilde{g}\left(\partial_{t}, \xi\right)$.

Some useful formulas

Since $\partial_{t}:=\frac{\partial}{\partial t}$ is of unit length, we decompose it as $\partial_{t}=T+\cos \theta \xi$ where - T is the projection on $T(M)$ with $|T|=\sin \theta$ and

- θ is the angle function : $\cos \theta=\widetilde{g}\left(\partial_{t}, \xi\right)$.
(E.G.)

$$
\begin{aligned}
R(X, Y, Z, W)= & g(A X, W) g(A Y, Z)-g(A X, Z) g(A Y, W)- \\
& g(X, W) g(Y, Z)+g(X, Z) g(Y, W)+ \\
& g(X, W) g(Y, T) g(Z, T)+g(Y, Z) g(X, T) g(W, T)- \\
& g(X, Z) g(Y, T) g(W, T)-g(Y, W) g(X, T) g(Z, T) \\
(E . C .) \quad(\nabla \times A) Y- & (\nabla Y A) X=\cos \theta(g(X, T) Y-g(Y, T) X)
\end{aligned}
$$

Some useful formulas

Since $\partial_{t}:=\frac{\partial}{\partial t}$ is of unit length, we decompose it as $\partial_{t}=T+\cos \theta \xi$ where - T is the projection on $T(M)$ with $|T|=\sin \theta$ and

- θ is the angle function : $\cos \theta=\widetilde{g}\left(\partial_{t}, \xi\right)$.
(E.G.)

$$
\begin{aligned}
R(X, Y, Z, W)= & g(A X, W) g(A Y, Z)-g(A X, Z) g(A Y, W)- \\
& g(X, W) g(Y, Z)+g(X, Z) g(Y, W)+ \\
& g(X, W) g(Y, T) g(Z, T)+g(Y, Z) g(X, T) g(W, T)- \\
& g(X, Z) g(Y, T) g(W, T)-g(Y, W) g(X, T) g(Z, T) \\
(E . C .) \quad(\nabla \times A) Y- & (\nabla Y A) X=\cos \theta(g(X, T) Y-g(Y, T) X)
\end{aligned}
$$

Computing the Gaussian curvature K, from the equation of Gauss it follows

$$
K=\operatorname{det} A-\cos ^{2} \theta
$$

Some useful formulas

Since $\partial_{t}:=\frac{\partial}{\partial t}$ is of unit length, we decompose it as $\partial_{t}=T+\cos \theta \xi$ where

- T is the projection on $T(M)$ with $|T|=\sin \theta$ and
- θ is the angle function : $\cos \theta=\widetilde{g}\left(\partial_{t}, \xi\right)$.
(E.G.)

$$
\begin{aligned}
R(X, Y, Z, W)= & g(A X, W) g(A Y, Z)-g(A X, Z) g(A Y, W)- \\
& g(X, W) g(Y, Z)+g(X, Z) g(Y, W)+ \\
& g(X, W) g(Y, T) g(Z, T)+g(Y, Z) g(X, T) g(W, T)- \\
& g(X, Z) g(Y, T) g(W, T)-g(Y, W) g(X, T) g(Z, T) \\
(E . C .) \quad(\nabla \times A) Y- & (\nabla Y A) X=\cos \theta(g(X, T) Y-g(Y, T) X)
\end{aligned}
$$

Computing the Gaussian curvature K, from the equation of Gauss it follows

$$
K=\operatorname{det} A-\cos ^{2} \theta
$$

Knowing that any vector field $X \in T(M)$ can be decomposed as $X=X_{H}+g(X, T) \partial_{t}$ we get

Proposition (Dillen, M., 2009)

Let X be an arbitrary tangent vector to M. Then we have

$$
\begin{align*}
& \nabla_{X} T=\cos \theta A X \tag{1}\\
& X(\cos \theta)=-g(A X, T) \tag{2}
\end{align*}
$$

\square

Question

Proposition (Dillen, M., 2009)

Let X be an arbitrary tangent vector to M. Then we have

$$
\begin{align*}
& \nabla_{X} T=\cos \theta A X \tag{1}\\
& X(\cos \theta)=-g(A X, T) \tag{2}
\end{align*}
$$

If $\theta=$ const., then (2) yields $g(A T, X)=0, \forall X \in T(M)$. Hence:

- if $T=0$ on M, then ∂_{t} is always normal, so $M \subseteq \mathbb{H}^{2} \times\left\{t_{0}\right\}, t_{0} \in \mathbb{R}$.
- if $T \neq 0$ then T is a principal direction with principal curvature 0 .

Question

Study surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ such that T remains a principal direction but with the corresponding principal curvature different from 0.

First answers

In the following we suppose that θ is different from 0 and $\frac{\pi}{2}$.

Proposition (Dillen, M., Nistor, to appear Taiwan. J. Math.)

If $\theta \neq 0, \frac{\pi}{2}$, then we can choose local coordinates (x, y) on the surface M isometrically immersed in \widetilde{M} with ∂_{x} in the direction of T s.t.

$$
\begin{gather*}
g(x, y)=\frac{1}{\sin ^{2} \theta} d x^{2}+\beta^{2}(x, y) d y^{2} \tag{3}\\
A=\left(\begin{array}{cc}
\theta_{x} \sin \theta & \theta_{y} \sin \theta \\
\frac{\theta_{y}}{\sin \theta \beta^{2}} & \frac{\sin ^{2} \theta \beta_{x}}{\cos \theta \beta}
\end{array}\right) \tag{4}
\end{gather*}
$$

and the functions θ and β are related by the PDE

$$
\begin{equation*}
\frac{\sin ^{2} \theta}{\cos \theta} \frac{\beta_{x x}}{\beta}+\frac{\sin \theta \theta_{x}}{\cos ^{2} \theta} \frac{\beta_{x}}{\beta}+\frac{\theta_{y}}{\sin \theta} \frac{\beta_{y}}{\beta^{3}}+\left(2 \frac{\cos \theta \theta_{y}^{2}}{\sin ^{2} \theta}-\frac{\theta_{y y}}{\sin \theta}\right) \frac{1}{\beta^{2}}-\cos \theta=0 \tag{5}
\end{equation*}
$$

An analogue result formulated for surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ having T as principal direction, is the following

Proposition (Dillen, M., Nistor, 2009)

Let M be isometrically immersed in $\mathbb{H}^{2} \times \mathbb{R}$ with T a principal direction. Then, we can choose the local coordinates (x, y) such that ∂_{x} is in the direction of T,

$$
\begin{align*}
& g=d x^{2}+\beta^{2}(x, y) d y^{2} \tag{6}\\
& A=\left(\begin{array}{cc}
\theta_{x} & 0 \\
0 & \tan \theta \frac{\beta_{x}}{\beta}
\end{array}\right) . \tag{7}
\end{align*}
$$

Moreover, the functions θ and β are related by the PDE

$$
\begin{equation*}
\beta_{x x}+\tan \theta \theta_{x} \beta_{x}-\beta \cos ^{2} \theta=0 \tag{8}
\end{equation*}
$$

and $\theta_{y}=0$.

Canonical coordinates

Remark

For every two functions θ and β defined on a smooth simply connected surface M such that $\theta_{y}=0$ and $\beta_{x x}+\tan \theta \theta_{x} \beta_{x}-\beta \cos ^{2} \theta=0$ for certain coordinates (x, y), we can construct an isometric immersion $F: M \rightarrow$ $\mathbb{H}^{2} \times \mathbb{R}$ with the shape operator (7) and such that it has a canonical principal direction.

Remark

Let M be an isometrically immersed surface in $\mathbb{H}^{2} \times \mathbb{R}$ such that T is a principal direction. Coordinates (x, y) on M such that ∂_{x} is collinear with T and the metric g has the form $g=d x^{2}+\beta^{2}(x, y) d y^{2}$ will be called canonical coordinates. Of course, they are not unique. More precisely, if (x, y) and (\bar{x}, \bar{y}) are both canonical coordinates, then they are related by $\bar{x}= \pm x+c$ and $\bar{y}=\bar{y}(y)$, where c is a real constant.

Minkowski model of the hyperbolic plane \mathbb{H}^{2}

Models for the hyperbolic plane:
(1) the Klein model
(2) the Poincaré disk
(3) the upper half plane \mathbb{H}^{+}
(9) Minkowski model \mathcal{H}

Minkowski model of the hyperbolic plane \mathbb{H}^{2}

\square
a 'he rlein mode'
(2) the Poincaré disk
(9) Minkowski model \mathcal{H}

$$
\mathbb{H}^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}_{1}^{3} \mid x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=-1, x_{3}>0\right\}
$$

with Lorentzian metric

$$
\langle,\rangle=d x_{1}^{2}+d x_{2}^{2}-d x_{3}^{2}
$$

having constant Gaussian curvature -1 .

Characterization theorem

In order to study under which conditions T is a canonical principal direction, we regard the surface M as a surface immersed in $\mathbb{R}_{1}^{3} \times \mathbb{R}$ (also denoted \mathbb{R}_{1}^{4}) having codimension 2.
The metric on the ambient space is given by $\widetilde{g}=d x_{1}^{2}+d x_{2}^{2}-d x_{3}^{2}+d t^{2}$. M is given by the immersion $F: M \rightarrow \mathbb{R}_{1}^{3} \times \mathbb{R}, F=\left(F_{1}, F_{2}, F_{3}, F_{4}\right)$.

Theorem (Dillen, M., Nistor, 2009)
Let M be a surface isometrically immersed in $\mathbb{H}^{2} \times \mathbb{R}$. T is a principal direction if and only if M is normally flat in \mathbb{R}_{1}^{4}.

Classification theorem - version 1

Theorem (Dillen, M., Nistor, 2009)

If $F: M \rightarrow \mathbb{H}^{2} \times \mathbb{R}$ is an isometric immersion with $\theta \neq 0, \frac{\pi}{2}$, then T is a principal direction if and only if F is given, up to isometries of $\mathbb{H}^{2} \times \mathbb{R}$, by

$$
F(x, y)=\left(F_{1}(x, y), F_{2}(x, y), F_{3}(x, y), F_{4}(x)\right)
$$

with $F_{j}(x, y)=A_{j}(y) \sinh \phi(x)+B_{j}(y) \cosh \phi(x), j=\overline{1,3}$ and $F_{4}(x)=\int_{0}^{x} \sin \theta(\tau) d \tau$, where $\phi^{\prime}(x)=\cos \theta$. The six functions A_{j} and B_{j} are found in one of the following cases

- Case 1.

$$
\begin{aligned}
A_{j}(y) & =\int_{0}^{y} H_{j}(\tau) \cosh \psi(\tau) d \tau+c_{1 j} \\
B_{j}(y) & =\int_{0}^{y} H_{j}(\tau) \sinh \psi(\tau) d \tau+c_{2 j} \\
H_{j}^{\prime}(y) & =B_{j}(y) \sinh \psi(y)-A_{j}(y) \cosh \psi(y)
\end{aligned}
$$

- Case 2.

$$
\begin{aligned}
A_{j}(y) & =\int_{0}^{y} H_{j}(\tau) \sinh \psi(\tau) d \tau+c_{1 j} \\
B_{j}(y) & =\int_{0}^{y} H_{j}(\tau) \cosh \psi(\tau) d \tau+c_{2 j} \\
H_{j}^{\prime}(y) & =-A_{j}(y) \sinh \psi(y)+B_{j}(y) \cosh \psi(y)
\end{aligned}
$$

- Case 3.

$$
\begin{aligned}
A_{j}(y) & = \pm \int_{0}^{y} H_{j}(\tau) d \tau+c_{1 j} \\
B_{j}(y) & =\int_{0}^{y} H_{j}(\tau) d \tau+c_{2 j} \\
H_{j}^{\prime}(y) & =c_{2 j} \mp c_{1 j}
\end{aligned}
$$

where $H=\left(H_{1}, H_{2}, H_{3}\right)$ is a curve on the de Sitter space \mathbb{S}_{1}^{2}, ψ is a smooth function on M and $c_{1}=\left(c_{11}, c_{12}, c_{13}\right), c_{2}=\left(c_{21}, c_{22}, c_{23}\right)$ are constant vectors.

Clasiffication theorem - version 2

Theorem (Dillen, M., Nistor, 2009)
If $F: M \rightarrow \mathbb{H}^{2} \times \mathbb{R}$ is an isometric immersion with angle function $\theta \neq 0, \frac{\pi}{2}$, then T is a principal direction if and only if F is given locally, up to isometries of the ambient space by

$$
F(x, y)=(A(y) \sinh \phi(x)+B(y) \cosh \phi(x), \chi(x))
$$

where $A(y)$ is a regular curve in $\mathbb{S}_{1}^{2}, B(y)$ is a regular curve in \mathbb{H}_{1}^{2}, such that $\langle A, B\rangle=0, A^{\prime} \| B^{\prime}$ and where $(\phi(x), \chi(x))$ is a regular curve in \mathbb{R}^{2}.
The angle function θ of M depends only on x and coincides with the angle function of the curve (ϕ, χ). In particular we can arc length reparametrize (ϕ, χ); then (x, y) are canonical coordinates and $\theta^{\prime}(x)=\kappa(x)$, the curvature of (ϕ, χ).

Clasiffication theorem - version 3

Theorem (Dillen, M., Nistor, 2009)
Let $F: M \rightarrow \mathbb{H}^{2} \times \mathbb{R}$ be an isometrically immersed surface M in $\mathbb{H}^{2} \times \mathbb{R}$, with $\theta \neq 0, \frac{\pi}{2}$. Then M has T as a principal direction if and only if F is given, up to rigid motions of the ambient space, either by

$$
\begin{equation*}
F(x, y)=\left(f(y) \cosh \phi(x)+N_{f}(y) \sinh \phi(x), \chi(x)\right) \tag{9}
\end{equation*}
$$

where $f(y)$ is a regular curve in \mathbb{H}_{1}^{2} and $N_{f}(y)=\frac{f(y) \boxtimes f^{\prime}(y)}{\sqrt{\left\langle f^{\prime}(y), f^{\prime}(y)\right\rangle}}$ represents the normal of f. Moreover, (ϕ, χ) is a regular curve in \mathbb{R}^{2} and the angle function θ of this curve is the same as the angle function of the surface parameterized by F.

Examples

Now, we would like to give some examples of surfaces that can be retrieved from the classification theorem. Let us consider first $\psi(y)=0$ for all y in Case 1, getting

$$
A_{j}(y)=\int_{0}^{y} H_{j}(\tau) d \tau+c_{1 j}, \quad B_{j}(y)=c_{2 j}, H_{j}^{\prime}(y)=-\int_{0}^{y} H_{j}(\tau) d \tau-c_{1 j} .
$$

The parametrization F in this case is given by

Example (rotational surface)

$$
\begin{aligned}
F(x, y)=(\sin y \sinh & \left(\int_{0}^{x} \cos \theta(\tau) d \tau\right), \cos y \sinh \left(\int_{0}^{x} \cos \theta(\tau) d \tau\right) \\
& \left.\cosh \left(\int_{0}^{x} \cos \theta(\tau) d \tau\right), \int_{0}^{x} \sin \theta(\tau) d \tau\right)
\end{aligned}
$$

Examples

Concerning Case 3 in classification theorem, let us choose for example $c_{1}=(0,1,0), c_{2}=(0,0,1)$ and $c_{3}=(1,0,0)$. The parametrization in this case is given by

Example

$$
\begin{aligned}
& F(x, y)=\left(A(y) \sinh \left(\int_{0}^{x} \cos \theta(\tau) d \tau\right)+\right. \\
& \left.B(y) \cosh \left(\int_{0}^{x} \cos \theta(\tau) d \tau\right), \int_{0}^{x} \sin \theta(\tau) d \tau\right) \\
& \text { where } A(y)=\left(y, 1-\frac{y^{2}}{2}, \frac{y^{2}}{2}\right) \text { and } B(y)=\left(y,-\frac{y^{2}}{2}, 1+\frac{y^{2}}{2}\right) \text {. }
\end{aligned}
$$

Examples

If $\theta(x)=x^{2}$, the surface is

Example

$$
\begin{aligned}
F(x, y)=(& A(y) \sinh \left(\sqrt{\frac{\pi}{2}} C\left(\sqrt{\frac{2}{\pi}} x\right)\right)+B(y) \cosh \left(\sqrt{\frac{\pi}{2}} C\left(\sqrt{\frac{2}{\pi}} x\right)\right) \\
& \left.\sqrt{\frac{\pi}{2}} S\left(\sqrt{\frac{2}{\pi}} x\right)\right)
\end{aligned}
$$

where C and S are the traditional notations for the Fresnel integrals $C(z)=\int_{0}^{z} \cos \left(\frac{\pi t^{2}}{2}\right) d t$ respectively $S(z)=\int_{0}^{z} \sin \left(\frac{\pi t^{2}}{2}\right) d t$. The curve involved in the classification theorem is given in this case by $(\phi(x), \chi(x))=(C(x), S(x))$, known as Cornu spiral.

Minimality

Theorem (Dillen, M., Nistor, 2009)
Let M be a surface isometrically immersed in $\mathbb{H}^{2} \times \mathbb{R}$, with $\theta \neq 0, \frac{\pi}{2}$. Then M is minimal with T as principal direction if and only if the immersion is, up to isometries of the ambient space, locally given by $F: M \longrightarrow \mathbb{H}^{2} \times \mathbb{R}$

$$
\begin{align*}
& F(x, y)=\left(\frac{b(x)}{\sqrt{1+c_{1}^{2}-c_{2}^{2}}}, \frac{\sqrt{a^{2}(x)+1}}{\sqrt{1+c_{1}^{2}-c_{2}^{2}}} \sinh y, \frac{\sqrt{a^{2}(x)+1}}{\sqrt{1+c_{1}^{2}-c_{2}^{2}}} \cosh y, \chi(x)\right) \tag{10.a}\\
& F(x, y)=\left(\frac{\sqrt{a^{2}(x)+1}}{\sqrt{c_{2}^{2}-c_{1}^{2}-1}} \cos y, \frac{\sqrt{a^{2}(x)+1}}{\sqrt{c_{2}^{2}-c_{1}^{2}-1}} \sin y, \frac{b(x)}{\sqrt{c_{2}^{2}-c_{1}^{2}-1}}, \chi(x)\right) \tag{10.b}\\
& F(x, y)=\left(b(x) y, \frac{b(x)}{2}\left(1-y^{2}\right)-\frac{1}{2 b(x)}, \frac{b(x)}{2}\left(1+y^{2}\right)+\frac{1}{2 b(x)}, \chi(x)\right) \tag{10.c}
\end{align*}
$$

Minimality

Theorem (cont.)

Let M be a surface isometrically immersed in $\mathbb{H}^{2} \times \mathbb{R}$, with $\theta \neq 0, \frac{\pi}{2}$. Then up to isometries of the ambient space, locally given by
where

$$
\chi(x)=\int_{0}^{x} \frac{1}{\sqrt{a^{2}(\tau)+1}} d \tau
$$

with $a(x)=c_{1} \cosh x+c_{2} \sinh x, b(x)=a^{\prime}(x)$ and $c_{1}, c_{2} \in \mathbb{R}$.

Minimality in short

Remark

Since

$$
F(x, y)=(A(y) \sinh \phi(x)+B(y) \cosh \phi(x), \chi(x)),
$$

in general, under minimality assumption the curve $(\phi(x), \chi(x))$ is determined up to $c_{1}, c_{2} \in \mathbb{R}$ by $\theta=\arctan \left(\frac{1}{c_{1} \cosh x+c_{2} \sinh x}\right)$, since $\phi^{\prime}(x)=\cos \theta$ and $\chi^{\prime}(x)=\sin \theta$. Moreover, in each case of the previous theorem the curves A and B are given by

$$
\begin{array}{ll}
A(y)=(1,0,0) & B(y)=(0, \sinh y, \cosh y) \\
A(y)=(\cos y, \sin y, 0) & B(y)=(0,0,1) \\
A(y)=\left(y, 1-\frac{y^{2}}{2}, \frac{y^{2}}{2}\right) & B(y)=\left(y,-\frac{y^{2}}{2}, 1+\frac{y^{2}}{2}\right) .
\end{array}
$$

Flatness

Theorem (Dillen, M., Nistor, 2009)
Let M be a surface isometrically immersed in $\mathbb{H}^{2} \times \mathbb{R}$, with $\theta \neq 0, \frac{\pi}{2}$. Then M is flat with T as principal direction if and only if the immersion is, up to isometries of the ambient space, locally given by $F: M \longrightarrow \mathbb{H}^{2} \times \mathbb{R}$

$$
\begin{aligned}
& F(x, y)=\left(\frac{x}{\sqrt{c+1}} \cos y, \frac{x}{\sqrt{c+1}} \sin y, \frac{\sqrt{x^{2}+c+1}}{\sqrt{c+1}}, \chi(x)\right) \\
& F(x, y)=\left(\frac{\sqrt{x^{2}+c+1}}{\sqrt{-c-1}}, \frac{x}{\sqrt{-c-1}} \sinh y, \frac{x}{\sqrt{-c-1}} \cosh y, \chi(x)\right) \\
& F(x, y)=\left(x y, \frac{x}{2}\left(1-y^{2}\right)-\frac{1}{2 x}, \frac{x}{2}\left(1+y^{2}\right)+\frac{1}{2 x}, \chi(x)\right)
\end{aligned}
$$

where

$$
\chi(x)=\int^{x} \frac{\sqrt{\tau^{2}+c}}{\sqrt{\tau^{2}+c+1}} d \tau, c \in \mathbb{R} .
$$

The upper half plane model of \mathbb{H}^{2}

Models for the hyperbolic plane:
(1) the Klein model
(2) the Poincaré disk
(3) the upper half plane \mathbb{H}^{+}
(9) Minkowski model \mathcal{H}

The upper half plane model of \mathbb{H}^{2}

Models for the hyperbolic plane:
(1) the Klein model
(3) the upper half plane \mathbb{H}^{+}

$$
\mathbb{H}^{+}=\left\{(X, Y) \in \mathbb{R}^{2} \mid \quad Y>0\right\}
$$

with metric

$$
\langle,\rangle=\frac{d X^{2}+d Y^{2}}{Y^{2}}
$$

having constant Gaussian curvature -1 .

The upper half plane model of \mathbb{H}^{2}

Method 1: Use Cayley transformations from \mathcal{H} to H^{+}

$$
\begin{array}{ll}
x_{1}=\frac{X}{Y} & X=\frac{x_{1}}{x_{3}-x_{2}} \\
x_{2}=\frac{X^{2}+Y^{2}-1}{2 Y} & Y=\frac{1}{x_{3}-x_{2}} . \\
x_{3}=\frac{X^{2}+Y^{2}+1}{2 Y} . &
\end{array}
$$

showing the consistence of results with I-
A.I. Nistor, On some special surfaces in \mathbb{H}^{-}
\mathbb{R}, preprint 2010.

The upper half plane model of \mathbb{H}^{2}

Method 2: Analytical approach - solving the problem in \mathbb{H}^{+}and then showing the consistence of results with \mathcal{H} :
A.I. Nistor, On some special surfaces in $\mathbb{H}^{+} \times \mathbb{R}$, preprint 2010.

Surfaces in \mathbb{E}^{3} - minimality

Proposition (M., Nistor 2009)

Let M be a minimal isometric immersion in \mathbb{E}^{3}. We can choose (x, y)-local coordinates on M such that ∂_{x} is in direction of T, the metric of the surface can be expressed as

$$
\begin{equation*}
g=\frac{1}{\sin ^{2} \theta}\left(d x^{2}+d y^{2}\right) \tag{12}
\end{equation*}
$$

and the shape operator A in the basis $\left\{\partial_{x}, \partial_{y}\right\}$ has the following expression

$$
A=\sin \theta\left(\begin{array}{cc}
\theta_{x} & \theta_{y} \tag{13}\\
\theta_{y} & -\theta_{x}
\end{array}\right)
$$

Moreover, the function $\log \left(\tan \frac{\theta}{2}\right)$ is harmonic.

Example

$$
\begin{gathered}
\log \left(\tan \frac{\theta}{2}\right) \text { is harmonic } \Longleftrightarrow \Delta \log \left(\tan \frac{\theta}{2}\right)=0 \Longleftrightarrow \\
\cos \theta\left(\theta_{x}^{2}+\theta_{y}^{2}\right)-\sin \theta\left(\theta_{x x}+\theta_{y y}\right)=0 .
\end{gathered}
$$

Under assumption $\theta_{x}=c \theta_{y}$ one gets that

$$
\theta=2 \arctan \left(e^{d(c x+y)+d_{0}}\right)
$$

gives a minimal surface in \mathbb{E}^{3}.
Moreover, for any harmonic function f on M,

$$
\theta=2 \arctan \left(e^{f}\right)
$$

gives a minimal surface in \mathbb{E}^{3}.

Canonical coordinates in \mathbb{E}^{3}

The characterization theorem:
Theorem (M., Nistor, 2009)
Let M be an isometrically immersed surface in \mathbb{E}^{3}. Let (x, y) be orthogonal coordinates on M such that T is collinear to ∂_{x}. Then, T is a principal direction on M everywhere if and only if $\theta_{y}=0$.

Canonical coordinates in \mathbb{E}^{3}

The classification theorem:

Theorem (M., Nistor, 2009)

A surface M isometrically immersed in \mathbb{E}^{3} with T a canonical principal direction is given (up to isometries of \mathbb{E}^{3}) by one of the following cases:

- Case 1.

$$
r: M \rightarrow \mathbb{E}^{3}, r(x, y)=\left(\phi(x)(\cos y, \sin y)+\gamma(y), \int_{0}^{x} \sin \theta(\tau) d \tau\right)
$$

where

$$
\gamma(y)=\left(-\int_{0}^{y} \psi(\tau) \sin \tau d \tau, \int_{0}^{y} \psi(\tau) \cos \tau d \tau\right)
$$

- Case 2. (Cylinders)

$$
r: M \rightarrow \mathbb{E}^{3}, r(x, y)=\left(\phi(x) \cos y_{0}, \phi(x) \sin y_{0}, \int_{0}^{x} \sin \theta(\tau) d \tau\right)+y \gamma_{0}
$$

$$
\text { where } \gamma_{0}=\left(-\sin y_{0}, \cos y_{0}, 0\right), \quad y_{0} \in \mathbb{R}, \quad \phi^{\prime}(x)=\cos \theta .
$$

Canonical coordinates in \mathbb{E}^{3} - minimality

Theorem (M., Nistor, 2009)
Let M be a surface isometrically immersed in $\mathbb{E}^{3} . M$ is a minimal surface with T a principal direction if and only if the immersion is, up to isometries of the ambient space, given by

$$
\begin{aligned}
& r: M \rightarrow \mathbb{E}^{3} \\
& r(x, y)=\left(\sqrt{x^{2}+c^{2}}(\cos y, \sin y), \ln \left(x+\sqrt{x^{2}+c^{2}}\right)\right), c \in \mathbb{R}
\end{aligned}
$$

Remark

Moreover, we notice that this surface can be obtained rotating the catenary around the Oz-axis. Hence, we obtain that the only minimal surface in the Euclidean space with a canonical principal direction is the catenoid.

Canonical coordinates in \mathbb{E}^{3} - flatness

Theorem (M., Nistor, 2009)
Let M be a surface isometrically immersed in $\mathbb{E}^{3} . M$ is a flat surface with
T a principal direction if and only if the immersion is, up to isometries of the ambient space, given by
$r: M \rightarrow \mathbb{E}^{3}, \quad r(x, y)=\left(\phi(x) \cos y_{0}, \phi(x) \sin y_{0}, \int_{0}^{x} \sin \theta(\tau) d \tau\right)+y \gamma_{0}$
where $\gamma_{0}=\left(-\sin y_{0}, \cos y_{0}, 0\right), y_{0} \in \mathbb{R}$.
Here $\phi(x)$ represents a primitive of $\cos \theta$.
Notice that this is Case 2. (Cylinders) from the classification theorem.

Sketch of proof

Proof.

With the previous considerations, for any $X \in T(M)$ we compute

$$
D_{X}^{\frac{1}{X}} \tilde{\xi}=-\cos \theta\langle X, T\rangle \xi \quad \text { which implies } \quad D_{X}^{\frac{1}{X}} \xi=\cos \theta\langle X, T\rangle \tilde{\xi} .
$$

Since Proposition 7 holds, the metric is given by (3) and using the previous expressions one has

$$
R^{\perp}\left(\partial_{x}, \partial_{y}\right) \xi=\sin \theta \theta_{y} \tilde{\xi} \quad \text { and } \quad R^{\perp}\left(\partial_{x}, \partial_{y}\right) \tilde{\xi}=-\sin \theta \theta_{y} \xi
$$

Taking into account that ξ and $\tilde{\xi}$ are unitary and $\sin \theta$ cannot vanish, we get from the expressions above that M is normally flat if and only if $\theta_{y}=0$. On the other hand, T is a canonical principal direction if and only if $\theta_{y}=0$. This follows from expression (4) of the Weingarten operator A. Hence we get the conclusion.

The geometry of Sol_{3}

- Sol 3 : simply connected homogeneous 3-dimensional manifold whose isometry group has dimension 3.
- It is one of the eight models of geometry of Thurston. - As Riemannian manifold: \mathbb{R}^{3} equipped with the metric

The geometry of Sol_{3}

- Sol 3 : simply connected homogeneous 3-dimensional manifold whose isometry group has dimension 3.
- It is one of the eight models of geometry of Thurston.
- The group operation

The geometry of Sol_{3}

- Sol 3 : simply connected homogeneous 3-dimensional manifold whose isometry group has dimension 3.
- It is one of the eight models of geometry of Thurston.
- As Riemannian manifold: \mathbb{R}^{3} equipped with the metric

$$
\tilde{g}=e^{2 z} d x^{2}+e^{-2 z} d y^{2}+d z^{2}
$$

The geometry of Sol_{3}

- Sol_{3} : simply connected homogeneous 3-dimensional manifold whose isometry group has dimension 3.
- It is one of the eight models of geometry of Thurston.
- As Riemannian manifold : \mathbb{R}^{3} equipped with the metric

$$
\tilde{g}=e^{2 z} d x^{2}+e^{-2 z} d y^{2}+d z^{2}
$$

- The group operation

$$
(x, y, z) *\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+e^{-z} x^{\prime}, y+e^{z} y^{\prime}, z+z^{\prime}\right)
$$

The geometry of Sol_{3}

- The following transformations

$$
(x, y, z) \mapsto(y,-x,-z) \quad \text { and } \quad(x, y, z) \mapsto(-x, y, z)
$$

span a group of isometries of $\left(\mathrm{Sol}_{3}, g\right)$.
It is, in fact, the complete group of isotropy:
(1998), Troyanov, L'horizon de SOL, Exposition. Math. 16 (1998) 441-479.

The geometry of Sol_{3}

- The following transformations

$$
(x, y, z) \mapsto(y,-x,-z) \quad \text { and } \quad(x, y, z) \mapsto(-x, y, z)
$$

span a group of isometries of $\left(\mathrm{Sol}_{3}, g\right)$.

- This group is isomorphic to the dihedral group (with 8 elements) D_{4}. It is, in fact, the complete group of isotropy:

$$
\begin{aligned}
& (x, y, x) \longmapsto\left(\pm e^{-c} x+a, \pm e^{c} y+b, z+c\right) \\
& (x, y, z) \longmapsto\left(\pm e^{-c} y+a, \pm e^{c} x+b, z+c\right)
\end{aligned}
$$

目 M. Troyanov, L'horizon de SOL, Exposition. Math. 16 (1998), 441-479.

The geometry of Sol_{3}

With respect to the metric \tilde{g} an orthonormal basis of left-invariant vector fields is given by

$$
e_{1}=e^{-z} \frac{\partial}{\partial x}, \quad e_{2}=e^{z} \frac{\partial}{\partial y}, \quad e_{3}=\frac{\partial}{\partial z}
$$

The Levi Civita connection $\widetilde{\nabla}$ of Sol_{3} with respect to $\left\{e_{1}, e_{2}, e_{3}\right\}$ is given by

$$
\begin{array}{lll}
\widetilde{\nabla}_{e_{1}} e_{1}=-e_{3} & \widetilde{\nabla}_{e_{1}} e_{2}=0 & \widetilde{\nabla}_{e_{1}} e_{3}=e_{1} \\
\widetilde{\nabla}_{e_{2}} e_{1}=0 & \widetilde{\nabla}_{e_{2}} e_{2}=e_{3} & \widetilde{\nabla}_{e_{2}} e_{3}=-e_{2} \\
\widetilde{\nabla}_{e_{3}} e_{1}=0 & \widetilde{\nabla}_{e_{3}} e_{2}=0 & \widetilde{\nabla}_{e_{3}} e_{3}=0 .
\end{array}
$$

Motivation

Constant angle surfaces were recently studied in product spaces $\mathbb{Q}_{\epsilon} \times \mathbb{R}$. The angle is considered between the normal of the surface and \mathbb{R}.

Motivation

It is known, for Sol_{3}, that $\mathcal{H}^{1}=\{d y \equiv 0\}$ and $\mathcal{H}^{2}=\{d x \equiv 0\}$ are totally geodesic foliations whose leaves are the hyperbolic plane.

Motivation

On the other hand, for $\mathbb{Q}_{\epsilon} \times \mathbb{R}$, the foliation $\{d t \equiv 0\}$ is totally geodesic too (t is the global parameter on \mathbb{R}). Trivial examples for constant angle surfaces in $\mathbb{Q}_{\epsilon} \times \mathbb{R}$ are furnished by totally geodesic surfaces $\mathbb{Q}_{\epsilon} \times\left\{t_{0}\right\}$.

Motivation

Let us consider \mathcal{H}^{2}. It follows that the tangent plane to \mathbb{H}^{2} (the leaf at each $x=x_{0}$) is spanned by $\frac{\partial}{\partial y}$ and $\frac{\partial}{\partial z}$, while the unit normal is e_{1}. So, this surface corresponds to $\mathbb{Q}_{\epsilon} \times\left\{t_{0}\right\}$, case in which the constant angle is 0 .

Motivation

An oriented surface M, isometrically immersed in Sol_{3}, is called constant angle surface if the angle between its normal and e_{1} is constant in each point of the surface M.

First computations

López, M. - 2010: arXiv:1004.3889v1 [math.DG]
Denote by $\theta \in[0, \pi)$ the angle between the unit normal N and e_{1}. Hence

$$
\tilde{g}\left(N, e_{1}\right)=\cos \theta .
$$

Let T be the projection of e_{1} on the tangent plane:

$$
e_{1}=T+\cos \theta N
$$

First computations

López, M. - 2010: arXiv:1004.3889v1 [math.DG]

Denote by $\theta \in[0, \pi)$ the angle between the unit normal N and e_{1}. Hence

$$
\tilde{g}\left(N, e_{1}\right)=\cos \theta .
$$

Let T be the projection of e_{1} on the tangent plane:

$$
e_{1}=T+\cos \theta N
$$

Case $\theta=0$. Then $N=e_{1}$ and hence the surface M is isometric to the hyperbolic plane $\mathcal{H}^{2}=\{d x \equiv 0\}$.

First computations

From now on $\theta \neq 0$
$A T=-\widetilde{g}\left(N, e_{3}\right) T$, hence T is a principal direction on the surface

First computations

Let $E_{1}=\frac{1}{\sin \theta} T$. Consider E_{2} tangent to M, orthogonal to E_{1} and such that the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ and $\left\{E_{1}, E_{2}, N\right\}$ have the same orientation.

It follows that

$$
\left\{\begin{array}{rrr}
e_{1}= & \sin \theta E_{1} & +\cos \theta N \\
e_{2}= & \cos \alpha \cos \theta E_{1}+\sin \alpha E_{2} & -\cos \alpha \sin \theta N \\
e_{3}= & -\sin \alpha \cos \theta E_{1}+\cos \alpha E_{2} & +\sin \alpha \sin \theta N
\end{array}\right.
$$

First computations

Case $\theta=\frac{\pi}{2}$. In this case e_{1} is tangent to M and $T=E_{1}$.

$$
h\left(E_{1}, E_{1}\right)=-\sin \alpha N, h\left(E_{1}, E_{2}\right)=0, h\left(E_{2}, E_{2}\right)=\sigma N
$$

$$
E_{1}(\alpha)=0 \quad \text { and } \quad E_{2}(\alpha)=\sin \alpha-\sigma .
$$

Remark

The surface M is minimal if and only if $\sigma=\sin \alpha$. Since E_{1} and E_{2} are linearly independent, it follows that α is constant. Moreover, M is totally geodesic if and only if $\alpha=0$, case in which M coincides with \mathcal{H}^{1}.

First computations

Due the fact that the Lie brackets of E_{1} and E_{2} is $\left[E_{1}, E_{2}\right]=\cos \alpha E_{1}$, one can choose local coordinates u and v such that

$$
E_{2}=\frac{\partial}{\partial u} \quad \text { and } \quad E_{1}=\beta(u, v) \frac{\partial}{\partial v} .
$$

Denote by

$$
F: U \subset \mathbb{R}^{2} \longrightarrow M \hookrightarrow \operatorname{Sol}_{3} \quad(u, v) \longmapsto\left(F_{1}(u, v), F_{2}(u, v), F_{3}(u, v)\right)
$$

the immersion of the surface M in Sol_{3}.
It follows

$$
\begin{aligned}
& F_{1}(v)=\int^{v} \frac{1}{\rho(\tau)} d \tau \\
& F_{2}(u)=\int^{u}\left(\sin \alpha(\tau) e^{\int^{\tau} \cos \alpha(s) d s}\right) d \tau \\
& F_{3}(u)=\int^{u} \cos \alpha(\tau) d \tau .
\end{aligned}
$$

First results

Changing the v parameter, one gets the following parametrization

$$
F(u, v)=(v, \phi(u), \chi(u))
$$

which represents a cylinder over the plane curve $\gamma(u)=(0, \phi(u), \chi(u))$ where $\phi(u)=\int^{u}\left(\sin \alpha(\tau) e^{\int^{\tau} \cos \alpha(s) d s}\right) d \tau$ and $\chi(u)=\int^{u} \cos \alpha(\tau) d \tau$.

Notice that the surface is the group product between the curve $v \mapsto(v, 0,0)$ and the curve γ.

First results

θ arbitrary: we distinguish some particular situations for α :
Case $\sin \alpha=0$. Then $\cos \alpha= \pm 1$ and the principal curvature corresponding to the principal direction T vanishes. Straightforward computations yield $\theta=\frac{\pi}{2}$ case which was discussed before.

First results

θ arbitrary: we distinguish some particular situations for α :
corresponding to the principal direction T vanishes. Straightforward comnutationc viold $A=\frac{\pi}{2}$ cace which was diccusced hefore

Case $\cos \alpha=0$. Such surface is minimal.

Proposition

The surface M given by the parametrization

$$
F(u, v)=\left(\tan \theta e^{u \cos \theta}, v, \quad-u \cos \theta\right)
$$

is a constant angle surface in Sol_{3}.
This surface is a (group) product between the curve $v \mapsto(0, v, 0)$ and the plane curve $\gamma(u)=\left(\tan \theta e^{u \cos \theta}, 0,-u \cos \theta\right)$.

General situation

The matrix of the Weingarten operator A with respect to the basis $\left\{E_{1}, E_{2}\right\}$ has the following expression

$$
A=\left(\begin{array}{cc}
-\sin \alpha \sin \theta & 0 \\
0 & \sigma
\end{array}\right)
$$

for a certain function $\sigma \in C^{\infty}(M)$.
Moreover, the Gauss formula yields

$$
E_{1}(\alpha)=2 \cos \theta \cos \alpha \quad E_{2}(\alpha)=\sin \alpha-\frac{\sigma}{\sin \theta}
$$

and the compatibility condition

$$
\left(\nabla_{E_{1}} E_{2}-\nabla_{E_{2}} E_{1}\right)(\alpha)=\left[E_{1}, E_{2}\right](\alpha)=E_{1}\left(E_{2}(\alpha)\right)-E_{2}\left(E_{1}(\alpha)\right)
$$

gives rise to the following differential equation

$$
E_{1}(\sigma)+\sigma \cos \theta \sin \alpha+\sigma^{2} \cot \theta=2 \sin \theta \cos \theta \sin ^{2} \alpha .
$$

Difficult computations

coordinate u such that $\frac{\partial}{\partial u}=E_{1}$.

$$
\partial_{u} \alpha=2 \cos \theta \cos \alpha .
$$

Solving this PDE one gets

$$
\sin \alpha=\tanh (2 u \cos \theta+\psi(v))
$$

take v in such way that $\frac{\partial \alpha}{\partial v}=0$, namely ψ is a constant
Denote: $I(u)=\int^{u} \sqrt{\cosh \left(2 \tau \cos \theta+\psi_{0}\right)} d \tau$,
$J(u)=\int^{u} \cosh ^{-\frac{3}{2}}\left(2 \tau \cos \theta+\psi_{0}\right) d \tau$

Classification result

Theorem (López, M., 2010)
A general constant angle surface in Sol_{3} can be parameterized as

$$
F(u, v)=\gamma_{1}(v) * \gamma_{2}(u)
$$

where

$$
\begin{gathered}
\gamma_{1}(v)=\left(\sin \theta \int^{v} \xi(\tau) e^{-\zeta(\tau)} d \tau, \pm \cos \theta \int^{v} \xi(\tau) e^{\zeta(\tau)} d \tau, \zeta(v)\right) \\
\gamma_{2}(u)=\left(\sin \theta I(u), \pm \cos \theta J(u), \quad-\frac{1}{2} \log \cosh \bar{u}\right)
\end{gathered}
$$

and ζ, ξ are arbitrary functions depending on v.
The curve γ_{2} is parametrized by arclength.

T

Tha

Than

Thank

Thank
 y

Thank
 y 0

Thank
 y 0 u

Thank

Thank

 f 0

Thank
 y 0 u
 for

Thank y o u for a

a t

a t t

a t t e

a t t e n

Than $\mathbf{h} \quad$ n o u forr a thent

Than $\mathbf{h} \quad$ n o u forr a thentil

Than $\mathbf{h} \quad$ n o u forr a t tentio

Than $\mathbf{h} \quad$ n o u \quad for attention

a then tion l

