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Problem: Given a space curve C, find a mean curvature zero
surface which contains this curve.
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The Björling Problem

Problem: Take a real analytic curve C, given by α : I → R3,
and a real analytic family of tangent planes along C. Find a
minimal surface containing C, whose tangent space along C is
given by the family.

I Posed by EG Björling in 1844.
I Solution by H.A. Schwarz in 1890.
I Solution given by a formula:

f (z) = <
{
α(z)− i

∫ z

x0

N(w)× α′(w)dw
}
,

I α(z) holomorphic extension of α(t)
I N unit normal along α, N(z) holo. extension.
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The Weierstrass representation for minimal surfaces

The solution for Björling’s problem can be understood this way:
I The Gauss map of a minimal surface is holomorphic.

I The Weierstrass representation gives a formula for the
surface in terms of holomorphic data.

I Hence it should be sufficient to know this data along a
curve.
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The Björling problem for other types of surfaces

I Has been sudied for other classes of surfaces which have
a (holomorphic) Weistrass representation (e.g. recent work
by Jose Galvez, Pablo Mira and collobarators).

I Called the geometric Cauchy problem:
Given a (real analytic) curve C, and a (real analytic) family
of tangent planes along C. Find a (unique?) surface
containing C, whose tangent space along C is given by the
family.



Non-minimal Constant Mean Curvature Surfaces

I How about CMC H surfaces, H 6= 0?
I The Plateau problem had been studied (last half of 20th

C.), but not the Björling problem.
I The Gauss map is not holomorphic.
I However, the Gauss map is harmonic,
I Harmonic maps have a representation as a holomorphic

map into a loop group.
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Moving Frames

I f : M → G/H, immersed
submanifold of a
homogeneous space.
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stereographically project to R3
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The Maurer-Cartan Form

Given a frame F : M → G, for f : M → G/H,
I Maurer-Cartan form, α = F−1dF ∈ g⊗ Ω(M)

I Satisfies the Maurer-Cartan equation

dα + α ∧ α = 0. (1)

I Converse: if α ∈ g⊗ Ω(M), satisfies (1)
⇒ integrate to obtain F : M → G.

I Fundamental point: α contains all geometric information
about f .
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(
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)
, ei tangent.

I Maurer-Cartan form:

α = F−1dF =


eT

1
eT

2
nT

f T

 · (de1 de2 dn df
)

=

 ω β θ
−βt 0 0
−θt 0 0

 ,



I Integrability: dα + α ∧ α = 0⇔

dω + ω ∧ ω − β ∧ βt − θ ∧ θt = 0, (2)
dβ + ω ∧ β = 0, (3)
dθ + ω ∧ θ = 0. (4)

I Flatness: dω + ω ∧ ω = 0.
I Set

αλ =

 ω λβ λθ
−λβt 0 0
−λθt 0 0

 = a0 + a1λ.

I Then dαλ + αλ ∧ αλ = 0⇔
dω + ω ∧ ω − λ2(β ∧ βt + θ ∧ θt ) = 0, plus (3) and (4).

I In fact: dαλ + αλ ∧ αλ = 0 for all λ⇔
(2), (3) and (4) plus flatness.
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Parameterised Families of Frames

I for λ ∈ C∗, 1-parameter family of 1-forms, αλ ∈ g⊗ Ω(M).
I αλ is a Laurent polynomial in λ,

αλ =
b∑

i=a

aiλ
i , ai ∈ g⊗ Ω(M).

I αλ satisfies the Maurer-Cartan equation for all λ ∈ C∗.
I Hence can integrate to obtain family Fλ : M → G,
I Project to obtain family fλ : M → G/H.
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The Loop Group Interpretation

I ΛG := {γ : S1 → G}, loop group.
I The family Fλ can be thought of as a map either:

I M × C∗ → G
I M × S1 → G (for values of λ ∈ S1)
I M → ΛG.

I There are methods to produce such loop group maps
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The loop group formulation

I Any CMC surface in E3 admits a conformal
parameterization:

I f : Σ→ E3, where Σ a Riemann surface
I define a function u : Σ→ R
I Metric

ds2 = 4e2u(dx2 + dy2).

I Hopf differential Qdz2, where

Q := 〈N, fzz〉.

I Note: Q and u (and H) determine f .
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The SU(2) frame

Identify E3 with su(2) via:

e1 =

(
0 −i
−i 0

)
, e2 =

(
0 1
−1 0

)
, e3 =

(
i 0
0 −i

)
,

Frame F : Σ→ SU(2) by:

Fe1F−1 =
fx
|fx |

, Fe2F−1 =
fy
|fy |

.

The Maurer-Cartan form, α, for the frame F is defined by

α := F−1dF = Udz + Vdz̄.
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The Mauer-Cartan form

Lemma
The connection coefficients U := F−1Fz and V := F−1Fz̄ are
given by

U =
1
2

(
uz −2Heu

Qe−u −uz

)
, V =

1
2

(
−uz̄ −Q̄e−u

2Heu uz̄

)
.

Under the assumption H is constant, this admits an integrable
deformation, for λ ∈ S1:

Uλ =
1
2

(
uz −2Heuλ−1

Qe−uλ−1 −uz

)
, Vλ =

1
2

(
−uz̄ −Q̄e−uλ

2Heuλ uz̄

)
.



The loop group frame

The family αλ corresponds to an S1-family Fλ of frames for
CMC surfaces. Surface corresponding to each λ ∈ S1 is given
by the Sym-Bobenko formula:

f̂ λ = − 1
2H

(
Fiσ3F−1 + 2iλ∂λF · F−1

)
.



The DPW method

I Fλ is a map Σ→ ΛSU(2), group of loops in SU(2).
I A frame for a map F̌ : Σ→ ΩSU(2) = ΛSU(2)/SU(2)

I The harmonic Gauss map, and the surface, are
determined by F̌ .

I Key Point:
ΩSU(2) admits a complex structure
and

F̌
∣∣
λ

: Σ→ S2 is harmonic
⇔

F̌ : Σ→ ΩSU(2) holomorphic
with respect to this structure (+ another condition)
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The DPW method in practice

Set

Λ+GC = {loops which extend holomorphically to the unit disc D},
Λ−GC = {loops extending holomorphically to Ĉ \ D̄}.

We need two loop group decompositions:
1. Birkhoff decomposition:

Λ−GC · Λ+GC ⊂ ΛGC

is open and dense in the identity component of ΛGC.
2. Iwasawa decompsition:

ΛGC = ΩG · Λ+GC

where ΩG consists of the subgroup of based loops in the
real group G.



The DPW method in practice

I Given Fλ : Σ→ ΛSU(2), extended frame for CMC surface.
I Pointwise at z ∈ Σ, Birkhoff decompose:

Fλ = F−F+, F± ∈ Λ±SL(2,C),

normalization: F−(λ =∞) = I.
I Then F− is a holomorphic frame for

F̌ : Σ→ ΩSU(2) ∼= ΛSL(2,C)/Λ+SL(2,C).
I F− is determined by the Maurer-Cartan form

ξ = F−1
− dF− =

(
0 b
c 0

)
λ−1dz,

b and c : Σ→ C holomorphic functions ("Weierstrass
data").
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The DPW method in practice

I Conversely, any pair of holomorphic functions b, c : Σ→ C
determines a CMC surface (The "Weierstrass
representation")

I More generally, given

ξ =
∞∑
−1

(
ai bi
ci di

)
λidz,

all functions holomorphic, plus a "twisting condition",
I integrate Φ−1dΦ = ξ, with Φ(z0) = I,
I Iwasawa decompose pointwise:

Φ = FλG+, Fλ ∈ ΛSU(2),

then Fλ is a frame for a CMC surface f , obtained by the
Sym-Bobenko formula.
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called a potential
I Many different potentials are possible for a given surface
I Strategy: Seek a potential which is appropriate for a given

problem.
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Solving the Björling problem

Key Point:

F̌
∣∣
λ

: Σ→ S2 is harmonic
⇔

F̌ : ΩSU(2) holomorphic

⇒
PROBLEM: Given the Björling data along a curve (f and its
tangent plane), can we construct the loop group frame Fλ just
along this curve?

I If so, we can (it turns out) holomorphically extend to get a
holomorphic frame Φ for F̌ .

I Then the unique Iwasawa decomposition Φ = FλG+, gives
us the extended frame Fλ for the solution to the Björling
problem.
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Key Point:

F̌
∣∣
λ

: Σ→ S2 is harmonic
⇔

F̌ : ΩSU(2) holomorphic

⇒
PROBLEM: Given the Björling data along a curve (f and its
tangent plane), can we construct the loop group frame Fλ just
along this curve?

I If so, we can (it turns out) holomorphically extend to get a
holomorphic frame Φ for F̌ .

I Then the unique Iwasawa decomposition Φ = FλG+, gives
us the extended frame Fλ for the solution to the Björling
problem.



To construct Fλ, we need:

Uλ =
1
2

(
uz −2Heuλ−1

Qe−uλ−1 −uz

)
, Vλ =

1
2

(
−uz̄ −Q̄e−uλ

2Heuλ uz̄

)
.

i.e., we need u, uz and Q.



Solution

[D.B. and J. Dorfmeister: “The Björling problem for non-minimal
constant mean curvature surfaces", Comm. Anal. Geom., 18 (2010)
171-194]
Data: I = (α, β) ⊂ R;
f0 : I → E3;
V a vector field along I, with 〈V , ∂f0

∂x 〉 = 0.

Theorem
There exists a unique CMC surface which contains the curve f0,
and is tangent along this curve to the plane spanned by ∂f0

∂x and
V.

The holomorphic data for the loop group frame for this surface
are given, on a domain in C containing the set {0} × I, by the
simple formulae below.
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u = ln
1
2

√
det(

∂f0
∂x

)), (5)

uz = −i
(

a +
1
2

ux

)
, (6)

Q = 2eu (i b̄ + Heu), (7)

Here a and b are determined from the initial data as follows:
Along J we can construct an SU(2) frame F from the given
data (the family of tangent planes). Differentiate this along I to
get the expression:

F̂−1F̂x =

(
a b
−b̄ −a

)
.



Remarks

I The holomorphic data can be written down explicitly
I Some geometric information of the surface can be

deduced from this data
I Images of the surface can be computed numerically

(software CMClab)
I Knowledge of the potential for a specific type of surface

allows one to prove the existence of examples of CMC
surfaces with specific properties.
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Applications: CMC surfaces which contain a straight
line







CMC surfaces which contain a circle
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Other related work

I D.B. "Singularities of spacelike constant mean curvature
surfaces in Lorentz-Minkowski space" to appear Math. Proc.
Cambridge Phil. Soc.: Singular Björling problem for
spacelike CMC surfaces in Minkowski 3-space: used to
study singularities of such surfaces.

I We are working on applying this theory to boundary value
problems.
e.g. Basic (open) problem: is there are CMC topological
disc bounded by a planar circle, other than the flat disc or a
spherical cap?
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Lorentzian harmonic maps
D.B. and Martin Svensson "The Geometric Cauchy Problem for Surfaces With
Lorentzian Harmonic Gauss maps" arXiv:1009.5661

I Applications: e.g. constant Gauss curvature surfaces,
timelike CMC surfaces in R2,1.

I Loop group construction different: the frame Fλ is
constructed froma a pair of potentials ξ− and ξ+, each a
function of one variable only.

I Uses Birkhoff, not Iwasawa decomposition.
I The geometric Cauchy problem can be solved for this case

too .
I Do not need real analytic initial data here.
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The geometric Cauchy problem for timelike CMC
surfaces in R2, 1

I Easy to find the potentials for surfaces of revolution.

Figure: Computed from the geometric Cauchy data on a circle of
radius ρ. Left: ρH = −1. Center ρH = −1/2. Right: ρH = 1.



Pseudospherical surfaces in R3

Figure: The unique K-surface containing the catenary y = cosh(x) as
a geodesic principle curve



Pseudospherical surfaces in R3

Figure: The unique K-surface containing the cubic y = x2(x + 1) as a
geodesic principle curve



Pseudospherical surfaces in R3

Figure: The unique K-surface containing the Bernoulli’s lemniscate
(x2 + y2)2 = x2 − y2 as a geodesic principle curve
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