The geometric Cauchy problem for surfaces associated to integrable systems

David Brander

Technical University of Denmark

Granada - Jan 2011

Outline

Background - Björlings Problem Björling's Problem

Special Submanifolds and Loop Group Methods Moving Frames and the Maurer-Cartan Form The spectral parameter and loop groups

Solution of the Björling Problem for CMC Surfaces
The loop group formulation
Solving the Björling problem
Other related work

Outline

Background - Björlings Problem Björling's Problem

Special Submanifolds and Loop Group Methods Moving Frames and the Maurer-Cartan Form The spectral parameter and loop groups

Solution of the Björling Problem for CMC Surfaces
The loop group formulation
Solving the Björling problem
Other related work

Problem: Given a space curve C, find a mean curvature zero surface which contains this curve.

Example: C is a circle:

Problem: Given a space curve C, find a minimal surface which contains this curve.

Example: C is a circle:

Figure: Unit disc

Figure: Catenoid

- Solution certainly not unique
- What other data can we specify to get a unique solution?

Problem: Given a space curve C, find a minimal surface which contains this curve.

Example: C is a circle:

Figure: Unit disc

Figure: Catenoid

- Solution certainly not unique
- What other data can we specify to get a unique solution?

Problem: Given a space curve C, find a minimal surface which contains this curve.

Example: C is a circle:

Figure: Unit disc

Figure: Catenoid

- Solution certainly not unique
- What other data can we specify to get a unique solution?

The Björling Problem

Problem: Take a real analytic curve C, given by $\alpha: I \rightarrow \mathbb{R}^{3}$, and a real analytic family of tangent planes along C. Find a minimal surface containing C, whose tangent space along C is given by the family.

- Posed by EG Björling in 1844.
- Solution by H.A. Schwarz in 1890.
- Solution given by a formula:

$$
f(z)=\Re\left\{\alpha(z)-i \int_{x_{0}}^{z} N(w) \times \alpha^{\prime}(w) \mathrm{d} w\right\}
$$

$$
\begin{aligned}
& \alpha(z) \text { holomorphic extension of } \alpha(t) \\
& N \text { unit normal along } \alpha, N(z) \text { holo. extension. }
\end{aligned}
$$

The Björling Problem

Problem: Take a real analytic curve C, given by $\alpha: I \rightarrow \mathbb{R}^{3}$, and a real analytic family of tangent planes along C. Find a minimal surface containing C, whose tangent space along C is given by the family.

- Posed by EG Björling in 1844.
- Solution by H.A. Schwarz in 1890.
- Solution given by a formula:

The Björling Problem

Problem: Take a real analytic curve C, given by $\alpha: I \rightarrow \mathbb{R}^{3}$, and a real analytic family of tangent planes along C. Find a minimal surface containing C, whose tangent space along C is given by the family.

- Posed by EG Björling in 1844.
- Solution by H.A. Schwarz in 1890.
- Solution given by a formula:

$$
f(z)=\Re\left\{\alpha(z)-i \int_{x_{0}}^{z} N(w) \times \alpha^{\prime}(w) \mathrm{d} w\right\}
$$

- $\alpha(z)$ holomorphic extension of $\alpha(t)$
- N unit normal along $\alpha, N(z)$ holo. extension.

The Weierstrass representation for minimal surfaces

The solution for Björling's problem can be understood this way:

- The Gauss map of a minimal surface is holomorphic.
- The Weierstrass representation gives a formula for the surface in terms of holomorphic data.
- Hence it should be sufficient to know this data along a curve.

The Weierstrass representation for minimal surfaces

The solution for Björling's problem can be understood this way:

- The Gauss map of a minimal surface is holomorphic.
- The Weierstrass representation gives a formula for the surface in terms of holomorphic data.
- Hence it should be sufficient to know this data along a curve.

The Björling problem for other types of surfaces

- Has been sudied for other classes of surfaces which have a (holomorphic) Weistrass representation (e.g. recent work by Jose Galvez, Pablo Mira and collobarators).
- Called the geometric Cauchy problem: Given a (real analytic) curve C, and a (real analytic) family of tangent planes along C. Find a (unique?) surface containing C, whose tangent space along C is given by the family.

Non-minimal Constant Mean Curvature Surfaces

- How about CMC H surfaces, $H \neq 0$?
- The Plateau problem had been studied (last half of 20th C.), but not the Björling problem.
- The Gauss map is not holomorphic.
- However, the Gauss map is harmonic,
- Harmonic maps have a representation as a holomorphic map into a loop group.

Non-minimal Constant Mean Curvature Surfaces

- How about CMC H surfaces, $H \neq 0$?
- The Plateau problem had been studied (last half of 20th C.), but not the Björling problem.
- The Gauss map is not holomorphic.
- However, the Gauss map is harmonic,
- Harmonic maps have a representation as a holomorphic map into a loop group.

Non-minimal Constant Mean Curvature Surfaces

- How about CMC H surfaces, $H \neq 0$?
- The Plateau problem had been studied (last half of 20th C.), but not the Björling problem.
- The Gauss map is not holomorphic.
- However, the Gauss map is harmonic,
- Harmonic maps have a representation as a holomorphic map into a loop group.

Outline

Background - Björlings Problem Björling's Problem

Special Submanifolds and Loop Group Methods Moving Frames and the Maurer-Cartan Form The spectral parameter and loop groups

Solution of the Björling Problem for CMC Surfaces The loop group formulation Solving the Björling problem
 Other related work

Special Submanifolds and Loop Group Methods

Flat, loop algebravalued connections

4

Special submanifolds

Moving Frames

- $f: M \rightarrow G / H$, immersed submanifold of a homogeneous space.

Moving Frames

- $f: M \rightarrow G / H$, immersed submanifold of a homogeneous space.

-Lift, $F: M \rightarrow G$, a frame for f.
- Idea: Choose F which is adapted in some way to the geometry of f.

Moving Frames

- $f: M \rightarrow G / H$, immersed submanifold of a homogeneous space.

-Lift, $F: M \rightarrow G$, a frame for f.
- Idea: Choose F which is adapted in some way to the geometry of f.

Example

- Special submanifold: flat immersion,

$$
f: M=\mathbb{R}^{2} \rightarrow S^{3}
$$

Figure: Clifford torus, $S^{1} \times S^{1} \subset S^{3}$, stereographically project to \mathbb{R}^{3}

Example

- Special submanifold: flat immersion,

e_{i} tangent.

Example

- Special submanifold: flat immersion,

$$
F:=\left(\begin{array}{llll}
e_{1} & e_{2} & n & f
\end{array}\right)
$$

e_{i} tangent.

The Maurer-Cartan Form

Given a frame $F: M \rightarrow G$, for $f: M \rightarrow G / H$,

- Maurer-Cartan form, $\alpha=F^{-1} \mathrm{~d} F \in \mathfrak{g} \otimes \Omega(M)$
- Satisfies the Maurer-Cartan equation

$$
\begin{equation*}
\mathrm{d} \alpha+\alpha \wedge \alpha=0 \tag{1}
\end{equation*}
$$

- Converse: if $\alpha \in \mathfrak{g} \otimes \Omega(M)$, satisfies (1) \Rightarrow integrate to obtain $F: M \rightarrow G$.
- Fundamental point: α contains all geometric information about f.

The Maurer-Cartan Form

Given a frame $F: M \rightarrow G$, for $f: M \rightarrow G / H$,

- Maurer-Cartan form, $\alpha=F^{-1} \mathrm{~d} F \in \mathfrak{g} \otimes \Omega(M)$
- Satisfies the Maurer-Cartan equation

$$
\begin{equation*}
\mathrm{d} \alpha+\alpha \wedge \alpha=0 \tag{1}
\end{equation*}
$$

- Converse: if $\alpha \in \mathfrak{g} \otimes \Omega(M)$, satisfies (1) \Rightarrow integrate to obtain $F: M \rightarrow G$.
- Fundamental point: α contains all geometric information about f.

The Maurer-Cartan Form

Given a frame $F: M \rightarrow G$, for $f: M \rightarrow G / H$,

- Maurer-Cartan form, $\alpha=F^{-1} \mathrm{~d} F \in \mathfrak{g} \otimes \Omega(M)$
- Satisfies the Maurer-Cartan equation

$$
\begin{equation*}
\mathrm{d} \alpha+\alpha \wedge \alpha=0 \tag{1}
\end{equation*}
$$

- Converse: if $\alpha \in \mathfrak{g} \otimes \Omega(M)$, satisfies (1) \Rightarrow integrate to obtain $F: M \rightarrow G$.
- Fundamental point: α contains all geometric information about f.

Example

- Adapted frame: $F: \mathbb{R}^{2} \rightarrow S O(4)$,

$$
F:=\left(\begin{array}{llll}
e_{1} & e_{2} & n & f
\end{array}\right), \quad e_{i} \text { tangent. }
$$

- Maurer-Cartan form:

$$
\begin{aligned}
\alpha=F^{-1} \mathrm{~d} F & =\left(\begin{array}{l}
e_{1}^{T} \\
e_{2}^{T} \\
n^{T} \\
f^{T}
\end{array}\right) \cdot\left(\begin{array}{llll}
\mathrm{d} e_{1} & \mathrm{~d} e_{2} & \mathrm{~d} n & \mathrm{~d} f
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\omega & \beta & \theta \\
-\beta^{t} & 0 & 0 \\
-\theta^{t} & 0 & 0
\end{array}\right),
\end{aligned}
$$

- Integrability: $\mathbf{d} \alpha+\alpha \wedge \alpha=0 \Leftrightarrow$

$$
\begin{array}{r}
\mathrm{d} \omega+\omega \wedge \omega-\beta \wedge \beta^{t}-\theta \wedge \theta^{t}=0 \\
\mathrm{~d} \beta+\omega \wedge \beta=0 \\
\mathrm{~d} \theta+\omega \wedge \theta=0 \tag{4}
\end{array}
$$

- Flatness: $\mathrm{d} \omega+\omega \wedge \omega=0$.
- Then $\mathrm{d} \alpha_{\lambda}+\alpha_{\lambda} \wedge \alpha_{\lambda}=0 \Leftrightarrow$ $\mathrm{d} \omega+\omega \wedge \omega-\lambda^{2}\left(\beta \wedge \beta^{t}+\theta \wedge \theta^{t}\right)=0$, plus (3) and (4).
- In fact: $\mathrm{d} \alpha_{\lambda}+\alpha_{\lambda} \wedge \alpha_{\lambda}=0$ for all $\lambda \Leftrightarrow$ (2), (3) and (4) plus flatness.
- Integrability: $\mathbf{d} \alpha+\alpha \wedge \alpha=0 \Leftrightarrow$

$$
\begin{array}{r}
\mathrm{d} \omega+\omega \wedge \omega-\beta \wedge \beta^{t}-\theta \wedge \theta^{t}=0 \\
\mathrm{~d} \beta+\omega \wedge \beta=0 \\
\mathrm{~d} \theta+\omega \wedge \theta=0 \tag{4}
\end{array}
$$

- Flatness: $\mathbf{d} \omega+\omega \wedge \omega=0$.

$$
\alpha=\left(\begin{array}{ccc}
\omega & \lambda & \theta \\
-\lambda \beta^{t} & 0 & 0 \\
-\theta^{t} & 0 & 0
\end{array}\right)=a_{0}+a_{1} \lambda .
$$

- Then $\mathrm{d} \alpha_{\lambda}+\alpha_{\lambda} \wedge \alpha_{\lambda}=0 \Leftrightarrow$ $\mathrm{d} \omega+\omega \wedge \omega-\lambda^{2}\left(\beta \wedge \beta^{t}+\theta \wedge \theta^{t}\right)=0$, plus (3) and (4).
- In fact: $\mathrm{d} \alpha_{\lambda}+\alpha_{\lambda} \wedge \alpha_{\lambda}=0$ for all $\lambda \Leftrightarrow$
(2), (3) and (4) plus flatness.
- Integrability: $\mathbf{d} \alpha+\alpha \wedge \alpha=0 \Leftrightarrow$

$$
\begin{array}{r}
\mathrm{d} \omega+\omega \wedge \omega-\beta \wedge \beta^{t}-\theta \wedge \theta^{t}=0 \\
\mathrm{~d} \beta+\omega \wedge \beta=0 \\
\mathrm{~d} \theta+\omega \wedge \theta=0 \tag{4}
\end{array}
$$

- Flatness: $\mathbf{d} \omega+\omega \wedge \omega=0$.
- Set

$$
\alpha_{\lambda}=\left(\begin{array}{ccc}
\omega & \lambda \beta & \lambda \theta \\
-\lambda \beta^{t} & 0 & 0 \\
-\lambda \theta^{t} & 0 & 0
\end{array}\right)=a_{0}+a_{1} \lambda .
$$

- Then $\mathrm{d} \alpha_{\lambda}+\alpha_{\lambda} \wedge \alpha_{\lambda}=0 \Leftrightarrow$ $\mathrm{d} \omega+\omega \wedge \omega-\lambda^{2}\left(\beta \wedge \beta^{t}+\theta \wedge \theta^{t}\right)=0$, plus (3) and (4).
- Integrability: $\mathbf{d} \alpha+\alpha \wedge \alpha=0 \Leftrightarrow$

$$
\begin{array}{r}
\mathrm{d} \omega+\omega \wedge \omega-\beta \wedge \beta^{t}-\theta \wedge \theta^{t}=0 \\
\mathrm{~d} \beta+\omega \wedge \beta=0 \\
\mathrm{~d} \theta+\omega \wedge \theta=0 \tag{4}
\end{array}
$$

- Flatness: $\mathbf{d} \omega+\omega \wedge \omega=0$.
- Set

$$
\alpha_{\lambda}=\left(\begin{array}{ccc}
\omega & \lambda \beta & \lambda \theta \\
-\lambda \beta^{t} & 0 & 0 \\
-\lambda \theta^{t} & 0 & 0
\end{array}\right)=a_{0}+a_{1} \lambda .
$$

- Then $\mathrm{d} \alpha_{\lambda}+\alpha_{\lambda} \wedge \alpha_{\lambda}=0 \Leftrightarrow$ $\mathrm{d} \omega+\omega \wedge \omega-\lambda^{2}\left(\beta \wedge \beta^{t}+\theta \wedge \theta^{t}\right)=0$, plus (3) and (4).
- In fact: $\mathrm{d} \alpha_{\lambda}+\alpha_{\lambda} \wedge \alpha_{\lambda}=0$ for all $\lambda \Leftrightarrow$ (2), (3) and (4) plus flatness.

Outline

Background - Björlings Problem Björling's Problem

Special Submanifolds and Loop Group Methods Moving Frames and the Maurer-Cartan Form
The spectral parameter and loop groups

Solution of the Björling Problem for CMC Surfaces
 The loop group formulation
 Solving the Björling problem
 Other related work

Parameterised Families of Frames

- for $\lambda \in \mathbb{C}^{*}$, 1-parameter family of 1-forms, $\alpha_{\lambda} \in \mathfrak{g} \otimes \Omega(M)$.
- α_{λ} is a Laurent polynomial in λ,

$$
\alpha_{\lambda}=\sum_{i=a}^{b} a_{i} \lambda^{i}, \quad a_{i} \in \mathfrak{g} \otimes \Omega(M)
$$

- α_{λ} satisfies the Maurer-Cartan equation for all $\lambda \in \mathbb{C}^{*}$.
- Hence can integrate to obtain family $F_{\lambda}: M \rightarrow G$,
- Project to obtain family $f_{\lambda}: M \rightarrow G / H$.

Parameterised Families of Frames

- for $\lambda \in \mathbb{C}^{*}$, 1-parameter family of 1-forms, $\alpha_{\lambda} \in \mathfrak{g} \otimes \Omega(M)$.
- α_{λ} is a Laurent polynomial in λ,

$$
\alpha_{\lambda}=\sum_{i=a}^{b} a_{i} \lambda^{i}, \quad a_{i} \in \mathfrak{g} \otimes \Omega(M)
$$

- α_{λ} satisfies the Maurer-Cartan equation for all $\lambda \in \mathbb{C}^{*}$.
- Hence can integrate to obtain family $F_{\lambda}: M \rightarrow G$,
- Project to obtain family $f_{\lambda}: M \rightarrow G / H$.

Parameterised Families of Frames

- for $\lambda \in \mathbb{C}^{*}$, 1-parameter family of 1-forms, $\alpha_{\lambda} \in \mathfrak{g} \otimes \Omega(M)$.
- α_{λ} is a Laurent polynomial in λ,

$$
\alpha_{\lambda}=\sum_{i=a}^{b} a_{i} \lambda^{i}, \quad a_{i} \in \mathfrak{g} \otimes \Omega(M)
$$

- α_{λ} satisfies the Maurer-Cartan equation for all $\lambda \in \mathbb{C}^{*}$.
- Hence can integrate to obtain family $F_{\lambda}: M \rightarrow G$,
- Project to obtain family $f_{\lambda}: M \rightarrow G / H$.

The Loop Group Interpretation

- $\wedge G:=\left\{\gamma: S^{1} \rightarrow G\right\}$, loop group.
- The family F_{λ} can be thought of as a map either:
- $M \times \mathbb{C}^{*} \rightarrow G$
- $M \times S^{1} \rightarrow G \quad$ (for values of $\lambda \in S^{1}$)
- $M \rightarrow \Lambda G$.
- There are methods to produce such loop group maps

The Loop Group Interpretation

- $\wedge G:=\left\{\gamma: S^{1} \rightarrow G\right\}$, loop group.
- The family F_{λ} can be thought of as a map
- $M \times C^{*} \rightarrow G$
- $M \times S^{1} \rightarrow G$
(for values of $\lambda \in S^{1}$)
- $M \rightarrow \wedge G$.
- There are methods to produce such loop group maps

Outline

Background - Björlings Problem Björling's Problem

Special Submanifolds and Loop Group Methods Moving Frames and the Maurer-Cartan Form The spectral parameter and loop groups

Solution of the Björling Problem for CMC Surfaces
The loop group formulation
Solving the Björling problem
Other related work

The loop group formulation

- Any CMC surface in \mathbb{E}^{3} admits a conformal parameterization:
- $f: \Sigma \rightarrow \mathbb{E}^{3}$, where Σ a Riemann surface
- define a function $u: \Sigma \rightarrow \mathbb{R}$
- Metric

$$
\mathrm{d} s^{2}=4 e^{2 u}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right)
$$

- Hopf differential $Q d z^{2}$, where

- Note: Q and u (and H) determine f.

The loop group formulation

- Any CMC surface in \mathbb{E}^{3} admits a conformal parameterization:
- $f: \Sigma \rightarrow \mathbb{E}^{3}$, where Σ a Riemann surface
- define a function $u: \Sigma \rightarrow \mathbb{R}$
- Metric

$$
\mathrm{d} s^{2}=4 e^{2 u}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right)
$$

- Hopf differential $Q d z^{2}$, where

$$
Q:=\left\langle N, f_{z z}\right\rangle
$$

- Note: Q and u (and H) determine f.

The $S U(2)$ frame

Identify \mathbb{E}^{3} with $\mathfrak{s u}(2)$ via:

$$
e_{1}=\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right), \quad e_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad e_{3}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right),
$$

Frame $F: \Sigma \rightarrow S U(2)$ by:

$$
F e_{1} F^{-1}=\frac{f_{x}}{\left|f_{x}\right|}, \quad F e_{2} F^{-1}=\frac{f_{y}}{\left|f_{y}\right|} .
$$

The Maurer-Cartan form, α, for the frame F is defined by

The $S U(2)$ frame

Identify \mathbb{E}^{3} with $\mathfrak{s u}(2)$ via:

$$
e_{1}=\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right), \quad e_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad e_{3}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right),
$$

Frame $F: \Sigma \rightarrow S U(2)$ by:

$$
F e_{1} F^{-1}=\frac{f_{x}}{\left|f_{x}\right|}, \quad F e_{2} F^{-1}=\frac{f_{y}}{\left|f_{y}\right|}
$$

The Maurer-Cartan form, α, for the frame F is defined by

$$
\alpha:=F^{-1} \mathrm{~d} F=U \mathrm{~d} z+V \mathrm{~d} \bar{z}
$$

The Mauer-Cartan form

Lemma
The connection coefficients $U:=F^{-1} F_{z}$ and $V:=F^{-1} F_{\bar{z}}$ are given by

$$
U=\frac{1}{2}\left(\begin{array}{cc}
u_{z} & -2 H e^{u} \\
Q e^{-u} & -u_{z}
\end{array}\right), \quad V=\frac{1}{2}\left(\begin{array}{cc}
-u_{\bar{z}} & -\bar{Q} e^{-u} \\
2 H e^{u} & u_{\bar{z}}
\end{array}\right) .
$$

Under the assumption H is constant, this admits an integrable deformation, for $\lambda \in \mathbb{S}^{1}$:

$$
U^{\lambda}=\frac{1}{2}\left(\begin{array}{cc}
u_{z} & -2 H e^{u} \lambda^{-1} \\
Q e^{-u_{\lambda}-1} & -u_{\bar{z}}
\end{array}\right), \quad V^{\lambda}=\frac{1}{2}\left(\begin{array}{cc}
-u_{\overline{\bar{z}}} & -\bar{Q} e^{-u} \lambda \\
2 H e^{u} \lambda & u_{\bar{z}}
\end{array}\right) .
$$

The loop group frame

The family α_{λ} corresponds to an \mathbb{S}^{1}-family F_{λ} of frames for CMC surfaces. Surface corresponding to each $\lambda \in \mathbb{S}^{1}$ is given by the Sym-Bobenko formula:

$$
\hat{f}^{\lambda}=-\frac{1}{2 H}\left(F i \sigma_{3} F^{-1}+2 i \lambda \partial_{\lambda} F \cdot F^{-1}\right)
$$

The DPW method

- F_{λ} is a map $\Sigma \rightarrow \Lambda S U(2)$, group of loops in $S U(2)$.
- A frame for a map $\check{F}: \Sigma \rightarrow \Omega S U(2)=\Lambda S U(2) / S U(2)$
- The harmonic Gauss map, and the surface, are determined by \check{F}.
- Key Point:
$\Omega S U(2)$ admits a complex structure
and
$\left.\check{F}\right|_{\lambda}: \Sigma \rightarrow \mathbb{S}^{2}$ is harmonic
$\check{F}: \Sigma \rightarrow \Omega S U(2)$ holomorphic
with respect to this structure (+ another condition)

The DPW method

- F_{λ} is a map $\Sigma \rightarrow \Lambda S U(2)$, group of loops in $S U(2)$.
- A frame for a map $\check{F}: \Sigma \rightarrow \Omega S U(2)=\Lambda S U(2) / S U(2)$
- The harmonic Gauss map, and the surface, are determined by \check{F}.
- Key Point:
$\Omega S U(2)$ admits a complex structure
and

$\check{F}: \Sigma \rightarrow \Omega S U(2)$ holomorphic

The DPW method

- F_{λ} is a map $\Sigma \rightarrow \Lambda S U(2)$, group of loops in $S U(2)$.
- A frame for a map $\check{F}: \Sigma \rightarrow \Omega S U(2)=\Lambda S U(2) / S U(2)$
- The harmonic Gauss map, and the surface, are determined by \check{F}.
- Key Point:
$\Omega S U(2)$ admits a complex structure and
$\left.\check{F}\right|_{\lambda}: \Sigma \rightarrow \mathbb{S}^{2}$ is harmonic
$\check{F}: \Sigma \rightarrow \Omega S U(2)$ holomorphic

The DPW method

- F_{λ} is a map $\Sigma \rightarrow \Lambda S U(2)$, group of loops in $S U(2)$.
- A frame for a map $\check{F}: \Sigma \rightarrow \Omega S U(2)=\Lambda S U(2) / S U(2)$
- The harmonic Gauss map, and the surface, are determined by \check{F}.
- Key Point:
$\Omega S U(2)$ admits a complex structure and

$$
\begin{gathered}
\left.\check{F}\right|_{\lambda}: \Sigma \rightarrow \mathbb{S}^{2} \text { is harmonic } \\
\Leftrightarrow \\
\check{F}: \Sigma \rightarrow \Omega S U(2) \text { holomorphic }
\end{gathered}
$$

with respect to this structure (+ another condition)

The DPW method in practice

Set
$\Lambda^{+} G^{\mathbb{C}}=\{$ loops which extend holomorphically to the unit disc $\mathbb{D}\}$,

$$
\Lambda^{-} G^{\mathbb{C}}=\{\text { loops extending holomorphically to } \hat{C} \backslash \overline{\mathbb{D}}\} .
$$

We need two loop group decompositions:

1. Birkhoff decomposition:

$$
\Lambda^{-} G^{\mathbb{C}} \cdot \Lambda^{+} G^{\mathbb{C}} \subset \Lambda G^{\mathbb{C}}
$$

is open and dense in the identity component of $\Lambda G^{\mathbb{C}}$.
2. Iwasawa decompsition:

$$
\Lambda G^{\mathbb{C}}=\Omega G \cdot \Lambda^{+} G^{\mathbb{C}}
$$

where ΩG consists of the subgroup of based loops in the real group G.

The DPW method in practice

- Given $F_{\lambda}: \Sigma \rightarrow \Lambda S U(2)$, extended frame for CMC surface.
- Pointwise at $z \in \Sigma$, Birkhoff decompose:

$$
F_{\lambda}=F_{-} F_{+}, \quad F_{ \pm} \in \Lambda^{ \pm} S L(2, \mathbb{C}),
$$

normalization: $F_{-}(\lambda=\infty)=I$.

- Then F_{-}is a holomorphic frame for $\check{F}: \Sigma \rightarrow \Omega S U(2) \cong \wedge S L(2, \mathbb{C}) / \Lambda^{+} S L(2, \mathbb{C})$.
- F_{-}is determined by the Maurer-Cartan form

The DPW method in practice

- Given $F_{\lambda}: \Sigma \rightarrow \Lambda S U(2)$, extended frame for CMC surface.
- Pointwise at $z \in \Sigma$, Birkhoff decompose:

$$
F_{\lambda}=F_{-} F_{+}, \quad F_{ \pm} \in \Lambda^{ \pm} S L(2, \mathbb{C}),
$$

normalization: $F_{-}(\lambda=\infty)=I$.

- Then F_{-}is a holomorphic frame for $\check{F}: \Sigma \rightarrow \Omega S U(2) \cong \wedge S L(2, \mathbb{C}) / \Lambda^{+} S L(2, \mathbb{C})$.
- F_{-}is determined by the Maurer-Cartan form

$$
\xi=F_{-}^{-1} \mathrm{~d} F_{-}=\left(\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right) \lambda^{-1} \mathrm{~d} z,
$$

b and $c: \Sigma \rightarrow \mathbb{C}$ holomorphic functions ("Weierstrass data").

The DPW method in practice

- Conversely, any pair of holomorphic functions $b, c: \Sigma \rightarrow \mathbb{C}$ determines a CMC surface (The "Weierstrass representation")
- More generally, given
all functions holomorphic, plus a "twisting condition",
- integrate $\Phi^{-1} \mathrm{~d} \Phi=\xi$, with $\Phi\left(z_{0}\right)=I$,
- Iwasawa decompose pointwise:

$$
\Phi=F_{\lambda} G_{+}, \quad F_{\lambda} \in \Lambda S U(2),
$$

then F_{λ} is a frame for a CMC surface f, obtained by the Sym-Bobenko formula.

The DPW method in practice

- Conversely, any pair of holomorphic functions $b, c: \Sigma \rightarrow \mathbb{C}$ determines a CMC surface (The "Weierstrass representation")
- More generally, given

$$
\xi=\sum_{-1}^{\infty}\left(\begin{array}{ll}
a_{i} & b_{i} \\
c_{i} & d_{i}
\end{array}\right) \lambda^{i} \mathrm{~d} z
$$

all functions holomorphic, plus a "twisting condition",

- integrate $\Phi^{-1} \mathrm{~d} \Phi=\xi$, with $\Phi\left(z_{0}\right)=I$,
- Iwasawa decompose pointwise:

then F_{λ} is a frame for a CMC surface f, obtained by the Sym-Bobenko formula.

The DPW method in practice

- Conversely, any pair of holomorphic functions $b, c: \Sigma \rightarrow \mathbb{C}$ determines a CMC surface (The "Weierstrass representation")
- More generally, given

$$
\xi=\sum_{-1}^{\infty}\left(\begin{array}{ll}
a_{i} & b_{i} \\
c_{i} & d_{i}
\end{array}\right) \lambda^{i} \mathrm{~d} z
$$

all functions holomorphic, plus a "twisting condition",

- integrate $\Phi^{-1} \mathrm{~d} \Phi=\xi$, with $\Phi\left(z_{0}\right)=I$,
- Iwasawa decompose pointwise:

$$
\Phi=F_{\lambda} G_{+}, \quad F_{\lambda} \in \Lambda S U(2)
$$

then F_{λ} is a frame for a CMC surface f, obtained by the Sym-Bobenko formula.

The DPW method in practice

- The holomorphic 1-form

$$
\xi=\sum_{-1}^{\infty}\left(\begin{array}{ll}
a_{i} & b_{i} \\
c_{i} & d_{i}
\end{array}\right) \lambda^{i} \mathrm{~d} z
$$

called a potential

- Many different potentials are possible for a given surface
- Strategy: Seek a potential which is appropriate for a given problem.

The DPW method in practice

- The holomorphic 1-form

$$
\xi=\sum_{-1}^{\infty}\left(\begin{array}{ll}
a_{i} & b_{i} \\
c_{i} & d_{i}
\end{array}\right) \lambda^{i} \mathrm{~d} z
$$

called a potential

- Many different potentials are possible for a given surface
- Strategy: Seek a potential which is appropriate for a given problem.

Outline

Background - Björlings Problem Björling's Problem

Special Submanifolds and Loop Group Methods Moving Frames and the Maurer-Cartan Form The spectral parameter and loop groups

Solution of the Björling Problem for CMC Surfaces
The loop group formulation
Solving the Björling problem
Other related work

Solving the Björling problem

Key Point:
$\left.\check{F}\right|_{\lambda}: \Sigma \rightarrow \mathbb{S}^{2}$ is harmonic
\Leftrightarrow
$\check{F}: \Omega S U(2)$ holomorphic
\Rightarrow
PROBLEM: Given the Björling data along a curve (f and its tangent plane), can we construct the loop group frame F_{λ} just along this curve?

- If so, we can (it turns out) holomorphically extend to get a holomorphic frame Φ for \check{F}.
- Then the unique Iwasawa decomposition $\Phi=F_{\lambda} G_{+}$, gives us the extended frame F_{λ} for the solution to the Björling problem.

Solving the Björling problem

Key Point:

$$
\begin{gathered}
\left.\check{F}\right|_{\lambda}: \Sigma \rightarrow \mathbb{S}^{2} \text { is harmonic } \\
\Leftrightarrow \\
\check{F}: \Omega S U(2) \text { holomorphic }
\end{gathered}
$$

\Rightarrow
PROBLEM: Given the Björling data along a curve (f and its tangent plane), can we construct the loop group frame F_{λ} just along this curve?

- If so, we can (it turns out) holomorphically extend to get a holomorphic frame Φ for \check{F}.
- Then the unique Iwasawa decomposition $\Phi=F_{\lambda} G_{+}$, gives us the extended frame F_{λ} for the solution to the Björling problem.

To construct F_{λ}, we need:
$U^{\lambda}=\frac{1}{2}\left(\begin{array}{cc}u_{z} & -2 H e^{u} \lambda^{-1} \\ Q e^{-u_{\lambda}-1} & -u_{\bar{z}}\end{array}\right), \quad V^{\lambda}=\frac{1}{2}\left(\begin{array}{cc}-u_{\overline{\bar{z}}} & -\bar{Q} e^{-u_{\lambda}} \\ 2 H e^{u} \lambda & u_{\bar{z}}\end{array}\right)$.
i.e., we need u, u_{z} and Q.

Solution

[D.B. and J. Dorfmeister: "The Björling problem for non-minimal constant mean curvature surfaces", Comm. Anal. Geom., 18 (2010) 171-194]

Theorem
There exists a unique CMC surface which contains the curve f_{0}, and is tangent along this curve to the plane spanned by $\frac{\partial t_{0}}{\partial x}$ and V .

The holomorphic data for the loop group frame for this surface are given, on a domain in \mathbb{C} containing the set $\{0\} \times I$, by the simple formulae below.

Solution

[D.B. and J. Dorfmeister: "The Björling problem for non-minimal constant mean curvature surfaces", Comm. Anal. Geom., 18 (2010) 171-194]
Data: $\boldsymbol{I}=(\alpha, \beta) \subset \mathbb{R}$;
$f_{0}: I \rightarrow \mathbb{E}^{3}$;
V a vector field along I, with $\left\langle V, \frac{\partial f_{0}}{\partial x}\right\rangle=0$.

> Theorem
> There exists a unique CMC surface which contains the curve f_{0}, and is tangent along this curve to the plane spanned by $\frac{\partial f_{0}}{\partial x}$ and V .

> The holomorphic data for the loop group frame for this surface are given, on a domain in \mathbb{C} containing the set $\{0\} \times I$, by the simple formulae below.

Solution

[D.B. and J. Dorfmeister: "The Björling problem for non-minimal constant mean curvature surfaces", Comm. Anal. Geom., 18 (2010) 171-194]
Data: $\boldsymbol{I}=(\alpha, \beta) \subset \mathbb{R}$;
$f_{0}: I \rightarrow \mathbb{E}^{3}$;
V a vector field along I, with $\left\langle V, \frac{\partial f_{0}}{\partial x}\right\rangle=0$.
Theorem
There exists a unique CMC surface which contains the curve f_{0}, and is tangent along this curve to the plane spanned by $\frac{\partial f_{0}}{\partial x}$ and V.

The holomorphic data for the loop group frame for this surface are given, on a domain in \mathbb{C} containing the set $\{0\} \times I$, by the simple formulae below.

$$
\begin{gather*}
\left.u=\ln \frac{1}{2} \sqrt{\operatorname{det}\left(\frac{\partial f_{0}}{\partial x}\right)}\right) \tag{5}\\
u_{z}=-i\left(a+\frac{1}{2} u_{x}\right) \tag{6}\\
Q=2 e^{u}\left(i \bar{b}+H e^{u}\right) \tag{7}
\end{gather*}
$$

Here a and b are determined from the initial data as follows: Along J we can construct an $S U(2)$ frame F from the given data (the family of tangent planes). Differentiate this along I to get the expression:

$$
\hat{F}^{-1} \hat{F}_{x}=\left(\begin{array}{cc}
a & b \\
-\bar{b} & -a
\end{array}\right)
$$

Remarks

- The holomorphic data can be written down explicitly
- Some geometric information of the surface can be deduced from this data
- Images of the surface can be computed numerically (software CMClab)
- Knowledge of the potential for a specific type of surface allows one to prove the existence of examples of CMC surfaces with specific properties.

Remarks

- The holomorphic data can be written down explicitly
- Some geometric information of the surface can be deduced from this data
- Images of the surface can be computed numerically (software CMClab)
- Knowledge of the potential for a specific type of surface allows one to prove the existence of examples of CMC surfaces with specific properties.

Remarks

- The holomorphic data can be written down explicitly
- Some geometric information of the surface can be deduced from this data
- Images of the surface can be computed numerically (software CMClab)
- Knowledge of the potential for a specific type of surface allows one to prove the existence of examples of CMC surfaces with specific properties.

Applications: CMC surfaces which contain a straight line

CMC surfaces which contain a circle

垡需

Outline

Background - Björlings Problem Björling's Problem

Special Submanifolds and Loop Group Methods Moving Frames and the Maurer-Cartan Form The spectral parameter and loop groups

Solution of the Björling Problem for CMC Surfaces
The loop group formulation
Solving the Björling problem
Other related work

Other related work

- D.B. "Singularities of spacelike constant mean curvature surfaces in Lorentz-Minkowski space" to appear Math. Proc. Cambridge Phil. Soc.: Singular Björling problem for spacelike CMC surfaces in Minkowski 3-space: used to study singularities of such surfaces.
- We are working on applying this theory to boundary value problems.
e.g. Basic (open) problem: is there are CMC topological disc bounded by a planar circle, other than the flat disc or a spherical cap?

Other related work

- D.B. "Singularities of spacelike constant mean curvature surfaces in Lorentz-Minkowski space" to appear Math. Proc. Cambridge Phil. Soc.: Singular Björling problem for spacelike CMC surfaces in Minkowski 3-space: used to study singularities of such surfaces.
- We are working on applying this theory to boundary value problems.
e.g. Basic (open) problem: is there are CMC topological disc bounded by a planar circle, other than the flat disc or a spherical cap?

Lorentzian harmonic maps

D.B. and Martin Svensson "The Geometric Cauchy Problem for Surfaces With Lorentzian Harmonic Gauss maps" arXiv:1009.5661

- Applications: e.g. constant Gauss curvature surfaces, timelike CMC surfaces in $\mathbb{R}^{2,1}$.
- Loop group construction different: the frame F_{λ} is constructed froma a pair of potentials ξ_{-}and ξ_{+}, each a function of one variable only.
- Uses Birkhoff, not Iwasawa decomposition.
- The geometric Cauchy problem can be solved for this case too
- Do not need real analytic initial data here.

Lorentzian harmonic maps

D.B. and Martin Svensson "The Geometric Cauchy Problem for Surfaces With Lorentzian Harmonic Gauss maps" arXiv:1009.5661

- Applications: e.g. constant Gauss curvature surfaces, timelike CMC surfaces in $\mathbb{R}^{2,1}$.
- Loop group construction different: the frame F_{λ} is constructed froma a pair of potentials ξ_{-}and ξ_{+}, each a function of one variable only.
- Uses Birkhoff, not Iwasawa decomposition.
- The geometric Cauchy problem can be solved for this case too
- Do not need real analytic initial data here.

Lorentzian harmonic maps

D.B. and Martin Svensson "The Geometric Cauchy Problem for Surfaces With Lorentzian Harmonic Gauss maps" arXiv:1009.5661

- Applications: e.g. constant Gauss curvature surfaces, timelike CMC surfaces in $\mathbb{R}^{2,1}$.
- Loop group construction different: the frame F_{λ} is constructed froma a pair of potentials ξ_{-}and ξ_{+}, each a function of one variable only.
- Uses Birkhoff, not Iwasawa decomposition.
- The geometric Cauchy problem can be solved for this case too.
- Do not need real analytic initial data here.

The geometric Cauchy problem for timelike CMC surfaces in $\mathbb{R} 2,1$

- Easy to find the potentials for surfaces of revolution.

Figure: Computed from the geometric Cauchy data on a circle of radius ρ. Left: $\rho H=-1$. Center $\rho H=-1 / 2$. Right: $\rho H=1$.

Pseudospherical surfaces in \mathbb{R}^{3}

Figure: The unique K-surface containing the catenary $y=\cosh (x)$ as a geodesic principle curve

Pseudospherical surfaces in \mathbb{R}^{3}

Figure: The unique K-surface containing the cubic $y=x^{2}(x+1)$ as a geodesic principle curve

Pseudospherical surfaces in \mathbb{R}^{3}

Figure: The unique K-surface containing the Bernoulli's lemniscate $\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}$ as a geodesic principle curve

