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1. History of the Metrically-Affine Theory

[1] Cartan Е. Sur les variétés à connexion affine et la théorie de la relativité généralisée. Part I, Ann. Ec. Norm., 40 

(1923), 325-412.

[2] Cartan Е. Sur les variétés à connexion affine et la théorie de la relativité généralisée. Part I, Ann. Ec. Norm., 41 

(1924), 1-25.

[3] Cartan Е. Sur les variétés à connexion affine et la théorie de la relativité généralisée. Part II, Ann. Ec. Norm., 42 

(1925), 17-88.

[4] Cartan E. On manifolds with an affine connection and the theory of general relativity. Napoli: Bibliopolis, 1986, 199 

p.

[5] Trautman A. The Einstein-Cartan theory. Encyclopedia of Mathematical Physics: Edited by Fracoise J.-P., Naber 

G.L., Tsou S.T. – Oxford: Elsevier, 2 (2006), 189-195.
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The beginning of metrically-affine space (manifold) theory was marked by E. Cartan in 1923-1925, who suggested 

using an asymmetric linear connection ∇ having the metric property 0g =∇ . His theory was called Einstein-Cartan 

theory of gravity (ECT). 



[6] Kibble T.W.B. Lorenz invariance and the gravitational field. J. Math. Phys, 2 (1961), 212-221.

[7] Sciama D.W.  On the analogy between change and spin in general relativity. Recent developments in General 

Relativity. – Oxford: Pergamon Press & Warszawa: PWN, 1962, pp. 415-439.

[8] Penrose R. Spinors and torsion in General Relativity. Found. of Phys 13 (1983), 325-339.

[9] Ruggiero M.L., Tartaglia A. Einstein-Cartan theory as a theory of defects in space-time. Amer. J. Phys. 71 (2003), 

1303-1313.

[10] Hehl F.W., Heyde P. On a New Metric-Affine Theory of Gravitation. Physics Letters B. 63: 4 (1976), 446-448.
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T. Kibble and D. Sciama have found a connection between the torsion S  of the connection ∇ and the spin tensor s 

of matter. Subsequently, other physical applications of ECT were found. 

The Einstein-Cartan theory was generalized by omitting the metric property of the linear connection  ∇,  i.e. the 

nonmetricity tensor 0≠∇= gQ . The new theory was called the metrically-affine gauge theory of gravity (MAG).



[11] Schouten J.A., Struik D.J. Einführung in die neuere methoden der differntialgeometrie, I. Noordhoff: Groningen-

Batavia, 1935.

[12] Schouten J.A., Struik D.J. Einführung in die neuere methoden der differntialgeometrie, II. Noordhoff: Groningen-

Batavia, 1938. 

[13] Eisenhart L.P. Non Riemannian geometry. New York: Amer. Math. Soc. Coll. Publ., 1927. 

[14] Eisenhart L.P. Continuous groups of transformations. Prinseton: Prinseton Univ. Press, 1933.

[15]  Puetzfeld  D.  Prospects  of  non-Riemannian  cosmology.  Proceeding  of  the  of  22nd Texas  Symposium  on 

Relativistic Astrophysics at Stanford University (Dec. 13-17, 2004). California: Stanford Univ. Press, 2004, 1-5.

[16]  Hehl  F.W.,  Heyde  P.,  Kerlick  G.D.,  Nester  J.M.  General  Relativity  with  spin  and  torsion:  Foundations  and 

prospects. Rev. Mod. Phys, 48: 3 (1976), 393-416.
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The E. Cartan idea was reflected in the well-known books in differential geometry of the first half of the last century.

Now there are hundreds works published in the frameworks of ECT and MAG, and moreover, the published results  

are of applied physical character.
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Classification of known kinds of metrically-affine spaces (manifolds) is presented in the following diagram.



[17] Yano K. On semi-symmetric metric connection. Rev. Roum. Math. Pure Appl., 15 (1970), 1579-1586.

[18] Nakao Z. Submanifolds of a Riemannian manifold semi-symmetric metric connections. Proc. Amer. Math. Soc., 

54 (1976), P. 261-266.

[19] Barua B., Ray A.K.  Some properties of semi-symmetric connection in Riemannian manifold. Ind. J. Pure Appl. 

Math., 16 (1985), No. 7, 726-740.

[20] Chaubey S.K.,  Ojha R.H.  On semi-symmetric non-metric and quarter symmetric metric connections. Tensor, 

N.S., 70 (2008), 202-213.

[21] Segupta J., De U.C., Binh T.Q. On a type of semi-symmetric connection on a Riemannian manifold. Ind. J. Pure 

Appl. Math., 31: 12 (2000), 1650-1670.

[22] Muniraja G. Manifolds admitting a semi-symmetric metric connection and a generalization of Shur’s theorem. Int. 

J. Contemp. Math. Sciences, 3: 25 (2008), 1223-1232.
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For  long  time,  among  all  forms  metrically-affine  space,  only  quarter-symmetric  metric  spaces  and  the  semi-

symmetric metric spaces were considered in differential geometry.



[23] Bochner S., Yano K.  Tensor-fields in non-symmetric connections. The Annals of Mathematics,  2nd Ser.  56: 3 

(1952), 504-519.

[24] Yano K., Bochner S. Curvature and Betti number. Princeton: Princeton University Press, 1953.

[25] Goldberg S.I.  On pseudo-harmonic and pseudo-Killing vector in metric manifolds with torsion. The Annals of 

Mathematics, 2nd Ser. 64: 2 (1956), 364-373.

[26] Kubo Y. Vector fields in a metric manifold with torsion and boundary.  Kodai Math. Sem. Rep. 24 (1972), 383-395.

[27] Rani N., Prakash N. Non-existence of pseudo-harmonic and pseudo-Killing vector and tensor fields in compact 

orientable generalized Riemannian space (metric manifold with torsion) with boundary. Proc. Natl. Inst. Sci. India. 

32: 1 (1966), 23-33.
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The development of geometry of metrically-affine spaces “in the large” was stopped at the results of K. Yano, S. 

Bochner and S. Goldberg obtained in the middle of the last century. In their works, in the frameworks of RCT, they  

proved “vanishing theorems” for pseudo-Killing and pseudo-harmonic vector fields and tensors on compact Riemann-

Cartan manifolds with positive-definite metric tensor g and the torsion tensor S  such that  trace S  = 0.

Y. Kubo, N. Rani and N. Prakash have generalized their results by introducing in consideration compact Riemann-

Cartan manifolds with boundary. 

http://www.zentralblatt-math.org/zmath/en/journals/search/?an=00003595


2. Riemann-Cartan manifolds

[1] Trautman A. The Einstein-Cartan theory. Encyclopedia of Mathematical Physics: Edited by Fracoise J.-P., Naber 

G.L., Tsou S.T. – Oxford: Elsevier, 2 (2006), 189-195.

[2] Yano K., Bochner S. Curvature and Betti number. Princeton: Princeton University Press, 1953.

3. Cappozziello-Lambiase-Stornaiolo classification of Riemann-Cartan manifolds
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A Riemann-Cartan manifold is a triple ( )∇,g,M , where ( )g,M  is a Riemannian n-dimensional  ( )2≥n  manifold with 

linear connection ∇ having nonzero torsion S  such that 0=∇g . 

The deformation tensor T defined by the identity ∇−∇=:Т  where ∇ is the Levi-Civita connection on (M, g) has the 

following properties 

(i) T  is uniquely defined; 

(ii) ( ) ( ) ( )( )XYTYXTYXS ,,, −=
2

1 ;

(iii)    MTMCT 2Λ⊗∈ ∞  since ⇔=∇ 0g ( )( ) ( )( ) 0=+ Y,Z,XTgZ,Y,XTg ;

(iV)   ( )( ) ( )( ) ( )( ) ( )( )X,Z,YSgY,Z,XSgZ,Y,XSgX,Z,YTg ++= ;

(V)    trace T = 2 trace S .



[1] Bourguignon J.P. Formules de Weitzenbök en dimension 4. Géométrie Riemannienne en dimension 4: Seminaire 

Arthur Besse 1978/79. – Paris: Cedic-Fernand Nathan, 1981.

[2] Capozziello S., Lambiase G., Stornaiolo C. Geometric classification of the torsion tensor in space-time. Annalen 

Phys., 10 (2001), 713-727.
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We  know  that  TMMCS ⊗Λ∈ ∞ 2b .  In  turn,  the  following  pointwise  O(q)-irreducible  decomposition  holds 

( ) ( ) ( )MMMMTM 32
2 ΩΩΩ ⊕⊕≅⊗Λ 1

∗ .  Here,  q =  g(x)  for  an  arbitrary  point  Mx ∈ .  In  this  case,  the  orthogonal 

projections on the components of this decomposition are defined by the following relations:

( ) ( ) ( ) ( )( )YXZSXZYSZYXSZYX ,,,,,,,,S bbbb(1) ++= −13 ;

( ) ( ) ( ) ( ) ( )YZXgXZYgZYX θθ ,,,,Sb(2) −= ;

( ) ( ) ( ) ( )( )YXZSZYXSZYXSZYX ,,,,,,,,S b(2)b(1)bb(3) −−= ,

where ( ) ( )( )ZYXSgZYXS ,,,,b =  and ( ) Stracen 11 −−=:θ .

We say that a Riemann-Cartan manifold ( )∇,g,M  belongs to the class αΩ  or βα ΩΩ ⊕  for 321 ,,, =βα  and βα <  if 

the tensor field bS  is a section of corresponding tensor bundle ( )ĚαΩ  or ( ) ( )ĚĚ βα Ω⊕Ω .
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All these classes of Riemann-Cartan manifolds are presented in the following diagram.



4. The class Ω1⊕  Ω2 of Cappozziello-Lambiase-Stornaiolo classification 

of Riemann-Cartan manifolds

[1] Eisenhart L.P. Continuous groups of transformations. Princeton: Princeton Univ. Press, 1933.

[2] Yano K., Bochner S. Curvature and Betti number. Princeton: Princeton University Press, 1953.

[3] Fabri L. On a completely antisymmetric Cartan torsion tensor. Annalen de la Foundation de Broglie 32: 2-3 (2007), 

215-228..
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Lemma 4.1.  A Riemann-Cartan manifold  ( )∇,M,g  belongs to the class  21 ΩΩ ⊕  if  and only if  its  torsion tensor 

satisfies an algebraic equation of the form

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )XAZYgZBYXgYBZXgYZXSZYXS ,,,,,,, bb ++=+

for some smooth A, B МТС ∗∞∈  and arbitrary vector fields X, Y, Z ТМС∞∈

Lemma 4.2.  The class  Ω2 of  Riemann-Cartan manifolds  ( )∇,M,g  consists of  semisymmetric  Riemannian-Cartan 

manifolds.

Lemma 4.3. A Riemann-Cartan manifold ( )∇,M,g  belongs to the class Ω1 if and only if its torsion tensor satisfies the 

property MCS 3b Λ∈ ∞ . In particular, this class includes spaces of semisimple groups.

 



5. Vanhecke-Tricerri classification of Riemann-Cartan manifolds

[1] Bourguignon J.P. Formules de Weitzenbök en dimension 4. Géométrie Riemannienne en dimension 4: Seminaire 

Arthur Besse 1978/79. Paris: Cedic-Fernand Nathan, 1981.

[2] Tricerri  F., Vanhecke L.  Homogeneous structures.  Progress in mathematics (Differential geometry),  32 (1983), 
234-246.
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We know that MCŇĚŇ 2b Λ⊗∈ ∞ . In turn, the following pointwise O(q)-irreducible decomposition holds 

T*M  ⊗  Λ2M ≅  Ψ1(M)  ⊕  Ψ2(M)  ⊕  Ψ3(M).  In  this  case,  the  orthogonal  projections  on  the  components  of  this 

decomposition are defined by the following relations:

( ) ( ) ( ) ( )( )Y,X,ZТX,Z,YТZ,Y,XТZ,Y,XТ bbb1b(1) 3 ++= − ;

( ) ( ) ( ) ( ) ( )ZY,XgYZ,XgZ,Y,XТ ωω −=b(2) ;

( ) ( ) ( ) ( )( )Y,X,ZТX,Z,YТZ,Y,XТZ,Y,XТ b(2)b(1)bb(3) −−= ,

where ( ) ( )( )ZYXTgZYXТ ,,,,b =  and ( ) Тtracen 11: −−=ω .

We say that a Riemann-Cartan manifold ( )∇,g,M  belongs to the class αΨ  or βα Ψ⊕Ψ  for 321 ,,, =βα  and βα <  if the 

tensor field bТ  is a section of corresponding tensor bundle ( )МαΨ  or ( ) ( )ММ βα Ψ⊕Ψ .

The spaces МТМ ∗⊗Λ2  and ММТ 2Λ⊗∗ , as well as their irreducible components, are isomorphic. Therefore these 

two classifications are equivalent. Moreover, corresponding classes of Riemann-Cartan manifolds from these two 

classifications coincide.



6. Examples of Riemann-Cartan manifolds

[1]  Cartan Е. Sur les variétés à connexion affine et la théorie de la relativité généralisée. Part I, Ann. Ec. Norm., 41 

(1924), 1-25.

[2] Aldrovandi R., Pereira J. G., and Vu K. H. Selected topics in teleparallel gravity. Вrazilian Journal of Physics, 34: 

4A (2004), 1374-1380.

[3] Wu Y.L., Lee X.J. Five-dimensional Kaluza-Klein theory in Weizenböck space. Phys. Letters A, 165 (1992), 303-

306.
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Consider a  Euclidian sphere 

S
2  = {S2 \  north pole} of radius  R excluding the north pole and with the standard 

Riemannian metric  g11 =  R2 cos2ϕ,  g22 =  R2,  g12 =  g21 = 0 where  ϕϑ == 21 х,х  for  denote the standard spherical 

coordinates of 

S
2. Then X1 = {(R cos ϕ)-1, 0}, X2 = {0, R-1} are vectors of standard orthogonal basis of all vector fields 

on 

S
2.  

There is a non-symmetric metric connection ∇ with coefficients ϕtan -1
21 =Γ  and other 0=Γα

β γ  such that 0=∇ βα
ХХ  

where  .,,, 21=γβα  For this connection  ∇ the curvature tensor  0=R  and the torsion tensor  S has components 

( ) ϕtan11
12 2 −=S , 02

12 =S . Therefore, 

S
2 with g and ∇ is an example of a Riemann-Cartan manifold manifold ( )∇,gM, . 

In addition if 0=R  then ∇ has name Weitzenböck or a teleparallel connection.



[4] Tricerri F., Vanhecke L.  Homogeneous structures on Riemannian manifolds. London Math. Soc.: Lecture Note 

Series., Vol. 83. Cambridge University Press, London, 1983. 

[5] Kobayshi S., Nomizu K. Foundations of Riemannian geometry, Vol. 2.  Interscience publishers, New York-London, 

1969. 
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A homogeneous Riemannian manifold (M, g) is the connected Riemannian manifold (M, g) whose isometry group is 

transitive.   By  the  Tricerri  and  Vanhecke  theorem,  a  complete  connected  Riemannian  manifold  (M,  g)  is 

homogeneous iff a tensor field T МТМС 2Λ⊗∈ ∞  such that 0=∇R  and 0=∇T  for the connection T+∇=∇ .

In this case, 0=∇g  and, therefore, a homogeneous Riemannian manifold is an example of the Riemannian-Cartan 

manifold ( )∇,gM, . 

An almost Hermitian manifold is defined as the triple (M, g, J), where the pair (M, g) is a Riemannian 2m-dimensional 

manifold with almost complex structure J МТТМ ∗⊗∈   compatible with the metric g, i.e. TMIdJ2 −=  and ( ) gg =JJ, . In 

this case, 0=∇g  for the connection J∇+∇=∇ , and, therefore, an almost Hermitian manifold (M, g, J), together with 

the connection J∇+∇=∇ , is an example of the Riemannian-Cartan manifold (M, g,∇).

,



 [6] Gray A., Hervella L. The sixteen class of almost Hermitean manifolds. Ann. Math. Pura Appl., 123 (1980), 35-58.
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The  classification  of  almost  Hermitian  manifolds  is  well  known,  it  is  based on  the  pointwise  U(m)-irreducible 

decomposition of the tensor Ω∇ , where Ω (X, Y) = g(X, JY). 

Almost semi-Kählerian manifolds are isolated by the condition  trace ∇ J = 0 and are an example of Riemann-

Cartan manifolds of class Ω1 ⊕  Ω2.

Almost Kählerian manifolds are isolated by the condition dΩ = 0 and are an example of Riemann-Cartan manifolds 

of class Ω2 ⊕  Ω3. 

Nearly Kählerian manifolds are isolated by the condition dΩ = 3  ∇Ω  and are an example of  Riemann-Cartan 

manifolds of class 1Ω .



7. Weitzenböck manifolds

[1] Hayashi K., Shirafuji T. New general relativity. Phys. Rev. D, 19 (1979), 3524-3553.

[2] Wu Y.L., Lee X.J. Five-dimensional Kaluza-Klein theory in Weizenböck space. Phys. Letters A, 165 (1992), 303-
306.

[3] Aldrovandi R., Pereira J.G., Vu K.H. Selected topics in teleparallel gravity. Brazilian J. Ph., 34 (2004), 1374-1380.
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A Riemann-Cartan manifold ( )∇,g,M  is called the Weitzenböck or teleparallel manifold if the curvature tensor R  of 

the nonsymmetric metric-affine connection ∇ vanishes.  

Lemma 7.1.  If  the Weitzenböck manifold  ( )∇,g,M  with positive-definite metric  g belongs to the class Ω1 then 

( ) ( ) ( ) 0≥= ∑
=

ji

n

1ji,
ji e,eX,Te,eX,TXX,Ric  for Ricci tensor Ric of the Riemannian manifold (M, g) and an arbitrary orthonormal 

basis {e1, e2, … , en}. 

Lemma 7.2.   If  the  Weitzenböck  manifold  ( )∇,g,M  belongs  to  the  class Ω2  then  the  Weyl  tensor  W of  the 

Riemannian manifold (M, g) vanishes and (M, g) for n ≥  4 is a conformally flat. 

Lemma 7.3.  If the Weitzenböck manifold ( )∇,g,M  belongs to the class Ω3 then s = – 2 2
S  ≤  0 for the scalar 

curvature s of the Riemannian manifold (M, g). 



8. Green theorem for a Riemann-Cartan manifold

[1] Yano K., Bochner S. Curvature and Betti number. Princeton: Princeton University Press, 1953.
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Let (M, g) be a compact oriented Riemannian manifold then the classical Green’s theorem ( )∫ =
М

VX 0ddiv  has the 

form ( )∫ =∇
М

VXtrace 0d  for an arbitrary smooth vector field X and the volume element dV. 

Since the dependence Т+∇=∇  holds on ( )∇,g,M , it follows that  ( )XtraceXtraceXtrace S2+∇=∇ . Whence, by the 

Green’s theorem, we deduce the Green’s theorem ( )( )∫ =−∇
M

VXStraceXtrace 02 d  for a Riemann-Cartan manifold 

( )∇,g,M .

Goldberg S., Yano K. and Bochner S. and also Kubo Y., Rani N, and Prakash N. proved their “vanishing theorems”  

on compact  oriented Riemann-Cartan manifolds under the condition that  XtraceX ∇=div .  In this  case Green’s 

theorem has the form ( )∫ =∇
М

VXtrace 0d . These Riemann-Cartan manifolds belong to the class Ω1 ⊕  Ω3.



[2] Bochner S., Yano K. Tensor-fields in non-symmetric connections. The Annals of Mathematics, 2nd Ser. 56(1952), 

No. 3, 504-519.

[3] Yano K., Bochner S. Curvature and Betti number. Princeton: Princeton University Press, 1953.

[4]  Goldberg S.I.  On pseudo-harmonic and pseudo-Killing vector  in metric manifolds with torsion.  The Annals of 

Mathematics, 2nd Ser. 64 (1956), No. 2, 364-373.

[5] Kubo Y. Vector fields in a metric manifold with torsion and boundary.  Kodai Math. Sem. Rep. 24 (1972), 383-395.

[6] Rani N., Prakash N.  Non-existence of pseudo-harmonic and pseudo-Killing vector and tensor fields in compact 

orientable generalized Riemannian space (metric manifold with torsion) with boundary. Proc. Natl. Inst. Sci. India. 

32 (1966), No. 1, 23-33.
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http://www.zentralblatt-math.org/zmath/en/journals/search/?an=00003595


9. Scalar and complete scalar curvature 
of Riemann-Cartan manifolds

[1] Yano K., Bochner S. Curvature and Betti number. Princeton: Princeton University Press, 1953.

[2] Stepanov S.E., Gordeeva I.A. Pseudo-Killing and pseudo harmonic vector field on a Riemann-Cartan manifold. 

Mathematical Notes, 87: 2 (2010), 238-247.
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It  is  well  known that  the curvature tensor  R  of  the linear  non-symmetric  connection  ∇ of  a  Riemann-Cartan 

manifold  ( )∇,g,M  is a section of the tensor bundle  MΛMΛ 22 ⊗ . Therefore the  scalar curvature of the Riemann-

Cartan manifold ( )∇,g,M  we can define by the formula ( )jiji

n

1i

e,e,e,e
_
Rs ∑

=
=  as an analogy to the scalar curvature s of 

a Riemannian manifold (M, g).

The dependence between the scalar curvatures s and s  is described in the following formula

                                       ( ) ( ) ( ) ( ) ( )bbbb div StraceSSnSss 4222
232221 −+−−−= .                                       (9.1)

In particular, for the Weitzenböck connection ∇ we have the identity 0=s . Then the formula (9.1) can be rewritten in 

the following form  
( ) ( ) ( ) ( ) ( )b2b32b22b1 Stracediv4S2S2n2Ss +−−+= .
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Let  ( )∇,g,M  be a  compact  Riemann-Cartan manifold,  we define its  complete scalar  curvature  as the number 

( ) ∫=
M

VsMs d  as an analogue of the complete scalar curvature ( ) ∫=
M

VsMs d  of a Riemannian manifold.

The dependence between the complete scalar curvatures s(M) and s (M) is described in the following formula

                                                 ( ) ( ) ( ) ( ) ( ) ( )( )∫ −−+−=
M

2b32b22b1 dVS2S2ň2SMsMs .                                   (9.2)

In particular, for the Weitzenböck connection ∇ we have the integral identity 

( ) ( ) ( ) ( ) ( )( )∫ −−+=
M

2b32b22b1 dVS2S2ň2SMs .

We  consider  a  Riemann-Cartan  manifold  ( )∇,,gM  of  the  class  Ω1 which  is  characterized  by  the  conditions 

( ) ( ) 032 == SS  that is equal to MCS 3Λ∈ ∞b . For this condition the identity (9.1) can be  rewritten as ( ) 21 Sss −= .  Hence 

we have ss ≤ , and equality is possible only if ∇=∇ .  The following theorem holds.

Theorem 9.1. The scalar curvatures s and s of the metric connection ∇ and of the Levi-Civita connection ∇ of an 

n-dimensional Riemannian-Cartan manifold ( )∇,M,g  of the class Ω1 satisfy the inequality ss ≤ . The equality ss =  is 

possible only if ∇=∇ .  
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For a compact Riemann-Cartan manifold ( )∇,g,M  of the class Ω1 ⊕  Ω2, we have  

                                                            ( ) ( ) ( ) ( ) ( )∫ 





 −+−=

M
dVSnSMsMs

2221 22 bb .                                              (9.3)

Then the following theorem is true. 

Theorem 9.2. The complete scalar curvatures ( )Ms  and ( )Ms  of Riemannian compact oriented manifold ( )g,M  and 

a compact oriented  Riemann-Cartan manifold ( )∇,M,g  of class Ω1 ⊕  Ω2 are related by the inequality ( ) ( )MsMs ≤ . 

For 3dim ≥M , the equality is possible if the connection ∇ coincides with the Levi-Civita connection ∇ of the metric 

g, for n = 2, if ∇is a semi-symmetric connection.

For a compact  Weitzenböck manifold ( )∇,M,g  of the class Ω1 ⊕ Ω2 the inequality ( ) 0≥Ms  holds. Therefore we can 

formulate  (see Lemma 7.1)

Corollary 1. There are not Weitzenböck connections ∇ of the class Ω1 ⊕ Ω2 on a compact Riemannian manifold 

with ( ) 0<Ms .
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Knowing the definition of the scalar curvatures s  and s and taking account of the positive definiteness of the metric g, 

we can prove the following corollary.

Corollary 2. On compact oriented Riemannian manifold (M, g) with negative-semidefinite (resp. negative-definite) the 

scalar curvature s, there is no non-symmetric metric connection  ∇ of class  Ω1  ⊕  Ω2 with positive-definite (resp. 

positive-semi definite) quadratic form 
−

Ric (X, X) for the Ricci tensor 
−

Ric  of the connection ∇ and any vector field X.

For a  Riemann-Cartan manifold ( )∇,g,M  of the class Ω3, we have ( ) ( ) ( )∫+=
M

2b3 dVS2MsMs .   Then the following 

theorem is true.                                               

Theorem 9.3. The  complete scalar curvatures s(M) and ( )Ms  of Riemannian manifold ( )g,M  and a Riemann-Cartan 

manifold  ( )∇,M,g  of class  Ω3 a related by the inequality  ( ) ( )MsMs ≥ . The equality is possible if the connection  ∇ 

coincides with the Levi-Civita connection ∇ of the metric g. 

Knowing the definition of the scalar curvatures s  and s we can prove the following corollary.

Corollary 4. On Riemannian manifold (M, g) with positive-semidefinite (resp. positive-definite) the scalar curvature s, 

there  is  no  non-symmetric  metric  connection  ∇ of  class  Ω3 with  negative-definite  (resp.  negative-semi  definite) 

quadratic form 
−

Ric (X, X) for the Ricci tensor 
−

Ric  of the connection ∇ and any smooth vector field X.



10. Pseudo – Killing vector fields

[1]  Goldberg S.I.  On pseudo-harmonic and pseudo-Killing vector  in metric manifolds with torsion.  The Annals of 

Mathematics, 2nd Ser. 64: 2 (1956), 364-373.

[2] Tanno S.  Partially conformal transformations with respect to (m – 1)-dimensional distributions of  m-dimensional 

Riemannian manifolds. Tôhoku Math. J., 17: 17 (1965), 358-409.

[3] Reinhart B.L. Differential geometry of foliations. Berlin-New York: Springer-Verlag, 1983. 
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Let  ( )∇,g,M  belong to the class Ω1 ⊕  Ω2 then  ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )ξθξθξξθξ Y,gY,XgY,XgY,XgL −−= 22    and  hence

( )( ) ( ) ( )ξθξ Y,XgY,XgL 4=  for arbitrary smooth vector fields X and Y belong to the hyperdistribution ⊥ξ  orthogonal to ξ. 

Moreover, the second fundamental form ⊥Q of ⊥ξ  has the form ξ⊗=⊥ gQ 4 .

   

The differential  equation   ( ) ( ) 0=∇+∇ ξξ YX ,XgY,g   defining the  pseudo-Killing vector  field on a Riemann-Cartan 

manifold ( )∇,g,M  can be represented in the equivalent form ( )( ) ( ) ( )( )XYSYXSYXgL ,,,,, bb ξξξ += 2   where ξL  is  

the Lie derivative with respect to ξ.

Theorem 10.1.  A pseudo-Killing (non-isotropic) vector field ξ on a Riemann-Cartan manifold ( )∇,g,M  of class Ω1 ⊕  

Ω2 is an infinitesimal (n – 1)-conformal transformation and the hyperdistribution ⊥ξ  orthogonal to ξ is umbilical.



[3] Stepanov S.E. An integral formula for a Riemannian almost-product manifold. Tensor, N.S., 55: 3 (1994), 209-213.

[4] Stepanov S.E., Gordeeva I.A. Pseudo-Killing and pseudo harmonic vector field on a Riemann-Cartan manifold. 

Mathematical Notes, 87: 2 (2010), 238-247.
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On a compact oriented manifold (M, g) with globally defined umbilical hyperdistribution, the following integral formula 

holds

                                                               ( ) ( )( )∫ =


 −−−− ⊥⊥

M
dvHnnF,r 021

22
ςς                                            (10.3)

where ς  is the unit vector field orthogonal to this hyperdistribution and ⊥Н  is a mean curvature vector of this 

hyperdistribution.  Then from this formula, we deduce that the following theorem is true.

                                 

Theorem 10.2. Let a compact oriented n-dimensional (n > 2) Riemann-Cartan manifold ( )∇,g,M  with positive-definite 

metric tensor g belong to the class Ω1 ⊕  Ω2. If the condition ( ) 0Ric ≤ξξ,  holds for a pseudo-Killing vector field ξ then 

the hyperdistribution ⊥ξ  is integrable with maximal totally geodesic manifolds and the metric form of the manifold has 

the  following  form  in  a  local  coordinate  system  nx,...,x1  of  a  certain  chart  (U,  ψ ) 

( ) ( ) nnn
nn

ban
ab dxdxx,...,xgdxdxx,...,xgds ⊗+⊗= − 1112  for .n,...,b,a 11 −=

   



11. Vanishing theorems for pseudo-Killing vector fields

[1] Stepanov S.E., Gordeeva I.A. On existence of pseudo-Killing and pseudo-harmonic vector fields on Riemannian-

Cartan manifolds. Zb. Pr. Inst. Mat. NaN Ukr. 6: 2 (2009), 207-222.
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The analysis of the integral formula (10.3) allows to draw a conclusion that the following theorem is true.

Theorem  11.1.  Let  a compact  oriented  n-dimensional  (n >  2)  Riemann-Cartan manifold  ( )∇,g,M  with positive-

definite metric tensor g belong to the class Ω1 ⊕  Ω2. If the Ricci tensor Ric of the Levi-Civita connection ∇ of the 

metric g is negative, then on ( )∇,g,M  there are no nonzero pseudo-Killing vector fields.

The Laplacian of the length function F = ½ g (ξ , ξ ) of a pseudo-Killing vector field on a Riemann-Cartan manifold 

(M, g,∇) is found from the relation 

( ) ( ) ( )( )∑
=

∇+−∇∇=∆
n

i
i

___

ieeSgRicgF
1

,,2,, ξξξξξξ                                            (11.1)

for ( )( )∑
=

∇=∆
n

i 1
ii e,eF2F  and a local orthonormal basis { e1, … , en}.



[2] Stepanov S.E., Gordeeva I.A., Pan’zhenskii V.I. Riemann-Cartan manifolds. Journal of Mathematical Science 

(New York), 169: 3 (2010), 342-361.
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Using the formula (11.1)  we can prove the following theorems.

Theorem 11.2. Let a Riemann-Cartan manifold ( )∇,g,M  with positive-definite metric tensor g belong to the class 

Ω2. If the length function F = ½ g (ξ , ξ ) of a pseudo-Killing vector field ξ  has a local maximum at a point x ∈  M 

of the manifold at which the quadratic form 
____

Ric (X, X) is negative-definite, then ξ  vanishes at this point and in a 

certain its neighborhood. 

Theorem 11.3. Let a Riemann-Cartan manifold ( )∇,g,M  with positive-definite metric tensor g belong to the class 

Ω3. If the length function F = ½ g (ξ , ξ ) of a pseudo-Killing vector field ξ  has a local maximum at a point x ∈  M 

at which the quadratic form 
____

Ric (X, X) is negative-definite, then ξ  vanishes on the whole manifold.



12. Pseudo-harmonic vector fields

[1]  Goldberg S.I.  On pseudo-harmonic and pseudo-Killing vector  in metric manifolds with torsion.  The Annals of 

Mathematics, 2nd Ser. 64: 2 (1956), 364-373.
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Theorem 12.1. Let a compact oriented  n-dimensional (n > 2) Riemann-Cartan manifold  ( )∇,g,M  with positive-

definite metric tensor  g belong to the class  Ω1  ⊕  Ω2.  If the condition  ( ) 0,Ric ≥
−−−

ξξ  holds for a pseudo-harmonic 

vector field ξ then the hyperdistribution ⊥ξ  orthogonal to ξ  is umbilical.

         

Theorem 12.2. Let a compact oriented  n-dimensional (n > 2) Riemann-Cartan manifold  ( )∇,g,M  with positive-

definite metric tensor  g belongs to the class Ω2.  If the condition ( ) 0, ≥ξξ
___

Ric  holds for a pseudo-harmonic vector 

field ξ then the hyperdistribution ⊥ξ  is integrable with maximal totally umbilical manifolds and the metric form of 

the  manifold  has  the  following  form  in  a  local  coordinate  system  nx,...,x1  of  a  certain  chart  (U,  ψ ) 

( ) ( ) ( ) nnn1
nn

ba1n1
ab

n12 dxdxx,...,xgdxdxx,...,xgx,...,xσds ⊗+⊗= −  for .n,...,b,a 11 −=

A vector field ξ  on a Riemann-Cartan manifold  ( )∇,g,M  with positive-definite metric tensor g is said to be 

pseudo -harmonic if it is a solution of the system of differential equations  ( ) ( ) 0X,gY,g YX =∇−∇ ξξ ;    trace ∇ ξ  = 

0.                                               



[2] Stepanov S.E., Gordeeva I.A., Pan’zhenskii V.I. Riemann-Cartan manifolds. Journal of Mathematical Science 

(New York), 169: 3 (2010), 342-361.
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The Laplacian of the length function  F =  ½ g  (ξ ,  ξ ) of a pseudo-harmonic vector field on a Riemann-Cartan 

manifold (M, g,∇) of the class Ω1 ⊕  Ω2 has the form 

( ) ( ) ( )StraceF,gRicgF
___

∇
−

++∇∇=∆
2

2
,,

n
ξξξξ                                            (12.1)

Using the formula (12.1)  we can prove the following theorem.

Theorem 12.2. Let a Riemann-Cartan manifold ( )∇,g,M  with positive-definite metric tensor g belong to the class 

Ω1⊕Ω2.  If the length function F =  ½ g (ξ ,  ξ ) of a pseudo-harmonic vector field  ξ  has a local maximum at a 

point  x ∈  M at which the quadratic form  ____

Ric (X, X) is positive-definite, then  ξ  vanishes at this point and in a 

certain its neighborhood. 


