Construction of complete (hyperbolic) minimal surfaces in \mathbb{R}^3

Antonio Alarcón

Departamento de Geometría y Topología

Universidad de Granada

Definition

- An open Riemann surface *M* is said to be hyperbolic if it carries non-constant negative subharmonic functions.
- Otherwise, *M* is said to be parabolic.

• All the classical examples of complete minimal surfaces are both properly immersed in \mathbb{R}^3 and of parabolic conformal type.

- All the classical examples of complete minimal surfaces are both properly immersed in \mathbb{R}^3 and of parabolic conformal type.
- Osserman 1963 Complete minimal surfaces of finite total curvature are of finite topology and parabolic conformal type.
- Jorge-Meeks 1983 Complete minimal surfaces of finite total curvature are properly immersed in \mathbb{R}^3 .

- All the classical examples of complete minimal surfaces are both properly immersed in \mathbb{R}^3 and of parabolic conformal type.
- Osserman 1963 Complete minimal surfaces of finite total curvature are of finite topology and parabolic conformal type.
- Jorge-Meeks 1983 Complete minimal surfaces of finite total curvature are properly immersed in \mathbb{R}^3 .

Conjecture (Meeks-Sullivan)

Proper minimal surfaces of finite topology are parabolic.

Conjecture (Schoen-Yau 1985)

Minimal surfaces properly projecting into a plane are parabolic.

Conjecture (Calabi 1966)

A complete minimal surface has no bounded coordinate function.

• Jorge-Xavier 1980 There exists a complete minimal surface contained in a slab of \mathbb{R}^3 .

Conjecture (Calabi 1966)

A complete minimal surface has no bounded coordinate function.

- Jorge-Xavier 1980 There exists a complete minimal surface contained in a slab of \mathbb{R}^3 .
- Weierstrass Representation $X = (X_j)_{j=1,2,3} : M \to \mathbb{R}^3$ conformal minimal immersion

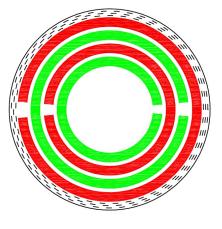
$$X = \Re \int \left(\frac{1}{2} (\frac{1}{g} - g) \Phi_3, \frac{\imath}{2} (\frac{1}{g} + g) \Phi_3, \Phi_3 \right)$$

$$\Phi_3 = \partial_z X_3$$
 (holomorphic 1-form)

$$g = \text{st. proj. Gauss map (meromorphic function)}$$

$$ds^2 = \frac{1}{4}(\frac{1}{|g|} + |g|)^2 |\Phi_3|^2$$

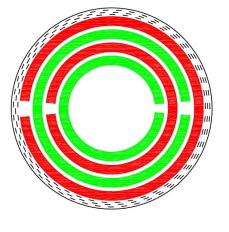
• Jorge-Xavier 1980 There exists a complete minimal surface contained in a slab of \mathbb{R}^3 .



- $\bullet M = \mathbb{D}$
- $\Phi_3 = dz$
- |g| bigger and bigger in the compact sets

•
$$ds^2 = \frac{1}{4}(\frac{1}{|g|} + |g|)^2 |dz|^2$$

• Jorge-Xavier 1980 There exists a complete minimal surface contained in a slab of \mathbb{R}^3 .



- $M = \mathbb{D}$
- $\Phi_3 = dz$
- |g| bigger and bigger in the compact sets

•
$$ds^2 = \frac{1}{4}(\frac{1}{|g|} + |g|)^2 |dz|^2$$

• Runge's Theorem 1948 (1885) A holomorphic function on a Runge compact subset of an open Riemann surface M can be uniformly approximated by holomorphic functions on M.

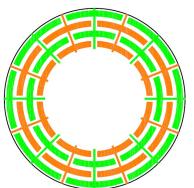
Conjecture (Calabi 1966)

A complete minimal surface can not be bounded.

Conjecture (Hadamard 1898)

A complete negatively curved surface in \mathbb{R}^3 can not be bounded.

• Nadirashvili 1996 There exists a complete negatively curved minimal surface contained in a ball of \mathbb{R}^3 .



Question (Yau 2000)

- Which topological types admits a complete bounded minimal surface?
- Are there complete minimal surfaces properly immersed in a ball?
- López-Martín-Morales 2002 There are complete bounded minimal surfaces of arbitrary finite topological type. (Period Problem.)
- Morales 2003 There exists proper hyperbolic minimal disc in \mathbb{R}^3 . (Counterexample to Meeks-Sullivan's conjecture.)
- AA, Ferrer, López, Martín, Morales Many examples.

Tools

- Nadirashvili's technique for the completeness.
- Morales' technique for the properness.
- The Bridge Principle for minimal surfaces for the arbitrary topological type.

Tools

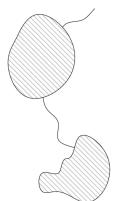
- Nadirashvili's technique for the completeness.
- Morales' technique for the properness.
- The Bridge Principle for minimal surfaces for the arbitrary topological type.
- ullet Properness (in \mathbb{R}^3) does not influence the topology of immersed (hyperbolic) minimal surfaces.

Tools

- Nadirashvili's technique for the completeness.
- Morales' technique for the properness.
- The Bridge Principle for minimal surfaces for the arbitrary topological type.
- Properness (in R³) does not influence the topology of immersed (hyperbolic) minimal surfaces.
- Conformal structure?

The Approximation Lemma

- Given an open Riemann surface \mathcal{M} , a compact subset $S \subset \mathcal{M}$ is said to be admissible iff
 - 5 is Runge,
 - $M_S := \overline{S^{\circ}}$ consists of a finite collection of pairwise disjoint compact regions in \mathcal{M} with analytical boundary,
 - $C_S := \overline{S M_S}$ consists of a finite collection of pairwise disjoint analytical Jordan arcs.



- Given an open Riemann surface \mathcal{M} , a compact subset $S \subset \mathcal{M}$ is said to be admissible iff
 - 5 is Runge,
 - $M_S := \overline{S^\circ}$ consists of a finite collection of pairwise disjoint compact regions in \mathcal{M} with analytical boundary,
 - $C_S := \overline{S M_S}$ consists of a finite collection of pairwise disjoint analytical Jordan arcs.
- Let M be an open Riemann surface and S ⊂ M be an admissible subset.
 A smooth map X = (X_j)_{j=1,2,3} is said to be a generalized conformal minimal immersion (GCMI) iff
 - $\bullet X|_{C_s}$ is an immersion, and
 - $X|_{\mathcal{M}_S}$ is a conformal minimal immersion.

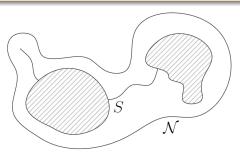
Lemma (The Approximation Lemma) (AA-López 2009)

Let $\mathcal N$ be an open Riemann surface of finite topology, and let $\mathcal S$ be a connected admissible compact subset in $\mathcal N$. Let

$$X = (X_1, X_2, X_3) : S \to \mathbb{R}^3$$
 be a GCMI on S.

Then X can be uniformly approximated on S by a sequence of conformal minimal immersions

$$Y(n) = (Y(n)_1, Y(n)_2, Y(n)_3) : \mathcal{N} \to \mathbb{R}^3.$$



Lemma (The Approximation Lemma) (AA-López 2009)

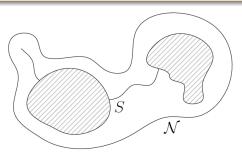
Let $\mathcal N$ be an open Riemann surface of finite topology, and let $\mathcal S$ be a connected admissible compact subset in $\mathcal N$. Let

 $X = (X_1, X_2, X_3) : S \to \mathbb{R}^3$ be a GCMI on S.

Then X can be uniformly approximated on S by a sequence of conformal minimal immersions

 $Y(n) = (Y(n)_1, Y(n)_2, Y(n)_3) : \mathcal{N} \to \mathbb{R}^3.$

Moreover, we can choose the third coordinate function $Y(n)_3 = X_3 \, \forall n$ provided that X_3 extends harmonically to \mathcal{N} and $\partial_z X_3$ never vanishes on C_5 .



Lemma (The Approximation Lemma) (AA-López 2009)

Let \mathcal{N} be an open Riemann surface of finite topology, and let S be a connected admissible compact subset in \mathcal{N} . Let

 $X = (X_1, X_2, X_3) : S \to \mathbb{R}^3$ be a GCMI on S.

Then X can be uniformly approximated on S by a sequence of conformal minimal immersions

 $Y(n) = (Y(n)_1, Y(n)_2, Y(n)_3) : \mathcal{N} \to \mathbb{R}^3.$

Moreover, we can choose the third coordinate function $Y(n)_3 = X_3 \ \forall n$ provided that X_3 extends harmonically to \mathcal{N} and $\partial_z X_3$ never vanishes on C_S .

- Mergelyan-Bishop's Theorem 1958 Let M be an open Riemann surface, let $K \subset M$ be a compact Runge set and let $f: K \to \mathbb{C}$ be a continuous function which is holomorphic in K° . Then f can be uniformly approximated on K by functions holomorphic in M.
- Implicit Function Theorem.

 How to construct minimal surfaces with prescribed conformal structure using the Approximation Lemma?

- How to construct minimal surfaces with prescribed conformal structure using the Approximation Lemma?
- Let *M* be an open Riemann surface.
 - M admits an exhaustion by Runge compact regions

$$M_1 \subset M_2^{\circ} \subset M_2 \subset M_3^{\circ}..., \quad \cup_{n \in \mathbb{N}} M_n = M.$$

- How to construct minimal surfaces with prescribed conformal structure using the Approximation Lemma?
- Let *M* be an open Riemann surface.
 - M admits an exhaustion by Runge compact regions

$$M_1 \subset M_2^{\circ} \subset M_2 \subset M_3^{\circ}..., \quad \cup_{n \in \mathbb{N}} M_n = M.$$

2 There exists a sequence of conformal minimal immersions

$$X_n: M_n \to \mathbb{R}^3$$
, $\|X_n - X_{n-1}\| < \epsilon_n$ on M_{n-1} .

- How to construct minimal surfaces with prescribed conformal structure using the Approximation Lemma?
- Let *M* be an open Riemann surface.
 - M admits an exhaustion by Runge compact regions

$$M_1 \subset M_2^{\circ} \subset M_2 \subset M_3^{\circ}..., \quad \cup_{n \in \mathbb{N}} M_n = M.$$

There exists a sequence of conformal minimal immersions

$$X_n: M_n \to \mathbb{R}^3$$
, $\|X_n - X_{n-1}\| < \epsilon_n$ on M_{n-1} .

③ $\{X_n\}_{n \in \mathbb{N}}$ uniformly converges to a conformal minimal immersion $Y : M \to \mathbb{R}^3$.

- How to construct minimal surfaces with prescribed conformal structure using the Approximation Lemma?
- Let M be an open Riemann surface.
 - **1** M admits an exhaustion by Runge compact regions

$$M_1 \subset M_2^{\circ} \subset M_2 \subset M_3^{\circ}..., \cup_{n \in \mathbb{N}} M_n = M.$$

There exists a sequence of conformal minimal immersions

$$X_n: M_n \to \mathbb{R}^3$$
, $\|X_n - X_{n-1}\| < \epsilon_n$ on M_{n-1} .

- **③** $\{X_n\}_{n \in \mathbb{N}}$ uniformly converges to a conformal minimal immersion $Y : M \to \mathbb{R}^3$.
- Global properties?

Completeness

Let M be an open Riemann surface and let $u: M \to \mathbb{R}$ be non-constant harmonic function.

Then there exists a conformal complete minimal immersion $Y = (Y_1, Y_2, Y_3) : M \to \mathbb{R}^3$ with $Y_3 = u$.

Let M be an open Riemann surface and let $u: M \to \mathbb{R}$ be non-constant harmonic function.

Then there exists a conformal complete minimal immersion $Y = (Y_1, Y_2, Y_3) : M \to \mathbb{R}^3$ with $Y_3 = u$.

Proof. Construct a sequence of conformal minimal immersions $X_n = (X_{n,1}, X_{n,2}, X_{n,3}) : M_n \to \mathbb{R}^3$ with

- $\|X_n X_{n-1}\| < \epsilon_n \text{ on } M_{n-1}.$
- **2** $X_{n,3} = \mathbf{u}|_{M_n}$.
- **3** $\operatorname{dist}_{M_n}(P_0, \partial M_n) > n. \ (P_0 \in (M_1)^{\circ}.)$

Let M be an open Riemann surface and let $u: M \to \mathbb{R}$ be non-constant harmonic function.

Then there exists a conformal complete minimal immersion $Y = (Y_1, Y_2, Y_3) : M \to \mathbb{R}^3$ with $Y_3 = u$.

- **Proof.** Construct a sequence of conformal minimal immersions $X_n = (X_{n,1}, X_{n,2}, X_{n,3}) : M_n \to \mathbb{R}^3$ with
 - **1** $||X_n X_{n-1}|| < \epsilon_n \text{ on } M_{n-1}.$
 - $X_{n,3} = u|_{M_n}$
 - **3** $\operatorname{dist}_{M_n}(P_0, \partial M_n) > n. \ (P_0 \in (M_1)^{\circ}.)$
 - Consider in $M_n^{\circ} M_{n-1}$ a Jorge-Xavier's type labyrinth K_n and apply the AL to the map $X: M_{n-1} \cup K_n \to \mathbb{R}^3$ given by
 - $\bullet X|_{M_{n-1}} = X_{n-1}$
 - X Kn has Weierstrass data

$$\Phi_3 = \partial_7 \mathbf{u}$$
, $|g|$ large enough. Q.E.D.

Let M be an open Riemann surface and let $u: M \to \mathbb{R}$ be non-constant harmonic function.

Then there exists a conformal complete minimal immersion $Y = (Y_1, Y_2, Y_3) : M \to \mathbb{R}^3$ with $Y_3 = u$.

- **Proof.** Construct a sequence of conformal minimal immersions $X_n = (X_{n,1}, X_{n,2}, X_{n,3}) : M_n \to \mathbb{R}^3$ with
 - **1** $||X_n X_{n-1}|| < \epsilon_n \text{ on } M_{n-1}.$
 - **2** $X_{n,3} = {\bf u}|_{M_n}$.
 - **3** $\operatorname{dist}_{M_n}(P_0, \partial M_n) > n. \ (P_0 \in (M_1)^{\circ}.)$
 - Consider in $M_n^{\circ} M_{n-1}$ a Jorge-Xavier's type labyrinth K_n and apply the AL to the map $X: M_{n-1} \cup K_n \to \mathbb{R}^3$ given by
 - $\bullet X|_{M_{n-1}} = X_{n-1}$
 - X | K n has Weierstrass data

$$\Phi_3 = \partial_7 \mathbf{u}$$
, $|g|$ large enough. Q.E.D.

 Completeness does not influence the underlying conformal structure of immersed minimal surfaces (López 2009).

- Fujimoto 1988 The Gauss map of a complete non-flat minimal surface in \mathbb{R}^3 can not omit more than 4 points in \mathbb{S}^2 .
- The Gauss map of a conformal complete non-flat minimal immersion $X: \mathbb{C} \to \mathbb{R}^3$ can not omit more than 2 points in \mathbb{S}^2 . (Picard's Theorem.)

- Fujimoto 1988 The Gauss map of a complete non-flat minimal surface in \mathbb{R}^3 can not omit more than 4 points in \mathbb{S}^2 .
- The Gauss map of a conformal complete non-flat minimal immersion $X: \mathbb{C} \to \mathbb{R}^3$ can not omit more than 2 points in \mathbb{S}^2 . (Picard's Theorem.)

Corollary

Let M be an open Riemann surface.

Then there exists a conformal complete non-flat minimal immersion $Y: M \to \mathbb{R}^3$ whose Gauss map omits 2 values of \mathbb{S}^2 .

Proof. Take a harmonic function $u: M \to \mathbb{R}$ such that $\partial_z u$ never vanishes on M and apply the theorem above. Q.E.D.

Corollary

A necessary and sufficient condition for an open Riemann surface to admit a conformal complete minimal immersion into a slab of \mathbb{R}^3 is to carry non-constant bounded harmonic functions.

Proof. Take a non-constant bounded harmonic function $u: M \to \mathbb{R}$ and apply the theorem above. Q.E.D.

Properness

Theorem (AA-López 2009)

Let M be an open Riemann surface and let $\theta \in (0, \frac{\pi}{4})$. Then there exists a conformal minimal immersion $Y = (Y_1, Y_2, Y_3) : M \to \mathbb{R}^3$ such that

 $Y_3 + \tan(\theta)|Y_1| : M \to \mathbb{R}$ is positive and proper.

Theorem (AA-López 2009)

Let M be an open Riemann surface and let $\theta \in (0, \frac{\pi}{4})$. Then there exists a conformal minimal immersion $Y = (Y_1, Y_2, Y_3) : M \to \mathbb{R}^3$ such that

 $Y_3 + \tan(\theta)|Y_1| : M \to \mathbb{R}$ is positive and proper.

• Hoffman-Meeks 1990 The only proper minimal surfaces in \mathbb{R}^3 contained in a half-space are planes.

Theorem (AA-López 2009)

Let M be an open Riemann surface and let $\theta \in (0, \frac{\pi}{4})$. Then there exists a conformal minimal immersion $Y = (Y_1, Y_2, Y_3) : M \to \mathbb{R}^3$ such that

$$Y_3 + \tan(\theta)|Y_1| : M \to \mathbb{R}$$
 is positive and proper.

Proof. Construct a sequence of conformal minimal immersions

$$X_n = (X_{n,1}, X_{n,2}, X_{n,3}) : M_n \to \mathbb{R}^3$$
 with

- $2 X_{n,3} + \tan(\theta)|X_{n,1}| > n \text{ on } \partial M_n.$
- **3** $X_{n,3} + \tan(\theta) |X_{n,1}| > n-1 \text{ on } M_n M_{n-1}.$ Q.E.D.

• Hoffman-Meeks 1990 The only proper minimal surfaces in \mathbb{R}^3 contained in a half-space are planes.

Corollary (Schoen-Yau's Conjecture)

Any open Riemann surface admits a conformal minimal immersion in \mathbb{R}^3 properly projecting into a plane.

Proof. Observe that $(Y_1, Y_3) : M \to \mathbb{R}^2$ is proper. Q.E.D.

Corollary (Schoen-Yau's Conjecture)

Any open Riemann surface admits a conformal minimal immersion in \mathbb{R}^3 properly projecting into a plane.

Proof. Observe that $(Y_1, Y_3) : M \to \mathbb{R}^2$ is proper. Q.E.D.

• Properness (in \mathbb{R}^3) does not influence the underlying conformal structure of immersed minimal surfaces.

Corollary (Schoen-Yau's Conjecture)

Any open Riemann surface admits a conformal minimal immersion in \mathbb{R}^3 properly projecting into a plane.

Proof. Observe that
$$(Y_1, Y_3) : M \to \mathbb{R}^2$$
 is proper. Q.E.D.

• Properness (in \mathbb{R}^3) does not influence the underlying conformal structure of immersed minimal surfaces.

• Can "plane" be changed by "convex domain in \mathbb{R}^2 " + complete?

The Calabi-Yau Problem in \mathbb{C}^3

• Let $\mathcal N$ be an open Riemann surface. A null curve in $\mathbb C^3$ is a holomorphic immersion $F=(F_1,F_2,F_3):\mathcal N\to\mathbb C^3$ such that

$$(dF_1)^2 + (dF_2)^2 + (dF_3)^2 = 0.$$

• $F: \mathcal{N} \to \mathbb{C}^3$ null curve $\Leftrightarrow \Re(F), \Im(F): \mathcal{N} \to \mathbb{R}^3$ conformal minimal immersions. Furthermore,

$$ds_F^2 = 2ds_{\Re(F)}^2 = 2ds_{\Im(F)}^2.$$

• Let $\mathcal N$ be an open Riemann surface. A null curve in $\mathbb C^3$ is a holomorphic immersion $F=(F_1,F_2,F_3):\mathcal N\to\mathbb C^3$ such that

$$(dF_1)^2 + (dF_2)^2 + (dF_3)^2 = 0.$$

• $F: \mathcal{N} \to \mathbb{C}^3$ null curve $\Leftrightarrow \Re(F), \Im(F): \mathcal{N} \to \mathbb{R}^3$ conformal minimal immersions. Furthermore,

$$ds_F^2 = 2ds_{\Re(F)}^2 = 2ds_{\Im(F)}^2.$$

- Calabi-Yau problem in C³ Are there complete bounded null curves in C³?
- Martín-Umehara-Yamada 2009 There exists a complete bounded null curve with the conformal type of the disk.

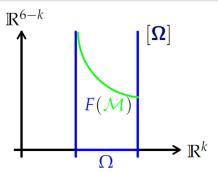
- $k \in \{2, 3, 4, 5, 6\}$.
- $\Omega \subset \mathbb{R}^k$ convex domain.
- $\bullet \ [\Omega] = \Omega \times \mathbb{R}^{6-\textit{k}} \subset \mathbb{C}^3 \equiv \mathbb{R}^6.$

- $k \in \{2, 3, 4, 5, 6\}$.
- $\Omega \subset \mathbb{R}^k$ convex domain.
- $\bullet \ [\Omega] = \Omega \times \mathbb{R}^{6-k} \subset \mathbb{C}^3 \equiv \mathbb{R}^6.$

Theorem (AA-López 2010)

Let M be an open orientable surface.

Then there exists an open Riemann surface $\mathcal{M} \cong M$ and a complete null curve $F: \mathcal{M} \to [\Omega] \subset \mathbb{C}^3$ properly projecting into Ω .

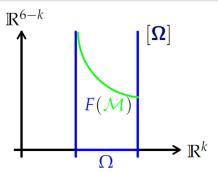


- $k \in \{2, 3, 4, 5, 6\}$.
- $\Omega \subset \mathbb{R}^k$ convex domain.
- $\bullet \ [\Omega] = \Omega \times \mathbb{R}^{6-k} \subset \mathbb{C}^3 \equiv \mathbb{R}^6.$

Theorem (AA-López 2010)

Let M be an open orientable surface.

Then there exists an open Riemann surface $\mathcal{M} \cong M$ and a complete null curve $F: \mathcal{M} \to [\Omega] \subset \mathbb{C}^3$ properly projecting into Ω . Furthermore, if $[\Omega] = \mathbb{C}^3$ then \mathcal{M} can be prescribed.



• Let *M* be an open orientable surface.

Corollary (Calabi-Yau Problem in C³)

Let Ω be a convex domain in \mathbb{C}^3 .

Then there exists an open Riemann surface $\mathcal{M} \cong M$ and a proper complete null curve $F: \mathcal{M} \to \Omega$. Furthermore, if $\Omega = \mathbb{C}^3$ then \mathcal{M} can be prescribed.

Proof.
$$k = 6$$
.

• Let *M* be an open orientable surface.

Corollary (Calabi-Yau Problem in C³)

Let Ω be a convex domain in \mathbb{C}^3 .

Then there exists an open Riemann surface $\mathcal{M}\cong M$ and a proper complete null curve $F:\mathcal{M}\to\Omega$. Furthermore, if $\Omega=\mathbb{C}^3$ then \mathcal{M} can be prescribed.

Proof. k = 6.

Q.E.D.

Corollary

There exists a bounded complete minimal surface $X : M \to \mathbb{R}^3$ such that all its associate surfaces are well defined and bounded.

Proof. Choose Q bounded.

- Calabi-Yau problem in \mathbb{H}^3 Are there complete bounded CMC-1 surfaces in \mathbb{H}^3 ?
- Martín-Umehara-Yamada 2009 A simply connected one.

- Calabi-Yau problem in H³ Are there complete bounded CMC-1 surfaces in H³?
- Martín-Umehara-Yamada 2009 A simply connected one.

Corollary (Calabi-Yau Problem in H³)

There exists a complete bounded CMC-1 immersion $X : M \to \mathbb{H}^3$.

Proof. Use a transformation in explicit coordinates due to Martín-Umehara-Yamada that applies complete null curves in $\mathbb{C}^3 - \{z_3 = 0\}$ into complete bounded CMC-1 surfaces in \mathbb{H}^3 .

- Bourgain 1993 There are no complete bounded null curves in \mathbb{C}^2 .
- Calabi-Yau problem in \mathbb{C}^2 Are there complete bounded complex curves in \mathbb{C}^2 ?
- Jones 1979 A simply connected one.
- Martín-Umehara-Yamada 2009 One with arbitrary finite genus and finite topology.

- Bourgain 1993 There are no complete bounded null curves in \mathbb{C}^2 .
- Calabi-Yau problem in C² Are there complete bounded complex curves in C²?
- Jones 1979 A simply connected one.
- Martín-Umehara-Yamada 2009 One with arbitrary finite genus and finite topology.

Corollary (Calabi-Yau Problem in C²)

Let Ω be a convex domain in \mathbb{C}^2 .

Then there exists an open Riemann surface $\mathcal{M}\cong M$ and a proper complete holomorphic immersion $F:\mathcal{M}\to\Omega$.

Furthermore, if $\Omega = \mathbb{C}^2$ then \mathcal{M} can be prescribed (Bishop 1961).

Proof. k = 4.

Corollary (Calabi-Yau Problem in \mathbb{R}^3) (Ferrer-Martín-Meeks 2009)

Let Ω be a convex domain in \mathbb{R}^3 . Then there exists a proper complete minimal immersion $X: M \to \Omega$.

Proof.
$$k = 3$$
.

Corollary (Calabi-Yau Problem in \mathbb{R}^3) (Ferrer-Martín-Meeks 2009)

Let Ω be a convex domain in \mathbb{R}^3 .

Then there exists a proper complete minimal immersion $X: M \to \Omega$.

Proof. k = 3.

Q.E.D.

Corollary (Original Aim)

Let Ω be a convex domain in \mathbb{R}^2 .

Then there exists a complete minimal immersion $X: M \to \mathbb{R}^3$ properly projecting into Ω .

Proof. k = 2.

- Let M be an open Riemann surface and S ⊂ M an admissible subset. A smooth map F = (F₁, F₂, F₃): S → C³ is said to be a generalized null curve iff
 - $\sum_{i=1}^{3} (dF_i)^2 = 0$,
 - $\sum_{i=1}^{3} |dF_i|^2$ never vanishes on S,
 - $F|_{\mathcal{M}_{\mathbf{S}}}$ is a null curve.

- Let $\mathcal M$ be an open Riemann surface and $S\subset \mathcal M$ an admissible subset. A smooth map $F=(F_1,F_2,F_3):S\to \mathbb C^3$ is said to be a generalized null curve iff
 - $\sum_{i=1}^{3} (dF_i)^2 = 0$,
 - $\sum_{i=1}^{3} |dF_i|^2$ never vanishes on S,
 - $F|_{\mathcal{M}_{\mathbf{S}}}$ is a null curve.

Lemma (The Approximation Lemma)

Let $\mathcal N$ be an open Riemann surface of finite topology, and let $\mathcal S$ be a connected admissible compact subset in $\mathcal N$. Let

 $F = (F_1, F_2, F_3) : S \to \mathbb{C}^3$ be a generalized null curve.

Then F can be uniformly C^1 -approximated on S by a sequence of null curves $H_n : \mathcal{N} \to \mathbb{C}^3$.

Moreover, we can choose the third coordinate $(H_n)_3 = F_3 \ \forall n$ provided that F_3 extends holomorphically to \mathcal{N} and dF_3 never vanishes on C_5 .

Lemma

Let M be a simply connected compact region in $\mathbb D$ with $0 \in M^{\circ}$, let $\xi > 0$, $\rho > 0$, $n \in \mathbb N$, and $X : M \to \mathbb C^3$ be a null curve satisfying

$$\rho - \xi < \|X(P)\| < \rho \quad \forall P \in \partial M.$$

Lemma

Let M be a simply connected compact region in $\mathbb D$ with $0 \in M^{\circ}$, let $\xi > 0$, $\rho > 0$, $n \in \mathbb N$, and $X : M \to \mathbb C^3$ be a null curve satisfying

$$\rho - \xi < ||X(P)|| < \rho \quad \forall P \in \partial M.$$

Then, there exists a simply connected compact region M' with $M \subset (M')^{\circ} \subset M' \subset \mathbb{D}$ and a null curve $Y : M' \to \mathbb{C}^3$ such that

Lemma

Let M be a simply connected compact region in $\mathbb D$ with $0 \in M^{\circ}$, let $\xi > 0$, $\rho > 0$, $n \in \mathbb N$, and $X : M \to \mathbb C^3$ be a null curve satisfying

$$\rho - \xi < ||X(P)|| < \rho \quad \forall P \in \partial M.$$

Then, there exists a simply connected compact region M' with $M \subset (M')^{\circ} \subset M' \subset \mathbb{D}$ and a null curve $Y: M' \to \mathbb{C}^3$ such that

2
$$||Y - X|| < \epsilon/2^n$$
 on M ,

Lemma

Let M be a simply connected compact region in $\mathbb D$ with $0 \in M^{\circ}$, let $\xi > 0$, $\rho > 0$, $n \in \mathbb N$, and $X : M \to \mathbb C^3$ be a null curve satisfying

$$\rho - \xi < ||X(P)|| < \rho \quad \forall P \in \partial M.$$

Then, there exists a simply connected compact region M' with $M \subset (M')^{\circ} \subset M' \subset \mathbb{D}$ and a null curve $Y : M' \to \mathbb{C}^3$ such that

2
$$||Y - X|| < \epsilon/2^n$$
 on M ,

③
$$\rho - \xi < ||Y(P)|| \forall P \in M' - M^{\circ}$$
,

Lemma

Let M be a simply connected compact region in $\mathbb D$ with $0 \in M^{\circ}$, let $\xi > 0$, $\rho > 0$, $n \in \mathbb N$, and $X : M \to \mathbb C^3$ be a null curve satisfying

$$\rho - \xi < ||X(P)|| < \rho \quad \forall P \in \partial M.$$

Then, there exists a simply connected compact region M' with $M \subset (M')^{\circ} \subset M' \subset \mathbb{D}$ and a null curve $Y : M' \to \mathbb{C}^3$ such that

2
$$||Y - X|| < \epsilon/2^n$$
 on M ,

3
$$\rho$$
 − ξ < $||Y(P)|| \forall P \in M' - M^{\circ}$,

$$dist_{(M',Y)}(0,\partial M') > dist_{(M,X)}(0,\partial M) + \frac{\rho}{n}.$$

Rough sketch of the proof

1. Split ∂M in a family of Jordan arcs $\alpha_1, \ldots, \alpha_k$ so that $\forall P \in \alpha_i$,

$$\rho - \xi < ||y|| \quad \forall y \in X(P) + \Pi_i, \tag{1}$$

$$||X(P) - y|| > \frac{\rho}{n} \quad \forall y \in X(P) + \Pi_i \text{ with } ||y|| \ge \rho + \frac{1}{n^2}, \quad (2)$$

where \mathbf{P}_i is the initial point of α_i and $\mathbf{\Pi}_i = X(\mathbf{P}_i)^{\perp}$.

Rough sketch of the proof

1. Split ∂M in a family of Jordan arcs $\alpha_1, \ldots, \alpha_k$ so that $\forall P \in \alpha_i$,

$$\rho - \xi < ||y|| \quad \forall y \in X(P) + \Pi_i, \tag{1}$$

$$||X(P) - y|| > \frac{\rho}{n} \quad \forall y \in X(P) + \prod_{i} \text{ with } ||y|| \ge \rho + \frac{1}{n^2}, \quad (2)$$

where \mathbf{P}_i is the initial point of α_i and $\mathbf{\Pi}_i = X(\mathbf{P}_i)^{\perp}$.

2. Consider M_0 a simply connected compact region with $M \subset (M_0)^\circ \subset M_0 \subset \mathbb{D}$ and pairwise disjoint Jordan arcs $\gamma_1, \ldots, \gamma_k$ such that $\gamma_i \subset M_0 - M^\circ$ connects \mathbf{P}_i and $\mathbf{Q}_i \in \partial M_0$, and $S = M \bigcup (\bigcup_{i=1}^k \gamma_i)$ is an admissible compact set on \mathbb{D} .

Rough sketch of the proof

1. Split ∂M in a family of Jordan arcs $\alpha_1, \ldots, \alpha_k$ so that $\forall P \in \alpha_i$,

$$\rho - \xi < ||y|| \quad \forall y \in X(P) + \Pi_i, \tag{1}$$

$$||X(P) - y|| > \frac{\rho}{n} \quad \forall y \in X(P) + \prod_{i} \text{ with } ||y|| \ge \rho + \frac{1}{n^2}, \quad (2)$$

where \mathbf{P}_i is the initial point of α_i and $\mathbf{\Pi}_i = X(\mathbf{P}_i)^{\perp}$.

- **2.** Consider M_0 a simply connected compact region with $M \subset (M_0)^\circ \subset M_0 \subset \mathbb{D}$ and pairwise disjoint Jordan arcs $\gamma_1, \ldots, \gamma_k$ such that $\gamma_i \subset M_0 M^\circ$ connects \mathbf{P}_i and $\mathbf{Q}_i \in \partial M_0$, and $S = M \cup (\bigcup_{i=1}^k \gamma_i)$ is an admissible compact set on \mathbb{D} .
- **3.** Extend X to a generalized null curve $X: S \to \mathbb{C}^3$ so that
 - On the first half of γ_i , the projection of X in the direction of $X(\mathbf{P}_i)$ has length $> \rho/n$, and X satisfies (1) and (2).
 - ullet X on the second half of γ_i is a segment in the direction of $X(\mathbf{P}_i)$ and

$$\rho + \frac{1}{n^2} < ||y|| \quad \forall y \in X(\mathbf{Q}_i) + \mathbf{\Pi}_i.$$

• The coordinate of X in the direction of $X(\mathbf{P}_i)$ does all the work on $\gamma_i \cup \alpha_i \cup \gamma_{i+1}$ at this moment.

4. Approximate $X : S \to \mathbb{C}^3$ by a null curve $X_0 : M_0 \to \mathbb{C}^3$ satisfying the same properties as X on S.

- **4.** Approximate $X : S \to \mathbb{C}^3$ by a null curve $X_0 : M_0 \to \mathbb{C}^3$ satisfying the same properties as X on S.
- **5.** Label Ω_i as the closed disc in M_0 bounded by α_i , γ_i , γ_{i+1} and a piece of ∂M_0 . Consider K_i a proper compact disc on $\Omega_i \gamma_i \cup \alpha_i \cup \gamma_{i+1}$ so that just the coordinate of X_0 in the direction of $X(\mathbf{P}_i)$ does all the work on $\Delta_i = \overline{\Omega_i K_i}$.

- **4.** Approximate $X : S \to \mathbb{C}^3$ by a null curve $X_0 : M_0 \to \mathbb{C}^3$ satisfying the same properties as X on S.
- **5.** Label Ω_i as the closed disc in M_0 bounded by α_i , γ_i , γ_{i+1} and a piece of ∂M_0 . Consider K_i a proper compact disc on $\Omega_i \gamma_i \cup \alpha_i \cup \gamma_{i+1}$ so that just the coordinate of X_0 in the direction of $X(\mathbf{P}_i)$ does all the work on $\Delta_i = \overline{\Omega_i K_i}$.
- **6.** Consider a generalized null curve $Z: \overline{M_0 \Delta_i} \to \mathbb{C}^3$ such that
 - $\bullet \ Z|_{\overline{M_0-\Omega_i}}=X_0.$
 - $Z|_{K_i} = w + X_0$, where $w \in \Pi_i$ is large enough so that

$$\rho + \frac{1}{n^2} < ||y|| \quad \forall y \in Z(K_i).$$

- **4.** Approximate $X : S \to \mathbb{C}^3$ by a null curve $X_0 : M_0 \to \mathbb{C}^3$ satisfying the same properties as X on S.
- **5.** Label Ω_i as the closed disc in M_0 bounded by α_i , γ_i , γ_{i+1} and a piece of ∂M_0 . Consider K_i a proper compact disc on $\Omega_i \gamma_i \cup \alpha_i \cup \gamma_{i+1}$ so that just the coordinate of X_0 in the direction of $X(\mathbf{P}_i)$ does all the work on $\Delta_i = \overline{\Omega_i K_i}$.
- **6.** Consider a generalized null curve $Z: \overline{M_0 \Delta_i} \to \mathbb{C}^3$ such that
 - $\bullet \ Z|_{\overline{M_0-\Omega_i}}=X_0.$
 - $Z|_{K_i} = w + X_0$, where $w \in \Pi_i$ is large enough so that

$$\rho + \frac{1}{n^2} < ||y|| \quad \forall y \in Z(K_i).$$

- **7.** Approximate Z by a null curve $Y: M_0 \to \mathbb{C}^3$ with $\langle Y X_0, X(\mathbf{P}_i) \rangle = 0$

- **4.** Approximate $X : S \to \mathbb{C}^3$ by a null curve $X_0 : M_0 \to \mathbb{C}^3$ satisfying the same properties as X on S.
- **5.** Label Ω_i as the closed disc in M_0 bounded by α_i , γ_i , γ_{i+1} and a piece of ∂M_0 . Consider K_i a proper compact disc on $\Omega_i \gamma_i \cup \alpha_i \cup \gamma_{i+1}$ so that just the coordinate of X_0 in the direction of $X(\mathbf{P}_i)$ does all the work on $\Delta_i = \overline{\Omega_i K_i}$.
- **6.** Consider a generalized null curve $Z:\overline{M_0-\Delta_i}\to\mathbb{C}^3$ such that
 - $\bullet \ Z|_{\overline{M_0-\Omega_i}}=X_0.$
 - $Z|_{K_i} = w + X_0$, where $w \in \Pi_i$ is large enough so that

$$\rho + \frac{1}{n^2} < ||y|| \quad \forall y \in Z(K_i).$$

- **7.** Approximate Z by a null curve $Y: M_0 \to \mathbb{C}^3$ with $\langle Y X_0, X(\mathbf{P}_i) \rangle = 0$, and shrink M_0 .

- **4.** Approximate $X : S \to \mathbb{C}^3$ by a null curve $X_0 : M_0 \to \mathbb{C}^3$ satisfying the same properties as X on S.
- **5.** Label Ω_i as the closed disc in M_0 bounded by α_i , γ_i , γ_{i+1} and a piece of ∂M_0 . Consider K_i a proper compact disc on $\Omega_i \gamma_i \cup \alpha_i \cup \gamma_{i+1}$ so that just the coordinate of X_0 in the direction of $X(\mathbf{P}_i)$ does all the work on $\Delta_i = \overline{\Omega_i K_i}$.
- **6.** Consider a generalized null curve $Z:\overline{M_0-\Delta_i}\to\mathbb{C}^3$ such that
 - $\bullet \ Z|_{\overline{M_0-\Omega_i}}=X_0.$
 - $Z|_{K_i} = w + X_0$, where $w \in \Pi_i$ is large enough so that

$$\rho + \frac{1}{n^2} < ||y|| \quad \forall y \in Z(K_i).$$

- **7.** Approximate Z by a null curve $Y: M_0 \to \mathbb{C}^3$ with $\langle Y X_0, X(\mathbf{P}_i) \rangle = 0$, and shrink M_0 .

Balls → Convex domains

Balls → Convex domains

- $M = \mathbb{D} \longrightarrow M = \text{arbitrary topology}$:
 - Use the Approximation Lemma as a Bridge Principle for null curves to complicate the topology little by little.

- Antonio Alarcón, Isabel Fernández and Francisco J.
 López, Complete minimal surfaces and harmonic functions.
 Comment. Math. Helv., in press.
- Antonio Alarcón and Francisco J. López, Minimal surfaces in \mathbb{R}^3 properly projecting into \mathbb{R}^2 . Preprint 2009.
- Antonio Alarcón and Francisco J. López, Null curves in C³ and Calabi-Yau conjectures. Preprint 2009.

Thank you very much for your kind attention!