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Definition

An open Riemann surface M is said to be hyperbolic if it
carries non-constant negative subharmonic functions.

Otherwise, M is said to be parabolic.



All the classical examples of complete minimal surfaces are
both properly immersed in R3 and of parabolic conformal
type.

Osserman 1963 Complete minimal surfaces of finite total
curvature are of finite topology and parabolic conformal type.

Jorge-Meeks 1983 Complete minimal surfaces of finite total
curvature are properly immersed in R3.

Conjecture (Meeks-Sullivan)

Proper minimal surfaces of finite topology are parabolic.

Conjecture (Schoen-Yau 1985)

Minimal surfaces properly projecting into a plane are parabolic.
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Conjecture (Calabi 1966)

A complete minimal surface has no bounded coordinate function.

Jorge-Xavier 1980 There exists a complete minimal surface
contained in a slab of R3.

Weierstrass Representation X = (X j )j=1,2,3 : M → R3

conformal minimal immersion

X = <
∫ (
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Jorge-Xavier 1980 There exists a complete minimal surface
contained in a slab of R3.

• M = D

• Φ3 = dz

• |g | bigger and bigger
in the compact sets

• ds2 =
1

4
(

1

|g | + |g |)
2|dz |2

Runge’s Theorem 1948 (1885) A holomorphic function on a
Runge compact subset of an open Riemann surface M can be
uniformly approximated by holomorphic functions on M.
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Conjecture (Calabi 1966)

A complete minimal surface can not be bounded.

Conjecture (Hadamard 1898)

A complete negatively curved surface in R3 can not be bounded.

Nadirashvili 1996 There exists a complete negatively curved
minimal surface contained in a ball of R3.



Question (Yau 2000)

Which topological types admits a complete bounded minimal
surface?

Are there complete minimal surfaces properly immersed in a
ball?

López-Mart́ın-Morales 2002 There are complete bounded
minimal surfaces of arbitrary finite topological type. (Period
Problem.)

Morales 2003 There exists proper hyperbolic minimal disc in
R3. (Counterexample to Meeks-Sullivan’s conjecture.)

AA, Ferrer, López, Mart́ın, Morales Many examples.



Ferrer-Mart́ın-Meeks 2009 Any open surface admits a
complete proper minimal immersion in any domain of R3

which is either convex (possibly all R3) or smooth and
bounded.

Tools

Nadirashvili’s technique for the completeness.
Morales’ technique for the properness.
The Bridge Principle for minimal surfaces for the arbitrary
topological type.

Properness (in R3) does not influence the topology of
immersed (hyperbolic) minimal surfaces.

Conformal structure?
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The Approximation Lemma



Given an open Riemann surface M, a compact subset
S ⊂M is said to be admissible iff

S is Runge,
MS := S◦ consists of a finite collection of pairwise disjoint
compact regions in M with analytical boundary,
CS := S −MS consists of a finite collection of pairwise
disjoint analytical Jordan arcs.

Let M be an open Riemann surface and
S ⊂M be an admissible subset.
A smooth map X = (X j )j=1,2,3

is said to be a generalized conformal
minimal immersion (GCMI) iff

X |CS
is an immersion, and

X |MS
is a conformal minimal immersion.
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Lemma (The Approximation Lemma) (AA-López 2009)

Let N be an open Riemann surface of finite topology, and let S be
a connected admissible compact subset in N . Let
X = (X 1, X 2, X 3) : S → R3 be a GCMI on S.
Then X can be uniformly approximated on S by a sequence of
conformal minimal immersions
Y (n) = (Y (n)1, Y (n)2, Y (n)3) : N → R3.

Moreover, we can choose the third coordinate function
Y (n)3 = X 3 ∀n provided that X 3 extends harmonically to N and
∂zX 3 never vanishes on CS .
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a connected admissible compact subset in N . Let
X = (X 1, X 2, X 3) : S → R3 be a GCMI on S.
Then X can be uniformly approximated on S by a sequence of
conformal minimal immersions
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Moreover, we can choose the third coordinate function
Y (n)3 = X 3 ∀n provided that X 3 extends harmonically to N and
∂zX 3 never vanishes on CS .

Mergelyan-Bishop’s Theorem 1958 Let M be an open
Riemann surface, let K ⊂ M be a compact Runge set and let
f : K → C be a continuous function which is holomorphic in
K ◦. Then f can be uniformly approximated on K by functions
holomorphic in M.

Implicit Function Theorem.



How to construct minimal surfaces with prescribed conformal
structure using the Approximation Lemma?

Let M be an open Riemann surface.
1 M admits an exhaustion by Runge compact regions

M1 ⊂ M◦2 ⊂ M2 ⊂ M◦3..., ∪n∈NMn = M.

2 There exists a sequence of conformal minimal immersions

X n : Mn → R3, ‖X n − X n−1‖ < εn on Mn−1.

3 {X n}n∈N uniformly converges to a conformal minimal
immersion Y : M → R3.

Global properties?
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Completeness



Theorem (AA-Fernández-López 2009)

Let M be an open Riemann surface and let u : M → R be
non-constant harmonic function.
Then there exists a conformal complete minimal immersion
Y = (Y 1, Y 2, Y 3) : M → R3 with Y 3 = u.

Proof. Construct a sequence of conformal minimal immersions
Xn = (X n,1, X n,2, X n,3) : Mn → R3 with

1 ‖X n − X n−1‖ < εn on Mn−1.
2 X n,3 = u|Mn

.
3 distMn

(P0, ∂Mn) > n. (P0 ∈ (M1)
◦.)

Consider in M◦n −Mn−1 a Jorge-Xavier’s type labyrinth Kn

and apply the AL to the map X : Mn−1 ∪Kn → R3 given by
X |Mn−1 = X n−1
X |Kn

has Weierstrass data

Φ3 = ∂zu, |g | large enough. Q.E.D.

Completeness does not influence the underlying conformal
structure of immersed minimal surfaces (López 2009).
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Fujimoto 1988 The Gauss map of a complete non-flat minimal
surface in R3 can not omit more than 4 points in S2.

The Gauss map of a conformal complete non-flat minimal
immersion X : C→ R3 can not omit more than 2 points in
S2. (Picard’s Theorem.)

Corollary

Let M be an open Riemann surface.
Then there exists a conformal complete non-flat minimal
immersion Y : M → R3 whose Gauss map omits 2 values of S2.

Proof. Take a harmonic function u : M → R such that ∂zu never
vanishes on M and apply the theorem above. Q.E.D.
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Corollary

A necessary and sufficient condition for an open Riemann surface
to admit a conformal complete minimal immersion into a slab of
R3 is to carry non-constant bounded harmonic functions.

Proof. Take a non-constant bounded harmonic function u : M → R

and apply the theorem above. Q.E.D.



Properness



Theorem (AA-López 2009)

Let M be an open Riemann surface and let θ ∈ (0, π
4 ).

Then there exists a conformal minimal immersion
Y = (Y 1, Y 2, Y 3) : M → R3 such that

Y 3 + tan(θ)|Y 1| : M → R is positive and proper.

Proof. Construct a sequence of conformal minimal immersions
Xn = (X n,1, X n,2, X n,3) : Mn → R3 with

1 ‖X n − X n−1‖ < εn on Mn−1.
2 X n,3 + tan(θ)|X n,1| > n on ∂Mn.
3 X n,3 + tan(θ)|X n,1| > n− 1 on Mn −Mn−1. Q.E.D.

Hoffman-Meeks 1990 The only proper minimal surfaces in R3

contained in a half-space are planes.
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Corollary (Schoen-Yau’s Conjecture)

Any open Riemann surface admits a conformal minimal immersion
in R3 properly projecting into a plane.

Proof. Observe that (Y 1, Y 3) : M → R2 is proper. Q.E.D.

Properness (in R3) does not influence the underlying
conformal structure of immersed minimal surfaces.

Can “plane” be changed by “convex domain in R2” +
complete?
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The Calabi-Yau Problem in C3



Let N be an open Riemann surface. A null curve in C3 is a
holomorphic immersion F = (F 1, F 2, F 3) : N → C3 such that

(dF 1)
2 + (dF 2)

2 + (dF 3)
2 = 0.

F : N → C3 null curve ⇔ <(F ),=(F ) : N → R3 conformal
minimal immersions. Furthermore,

ds2F = 2ds2<(F ) = 2ds2=(F ).

Calabi-Yau problem in C3 Are there complete bounded null
curves in C3?

Mart́ın-Umehara-Yamada 2009 There exists a complete
bounded null curve with the conformal type of the disk.
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k ∈ {2, 3, 4, 5, 6}.
Ω ⊂ Rk convex domain.
[Ω] = Ω×R6−k ⊂ C3 ≡ R6.

Theorem (AA-López 2010)

Let M be an open orientable surface.
Then there exists an open Riemann surface M∼= M and a
complete null curve F :M→ [Ω] ⊂ C3 properly projecting into
Ω.

Furthermore, if [Ω] = C3 then M can be prescribed.
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Let M be an open orientable surface.
Then there exists an open Riemann surface M∼= M and a
complete null curve F :M→ [Ω] ⊂ C3 properly projecting into
Ω. Furthermore, if [Ω] = C3 then M can be prescribed.



Let M be an open orientable surface.

Corollary (Calabi-Yau Problem in C3)

Let Ω be a convex domain in C3.
Then there exists an open Riemann surface M∼= M and a proper
complete null curve F :M→ Ω. Furthermore, if Ω = C3 then M
can be prescribed.

Proof. k = 6. Q.E.D.

Corollary

There exists a bounded complete minimal surface X : M → R3

such that all its associate surfaces are well defined and bounded.

Proof. Choose Ω bounded. Q.E.D.
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Calabi-Yau problem in H3 Are there complete bounded
CMC-1 surfaces in H3?

Mart́ın-Umehara-Yamada 2009 A simply connected one.

Corollary (Calabi-Yau Problem in H3)

There exists a complete bounded CMC-1 immersion X : M →H3.

Proof. Use a transformation in explicit coordinates due to
Mart́ın-Umehara-Yamada that applies complete null curves in
C3 − {z3 = 0} into complete bounded CMC-1 surfaces in
H3. Q.E.D.
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Bourgain 1993 There are no complete bounded null curves in
C2.

Calabi-Yau problem in C2 Are there complete bounded
complex curves in C2?

Jones 1979 A simply connected one.

Mart́ın-Umehara-Yamada 2009 One with arbitrary finite genus
and finite topology.

Corollary (Calabi-Yau Problem in C2)

Let Ω be a convex domain in C2.
Then there exists an open Riemann surface M∼= M and a proper
complete holomorphic immersion F :M→ Ω.
Furthermore, if Ω = C2 then M can be prescribed (Bishop 1961).

Proof. k = 4. Q.E.D.
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Corollary (Calabi-Yau Problem in R3)
(Ferrer-Mart́ın-Meeks 2009)

Let Ω be a convex domain in R3.
Then there exists a proper complete minimal immersion
X : M → Ω.

Proof. k = 3. Q.E.D.

Corollary (Original Aim)

Let Ω be a convex domain in R2.
Then there exists a complete minimal immersion X : M → R3

properly projecting into Ω.

Proof. k = 2. Q.E.D.
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Let M be an open Riemann surface and S ⊂M an
admissible subset. A smooth map F = (F 1, F 2, F 3) : S → C3

is said to be a generalized null curve iff

∑3
i=1(dF i )

2 = 0,

∑3
i=1 |dF i |2 never vanishes on S ,

F |MS
is a null curve.

Lemma (The Approximation Lemma)

Let N be an open Riemann surface of finite topology, and let S be
a connected admissible compact subset in N . Let
F = (F 1, F 2, F 3) : S → C3 be a generalized null curve.
Then F can be uniformly C1-approximated on S by a sequence of
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Moreover, we can choose the third coordinate (Hn)3 = F 3 ∀n
provided that F 3 extends holomorphically to N and dF 3 never
vanishes on CS .
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To construct a complete proper null curve F : D→ B ⊂ C3 we
apply recursively the following technical result.

Lemma

Let M be a simply connected compact region in D with 0 ∈ M◦,
let ξ > 0, ρ > 0, n ∈N, and X : M → C3 be a null curve
satisfying

ρ− ξ < ‖X (P)‖ < ρ ∀P ∈ ∂M.

Then, there exists a simply connected compact region M ′ with
M ⊂ (M ′)◦ ⊂ M ′ ⊂ D and a null curve Y : M ′ → C3 such that

1 (ρ + 1
n2
)− ε < ‖Y (P)‖ < ρ + 1

n2
∀P ∈ ∂M ′,

2 ‖Y − X‖ < ε/2n on M,

3 ρ− ξ < ‖Y (P)‖ ∀P ∈ M ′ −M◦,

4 dist(M ′,Y )(0, ∂M ′) > dist(M,X )(0, ∂M) + ρ
n .
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Rough sketch of the proof

1. Split ∂M in a family of Jordan arcs α1, . . . , αk so that ∀P ∈ αi ,

ρ− ξ < ‖y‖ ∀y ∈ X (P) + Πi , (1)

‖X (P)− y‖ > ρ

n
∀y ∈ X (P) + Πi with ‖y‖ ≥ ρ +

1

n2
, (2)

where Pi is the initial point of αi and Πi = X (Pi )⊥.

2. Consider M0 a simply connected compact region with
M ⊂ (M0)◦ ⊂ M0 ⊂ D and pairwise disjoint Jordan arcs
γ1, . . . , γk such that γi ⊂ M0 −M◦ connects Pi and Qi ∈ ∂M0,
and S = M

⋃
(∪ki=1γi ) is an admissible compact set on D.

3. Extend X to a generalized null curve X : S → C3 so that

On the first half of γi , the projection of X in the direction of
X (Pi ) has length > ρ/n, and X satisfies (1) and (2).
X on the second half of γi is a segment in the direction of
X (Pi ) and

ρ +
1

n2
< ‖y‖ ∀y ∈ X (Qi ) + Πi .
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The coordinate of X in the direction of X (Pi ) does all the
work on γi ∪ αi ∪ γi+1 at this moment.



4. Approximate X : S → C3 by a null curve X0 : M0 → C3

satisfying the same properties as X on S .

5. Label Ωi as the closed disc in M0 bounded by αi , γi , γi+1 and
a piece of ∂M0. Consider Ki a proper compact disc on
Ωi − γi ∪ αi ∪ γi+1 so that just the coordinate of X0 in the
direction of X (Pi ) does all the work on ∆i = Ωi −Ki .

6. Consider a generalized null curve Z : M0 − ∆i → C3 such that

Z |M0−Ωi
= X0.

Z |Ki
= w + X0, where w ∈ Πi is large enough so that

ρ +
1

n2
< ‖y‖ ∀y ∈ Z (Ki ).

〈Z − X0, X (Pi )〉 = 0.

7. Approximate Z by a null curve Y : M0 → C3 with
〈Y − X0, X (Pi )〉 = 0, and shrink M0.

Q.E.D.
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Balls −→ Convex domains

M = D −→ M =arbitrary topology:

Use the Approximation Lemma as a Bridge Principle for null
curves to complicate the topology little by little.
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