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@ An open Riemann surface M is said to be hyperbolic if it

carries non-constant negative subharmonic functions.
o Otherwise, M is said to be parabolic.
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both properly immersed in IR3 and of parabolic conformal
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@ All the classical examples of complete minimal surfaces are
both properly immersed in IR3 and of parabolic conformal

type.
@ Osserman 1963 Complete minimal surfaces of finite total
curvature are of finite topology and parabolic conformal type.

o Jorge-Meeks 1983 Complete minimal surfaces of finite total
curvature are properly immersed in R3.

Conjecture (Meeks-Sullivan)

Proper minimal surfaces of finite topology are parabolic.

Conjecture (Schoen-Yau 1985)

Minimal surfaces properly projecting into a plane are parabolic.




A complete minimal surface has no bounded coordinate function.

@ Jorge-Xavier 1980 There exists a complete minimal surface
contained in a slab of R3.
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Conjecture (Calabi 1966) }

A complete minimal surface has no bounded coordinate function.

@ Jorge-Xavier 1980 There exists a complete minimal surface
contained in a slab of R3.

o Weierstrass Representation X = (Xj)j=123: M — R3
conformal minimal immersion

1,1 1,1
X = —(=—g)P3, =(— D3, ¢
ER/<2(g g) 3,2(g+g) 3, 3)
®3 = 09,X3 (holomorphic 1—form)
g = st. proj. Gauss map (meromorphic function)
1,1
ds® = —(— +|g 2<I>32
+ (g D71



e Jorge-Xavier 1980 There exists a complete minimal surface
contained in a slab of R3

e M =D
0@3:d2

e |g| bigger and bigger

in the compact sets

od52—1 1
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e Jorge-Xavier 1980 There exists a complete minimal surface
contained in a slab of R3.

e M =D
0@320'2

e |g| bigger and bigger

in the compact sets

1.1
[ ] dszzz(—

+ |g|)?|dz|?
g

@ Runge's Theorem 1948 (1885) A holomorphic function on a

Runge compact subset of an open Riemann surface M can be
uniformly approximated by holomorphic functions on M.

[m]
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A complete minimal surface can not be bounded. I

A complete negatively curved surface in R can not be bounded.

o Nadirashvili 1996 There exists a complete negatively curved
minimal surface contained in a ball of IR3.
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Question (Yau 2000)

e Which topological types admits a complete bounded minimal
surface?

@ Are there complete minimal surfaces properly immersed in a
ball?

@ L opez-Martin-Morales 2002 There are complete bounded
minimal surfaces of arbitrary finite topological type. (Period
Problem.)

@ Morales 2003 There exists proper hyperbolic minimal disc in
R3. (Counterexample to Meeks-Sullivan's conjecture.)

o AA, Ferrer, Lépez, Martin, Morales Many examples.



o Ferrer-Martin-Meeks 2009 Any open surface admits a
complete proper minimal immersion in any domain of R3
which is either convex (possibly all R®) or smooth and
bounded.
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complete proper minimal immersion in any domain of R3
which is either convex (possibly all R®) or smooth and
bounded.

@ Tools
e Nadirashvili’s technique for the completeness.
e Morales' technique for the properness.
e The Bridge Principle for minimal surfaces for the arbitrary
topological type.
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Ferrer-Martin-Meeks 2009 Any open surface admits a
complete proper minimal immersion in any domain of R3
which is either convex (possibly all R®) or smooth and
bounded.

Tools

e Nadirashvili’s technique for the completeness.

e Morales' technique for the properness.

e The Bridge Principle for minimal surfaces for the arbitrary
topological type.

Properness (in IR®) does not influence the topology of
immersed (hyperbolic) minimal surfaces.

Conformal structure?



The Approximation Lemma



@ Given an open Riemann surface M, a compact subset
S C M is said to be admissible iff
e S is Runge,
e Mg := 5S° consists of a finite collection of pairwise disjoint
compact regions in M with analytical boundary,
e Cg:=5— Mg consists of a finite collection of pairwise
disjoint analytical Jordan arcs.



@ Given an open Riemann surface M, a compact subset
S C M is said to be admissible iff
e S is Runge,
e Mg := 5S° consists of a finite collection of pairwise disjoint
compact regions in M with analytical boundary,
e Cg:=5— Mg consists of a finite collection of pairwise
disjoint analytical Jordan arcs.

@ Let M be an open Riemann surface and
S C M be an admissible subset.
A smooth map X = (Xj)j=123
is said to be a generalized conformal
minimal immersion (GCMI) iff

o X|c, is an immersion, and
o X|p is a conformal minimal immersion.



Lemma (The Approximation Lemma) (AA-Lé6pez 2009)

Let N be an open Riemann surface of finite topology, and let S be
a connected admissible compact subset in N'. Let

X = (X1,X2,X3):S—R3bea GCMl on S.

Then X can be uniformly approximated on S by a sequence of
conformal minimal immersions

Y(n) = (Y(n)1, Y(n)2, Y(n)3) : N — R3.
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d,X3 never vanishes on Cgs.




Lemma (The Approximation Lemma) (AA-Lépez 2009)

Let N be an open Riemann surface of finite topology, and let S be
a connected admissible compact subset in N. Let

X =(X1,X2,X3):S —R3bea GCMl on S.

Then X can be uniformly approximated on S by a sequence of
conformal minimal immersions

Y(n) = (Y(n)1, Y(n)2, Y(n)3) : N — R3.

Moreover, we can choose the third coordinate function

Y (n)3 = X3 Vn provided that X3 extends harmonically to N' and
d,X3 never vanishes on Cs.

@ Mergelyan-Bishop's Theorem 1958 Let M be an open
Riemann surface, let K C M be a compact Runge set and let
f : K — C be a continuous function which is holomorphic in
K®°. Then f can be uniformly approximated on K by functions
holomorphic in M.

@ Implicit Function Theorem.
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@ How to construct minimal surfaces with prescribed conformal
structure using the Approximation Lemma?

@ Let M be an open Riemann surface.
@ M admits an exhaustion by Runge compact regions

My C M3 C My C M3..., UpenMp = M.
@ There exists a sequence of conformal minimal immersions
Xn:Mp =R |[Xn—Xn_1]| <e€non M, 1.

© {Xn}nen uniformly converges to a conformal minimal
immersion Y : M — R3.

o Global properties?



Completeness



Theorem (AA-Fernandez-Lépez 2009)
Let M be an open Riemann surface and let u : M — R be
non-constant harmonic function.

Then there exists a conformal complete minimal immersion
Y = (Yl, Yo, Y3) : M — R3 with Y3 = u.
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o X|k, has Weierstrass data
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Theorem (AA-Fernandez-Lépez 2009)

Let M be an open Riemann surface and let u : M — R be
non-constant harmonic function.

Then there exists a conformal complete minimal immersion
Y = (Yl, Yo, Y3) : M — R3 with Y3 = u.

Proof. Construct a sequence of conformal minimal immersions
Xp = (Xn1,Xn2 Xn3): M, — R3 with
Q ([ Xn—Xn-1l <enon My_g.
Q Xn,3 = U|Mn-
o diStMn(Po,aMn) >n. (Py € (M1)°.)

e Consider in My — M,_1 a Jorge-Xavier's type labyrinth K
and apply the AL to the map X : M,_1 U K, — R3 given by
° X|M,,,1 = an].
o X|k, has Weierstrass data

®3 =9,u, |g| large enough. Q.E.D.

@ Completeness does not influence the underlying conformal
structure of immersed minimal surfaces (Lopez 2009).



@ Fujimoto 1988 The Gauss map of a complete non-flat minimal
surface in IR3 can not omit more than 4 points in S2.

@ The Gauss map of a conformal complete non-flat minimal
immersion X : C — R3 can not omit more than 2 points in
G2, (Picard's Theorem.)



@ Fujimoto 1988 The Gauss map of a complete non-flat minimal
surface in IR3 can not omit more than 4 points in S2.

@ The Gauss map of a conformal complete non-flat minimal
immersion X : C — R3 can not omit more than 2 points in
G2, (Picard's Theorem.)

Corollary

Let M be an open Riemann surface.
Then there exists a conformal complete non-flat minimal
immersion Y : M — R3 whose Gauss map omits 2 values of 52,

Proof. Take a harmonic function v : M — R such that d,u never
vanishes on M and apply the theorem above. Q.E.D.



Corollary

A necessary and sufficient condition for an open Riemann surface
to admit a conformal complete minimal immersion into a slab of
IR3 is to carry non-constant bounded harmonic functions.

Proof. Take a non-constant bounded harmonic function v : M — R
and apply the theorem above. Q.E.D.



Properness



Theorem (AA-Lépez 2009)

Let M be an open Riemann surface and let 6 € (0, 7).
Then there exists a conformal minimal immersion
Y = (Y1, Y2, Y3): M — R3 such that

Y3 +tan(0)|Y1]| : M — R is positive and proper.
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Theorem (AA-Lépez 2009)

Let M be an open Riemann surface and let 6 € (0, 7).
Then there exists a conformal minimal immersion
Y = (Y1, Y2, Y3): M — R3 such that

Y3 +tan(0)|Y1]| : M — R is positive and proper.

Proof. Construct a sequence of conformal minimal immersions
Xn = (Xn,lyxn,Z:Xn,3> M, — R3 with
(1] HXn _Xn_1|| < €p ON Mn—l-
@ X,3+tan(0)|Xp 1| > non dM,.
Q@ X,3+tan(0)|Xp1| >n—1on Mp—Mp_3. Q.E.D.

e Hoffman-Meeks 1990 The only proper minimal surfaces in IR3
contained in a half-space are planes.



Corollary (Schoen-Yau’s Conjecture)

Any open Riemann surface admits a conformal minimal immersion
in R3 properly projecting into a plane.
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Corollary (Schoen-Yau’s Conjecture)

Any open Riemann surface admits a conformal minimal immersion
in R3 properly projecting into a plane.

Proof. Observe that (Y1, Y3): M — IR? is proper. Q.E.D.

@ Properness (in IR3) does not influence the underlying
conformal structure of immersed minimal surfaces.

@ Can “plane” be changed by “convex domain in R?" +
complete?



The Calabi-Yau Problem in C3



@ Let \V be an open Riemann surface. A null curve in C3 is a
holomorphic immersion F = (Fy, F3, F3) : N — C3 such that

(dF1)? + (dF2)*+ (dF3)* = 0.
e F: N — C3null curve & R(F),S(F) : N — R3 conformal
minimal immersions. Furthermore,

dsp = 2dsg p) = 2ds5 p).



Let V' be an open Riemann surface. A null curve in C3 is a
holomorphic immersion F = (Fy, F3, F3) : N — C3 such that

(dF1)? + (dF2)*+ (dF3)* = 0.
F: N — C3null curve & R(F),S(F) : N = R3 conformal
minimal immersions. Furthermore,

dsp = 2dsg p) = 2ds5 p).

Calabi-Yau problem in C* Are there complete bounded null
curves in C37?

Martin-Umehara-Yamada 2009 There exists a complete
bounded null curve with the conformal type of the disk.



e ke€{23,4,56}.
e O C R* convex domain.
° [Q]=QxR*cCC=R"



e ke€{23,4,56}.
e O C R* convex domain.
° [Q]=QxR*cCC=R"

Theorem (AA-Lépez 2010)

Let M be an open orientable surface.
Then there exists an open Riemann surface M = M and a

complete null curve F : M — [R] C C3 properly projecting into
Q.

IR6_k
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e ke€{23,4,56}.
e O C R* convex domain.
° [Q]=QxR*cCC=R"

Theorem (AA-Lépez 2010)

Let M be an open orientable surface.

Then there exists an open Riemann surface M = M and a
complete null curve F : M — [R] C C3 properly projecting into
Q. Furthermore, if [Q2] = C3 then M can be prescribed.

IR6_k
A Q]




@ Let M be an open orientable surface.

Corollary (Calabi-Yau Problem in C3)

Let Q) be a convex domain in C3.

Then there exists an open Riemann surface M = M and a proper
complete null curve F : M — Q). Furthermore, if ) = C3 then M
can be prescribed.

Proof. kK = 6. Q.E.D.



@ Let M be an open orientable surface.

Corollary (Calabi-Yau Problem in C3)

Let Q) be a convex domain in C3.

Then there exists an open Riemann surface M = M and a proper
complete null curve F : M — Q). Furthermore, if ) = C3 then M
can be prescribed.

Proof. kK = 6. Q.E.D.

Corollary

There exists a bounded complete minimal surface X : M — RR3
such that all its associate surfaces are well defined and bounded.

Proof. Choose () bounded. Q.E.D.



e Calabi-Yau problem in H3 Are there complete bounded
CMC-1 surfaces in H3?

e Martin-Umehara-Yamada 2009 A simply connected one.




e Calabi-Yau problem in H3 Are there complete bounded
CMC-1 surfaces in H3?

e Martin-Umehara-Yamada 2009 A simply connected one.

Corollary (Calabi-Yau Problem in H3) J

There exists a complete bounded CMC-1 immersion X : M — TH3.

Proof. Use a transformation in explicit coordinates due to
Martin-Umehara-Yamada that applies complete null curves in
C3 — {23 = 0} into complete bounded CMC-1 surfaces in
H3. Q.E.D.



@ Bourgain 1993 There are no complete bounded null curves in
C2.

e Calabi-Yau problem in C? Are there complete bounded
complex curves in C2?

@ Jones 1979 A simply connected one.

e Martin-Umehara-Yamada 2009 One with arbitrary finite genus
and finite topology.



@ Bourgain 1993 There are no complete bounded null curves in
C2.

e Calabi-Yau problem in C? Are there complete bounded
complex curves in C2?

@ Jones 1979 A simply connected one.

e Martin-Umehara-Yamada 2009 One with arbitrary finite genus
and finite topology.

Corollary (Calabi-Yau Problem in C?)

Let Q) be a convex domain in C2.

Then there exists an open Riemann surface M = M and a proper
complete holomorphic immersion F : M — Q).

Furthermore, if ) = C? then M can be prescribed (Bishop 1961).

Proof. kK = 4. Q.E.D.



Let Q) be a convex domain in R3.

Then there exists a proper complete minimal immersion
X:M—= Q.

Proof. kK = 3.

Q.E.D.
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Corollary (Calabi-Yau Problem in R3)
(Ferrer-Martin-Meeks 2009)

Let Q) be a convex domain in IR3.
Then there exists a proper complete minimal immersion
X: M= Q.

Proof. kK = 3. Q.E.D.

Corollary (Original Aim)

Let Q) be a convex domain in IR?.
Then there exists a complete minimal immersion X : M — IR3

properly projecting into ().

Proof. kK = 2. Q.E.D.



@ Let M be an open Riemann surface and S C M an
admissible subset. A smooth map F = (Fy, F, F3): S — C3
is said to be a generalized null curve iff

o Y3 (dF;)? =0,
° Z?:l |dF;|? never vanishes on S,
o F|u isa null curve.



@ Let M be an open Riemann surface and S C M an
admissible subset. A smooth map F = (Fy, F, F3): S — C3
is said to be a generalized null curve iff

o Y3 (dF;)? =0,
° Z?:l |dF;|? never vanishes on S,
o F|u is a null curve.

Lemma (The Approximation Lemma)

Let N be an open Riemann surface of finite topology, and let S be
a connected admissible compact subset in N'. Let

F = (F1,F2, F3) : S — C3 be a generalized null curve.

Then F can be uniformly Ct-approximated on S by a sequence of
null curves H, : N' — C3.

Moreover, we can choose the third coordinate (H,)3 = F3 Vn
provided that F3 extends holomorphically to N' and dF3 never
vanishes on Cs.




To construct a complete proper null curve F: 1D — B C C3 we
apply recursively the following technical result.

Lemma

Let M be a simply connected compact region in ID with 0 € M°,
let £>0,p0>0 n€N, and X : M — C3 be a null curve
satisfying

p—C<|IX(P)||<p VPe€IM.
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letZ >0 p>0 neN, and X : M — C3 be a null curve
satisfying
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To construct a complete proper null curve F: 1D — B C C3 we
apply recursively the following technical result.

Lemma
Let M be a simply connected compact region in ID with 0 € M°,
letZ >0 p>0 neN, and X : M — C3 be a null curve
satisfying
p—C<|IX(P)||<p VPe€IM.

Then, there exists a simply connected compact region M’ with
M C (M")° C M C D and a null curve Y : M — C3 such that

@ (p+ %) —e<|IY(P) <p+ 5 VP eaM,

Q |Y—X| <e/2" on M,

Q@ p—-C<|Y(P)|VYPeM —M°,




To construct a complete proper null curve F: 1D — B C C3 we
apply recursively the following technical result.
Lemma
Let M be a simply connected compact region in ID with 0 € M°,
letZ >0 p>0 neN, and X : M — C3 be a null curve
satisfying
p—C<|IX(P)||<p VPe€IM.
Then, there exists a simply connected compact region M’ with
M C (M")° C M C D and a null curve Y : M — C3 such that
@ (p+3)—e<|Y(P)|<p+LVPeaM,
Q |Y—X| <e/2" on M,
Q@ p—-C<|Y(P)|VYPeM —M°,
. Iy
o dlSt(M/Yy) (O,BM/) dlSt(M X)(O aM) n




Rough sketch of the proof
1. Split 0M in a family of Jordan arcs ay, ..., ay so that VP € a;,
p=¢<lyl VyeX(P)+n, (1)
IX(P)~yll > £ vy e X(P)+ M with Iyl 2 0+ ., (2)

where P; is the initial point of a; and IM; = X(P;)*.
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2. Consider My a simply connected compact region with

M C (My)° C My C ID and pairwise disjoint Jordan arcs

Y1, ..., Yk such that 7; C My — M° connects P; and Q; € oMy,
and S = MU(UX_;7/) is an admissible compact set on D.



Rough sketch of the proof
1. Split 0M in a family of Jordan arcs ay, ..., ay so that VP € a;,
p—¢<llyll VyeX(P)+M; (1)
IX(P)~yll > £ vy e X(P)+ M with Iyl 2 0+ ., (2)
where P; is the initial point of a; and IM; = X(P;)*.

2. Consider My a simply connected compact region with

M C (My)° C My C ID and pairwise disjoint Jordan arcs

Y1, ..., Yk such that 7; C My — M° connects P; and Q; € oMy,
and S = MU(UX_;7/) is an admissible compact set on D.

3. Extend X to a generalized null curve X : S — C3 so that
@ On the first half of ;, the projection of X in the direction of
X(P;) has length > p/n, and X satisfies (1) and (2).
@ X on the second half of ; is a segment in the direction of
X(P;) and )
Ptz < Iyl vy € X(Qi)+ ;.



@ The coordinate of X in the direction of X(P;) does all the
work on ; Uaj Uyj+1 at this moment.



4. Approximate X : S — C3 by a null curve Xg : My — C3
satisfying the same properties as X on S.
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a piece of dMy. Consider K; a proper compact disc on

Q; — viUa; Uiy so that just the coordinate of Xj in the
direction of X (P;) does all the work on A; = Q); — K;.
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a piece of dMy. Consider K; a proper compact disc on
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e Z|k. = w+ Xo, where w € IN; is large enough so that

1
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4. Approximate X : S — C3 by a null curve Xg : My — C3
satisfying the same properties as X on S.

5. Label (); as the closed disc in My bounded by «;, i, ¥i+1 and
a piece of dMy. Consider K; a proper compact disc on
Q; — viUa; Uiy so that just the coordinate of Xj in the
direction of X (P;) does all the work on A; = Q); — K;.
6. Consider a generalized null curve Z : My — A; — C3 such that
o Z‘m = XO-
e Z|k. = w+ Xo, where w € IN; is large enough so that

1
o+ < Iyl Vyez(k).
1 <Z—X0,X<P,')> =0.

7. Approximate Z by a null curve Y : My — C3 with
(Y — X0, X(Pj)) =0



4. Approximate X : S — C3 by a null curve Xg : My — C3
satisfying the same properties as X on S.

5. Label (); as the closed disc in My bounded by «;, i, ¥i+1 and
a piece of dMy. Consider K; a proper compact disc on
Q; — viUa; Uiy so that just the coordinate of Xj in the
direction of X (P;) does all the work on A; = Q); — K;.
6. Consider a generalized null curve Z : My — A; — C3 such that
o Z‘m = XO-
e Z|k. = w+ Xo, where w € IN; is large enough so that

1
o+ < Iyl Vyez(k).
1 <Z—X0,X<P,')> =0.

7. Approximate Z by a null curve Y : My — C3 with
(Y — Xo, X(P;)) = 0, and shrink Mp.



4. Approximate X : S — C3 by a null curve Xg : My — C3
satisfying the same properties as X on S.

5. Label (); as the closed disc in My bounded by «;, i, ¥i+1 and
a piece of dMy. Consider K; a proper compact disc on
Q; — viUa; Uiy so that just the coordinate of Xj in the
direction of X (P;) does all the work on A; = Q); — K;.
6. Consider a generalized null curve Z : My — A; — C3 such that
o Z‘m = XO-
e Z|k. = w+ Xo, where w € IN; is large enough so that

1
o+ <yl ¥y e Z(K).
("] <Z—X0,X<P,')> =0.
7. Approximate Z by a null curve Y : My — C3 with

(Y — Xo, X(P;)) = 0, and shrink Mp.
Q.E.D.



@ Balls — Convex domains



@ Balls — Convex domains

e M =1 — M =arbitrary topology:
e Use the Approximation Lemma as a Bridge Principle for null
curves to complicate the topology little by little.
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Thank you very much

for your kind attention!



