< A >

- A 🗄 🕨

Stability of capillary surfaces with planar or spherical boundary in the absence of gravity

Petko Marinov

April 13th 2011

University of Granada

Introduction	Planar boundary case	Inside S^2	Thanks
• 00 00000			

We study stable capillary surfaces with planar or spherical boundary in the absence of gravity. I will introduce both problems and our advances towards them.

Introduction	Planar boundary case	Inside S ²	Thanks
•0000000	00000000000	000000000	0

We study stable capillary surfaces with planar or spherical boundary in the absence of gravity. I will introduce both problems and our advances towards them.

• Planar boundary case: The immersed stable capillary surfaces with embedded boundary are the spherical caps.

Introduction	Planar boundary case	Inside S ²	Thanks
• 00 00000			

We study stable capillary surfaces with planar or spherical boundary in the absence of gravity. I will introduce both problems and our advances towards them.

- Planar boundary case: The immersed stable capillary surfaces with embedded boundary are the spherical caps.
- Spherical boudary case: Construct a Killing vector field for the hyperbolic metric to show that if the centroid of the region bounded between the surface and the unit sphere is at the origin, the configuration cannot be stable.

Introduction	Planar boundary case	Inside S ²	Thanks
•0000000		0000000000	0

We study stable capillary surfaces with planar or spherical boundary in the absence of gravity. I will introduce both problems and our advances towards them.

- Planar boundary case: The immersed stable capillary surfaces with embedded boundary are the spherical caps.
- Spherical boudary case: Construct a Killing vector field for the hyperbolic metric to show that if the centroid of the region bounded between the surface and the unit sphere is at the origin, the configuration cannot be stable.
- Corollary: New proof of Barbosa and Do Carmo's theorem for closed surfaces.

Problem 1			
Introduction	Planar boundary case	Inside S ²	Thanks
0000000		000000000	0

Figure: Immersed capillary surface "sitting" on a plane

æ

∃ >

- ₹ 🖹 🕨

Problem 2			
000000	00000000000	000000000	
Introduction	Planar boundary case	Inside S^2	Thanks

Figure: Immersed capillary surface in a ball

э

(日) (同) (日) (日) (日)

Inside S² 000000000

Definition

The energy E of the above configuration is defined as

$$\mathsf{E} = \sigma |\Omega| - \sigma \tau |\Sigma'|$$

where σ is the surface tension and τ is the capillary constant.

Definition

Let Ω be given by x(D). An admissible variation of x is a differentiable map $\Phi : (-\epsilon, \epsilon) \times D \to \mathbb{R}^3$, such that $\Phi_t(p) = \Phi(t, p), p \in D$, is an immersion and $\Phi_0 = x$. Also the volume functional for planar Σ is given by

$$V(t) = \frac{1}{3} \int \int_D (\Phi_t \cdot \xi_t) dS_t$$

where ξ_t and dS_t are the unit outward normal and the surface element on $\Phi_t(D)$.

Introduction	Planar boundary case	Inside S ²	Thanks
00000000		000000000	0
First Variatio	n Formula		

Let the normal component of Φ is given by $\phi = (Y \cdot \xi)$, where $Y = \frac{\partial \Phi}{\partial t}\Big|_{t=0}$. Also Let $d\sigma$ be the line element on the boundary Γ and dS be the surface element on Ω . The first variation formula for the energy of x in the direction of ϕ , subject to a volume constraint implies that

$$\partial(E)[\phi] \equiv \frac{d}{dt}E(t)\Big|_{t=0} = -2\int\int_{D}H\phi dS + \oint_{\partial D}(-\tau\csc\gamma + \cot\gamma)\phi d\sigma$$
$$\partial(V)[\phi] \equiv \frac{d}{dt}V(t)\Big|_{t=0} = \int\int_{D}\phi dS \equiv 0.$$

Introduction	Planar boundary case	Inside S ²	Thanks
00000000	000000000000	oooooooooo	0

It follows that if we want Ω to be critical point for the energy, the mean curvature H must be constant, $\tau = \cos(\gamma)$ and γ must be constant.

Definition

A capillary surface is called weakly stable if the second variation is non negative for all admissible perturbations with normal components $\phi \neq 0$ and stable if the second variation is positive for all admissible perturbations.

0000000	00000000000	000000000	
Introduction	Planar boundary case	Inside S ²	Thanks

Second Variation Formula

Following the above notation the formula for the Second Variation of ${\it E}$ is

$$\partial^2(E)[\phi] \equiv \left. \frac{d^2}{dt^2} E(t) \right|_{t=0}$$

= $\int \int_D [|\nabla \phi|^2 - (k_1^2 + k_2^2) \phi^2] dS$
+ $\oint_{\partial D} p \phi^2 d\sigma.$

Here $\nabla \phi$ is the surface gradient of ϕ , k_1 and k_2 are the principal curvatures, and $p = K_{\Omega} \cot(\gamma) + K_{\Sigma} \csc(\gamma)$. Here K_{Ω} and K_{Σ} are the signed normal curvatures of Ω and Σ with respect to the boundary. Of course, the volume condition must be fulfilled.

Second Varia	tion Formula		
0000000	0000000000	000000000	
Introduction	Planar boundary case	Inside S^2	Thanks

Using Green's first identity one gets

$$\partial^2 E = \int \int_D (-L\phi)\phi dS$$

 $+ \oint_{\partial D} (\phi_{\nu} + p\phi)\phi d\sigma$

Second Variation	Formula		
0000000	00000000000	000000000	
Introduction	Planar boundary case	Inside S ²	Thanks

Second Variation Formula

Using Green's first identity one gets

$$\partial^2 E = \int \int_D (-L\phi)\phi dS$$

 $+ \oint_{\partial D} (\phi_{\nu} + p\phi)\phi d\sigma$

where

$$L\phi = \Delta\phi + (k_1^2 + k_2^2)\phi$$
$$\rho = K_{\Omega}\cot(\gamma) + K_{\Sigma}\csc(\gamma)$$

æ

< ∃ →

Second Variation	Formula		
0000000	0000000000	000000000	
Introduction	Planar boundary case	Inside S^2	Thanks

Second Variation Formula

Using Green's first identity one gets

$$\partial^2 E = \int \int_D (-L\phi)\phi dS$$

 $+ \oint_{\partial D} (\phi_{\nu} + p\phi)\phi d\sigma$

where

$$L\phi = \Delta\phi + (k_1^2 + k_2^2)\phi$$
$$p = K_{\Omega}\cot(\gamma) + K_{\Sigma}\csc(\gamma)$$

Also

$$\partial V \equiv \int \int_D \phi ds = 0$$

The operator *L* is called the *Jacobi operator* (here Δ is the surface Laplacian on Ω).

- 4 🗗 ▶

Main Theorem

Theorem

(Planar boundary) There exists no stable capillary surface with planar boundary, that is immersed in \mathbb{R}^3 and having genus g > 0. The boundary is assumed to be embedded in Σ .

Main Theorem

Theorem

(Planar boundary) There exists no stable capillary surface with planar boundary, that is immersed in \mathbb{R}^3 and having genus g > 0. The boundary is assumed to be embedded in Σ .

In the genus zero case the only stable capillary surfaces with planar boundary are the spherical caps. Again no gravity is assumed anywhere.

Introduction	Planar boundary case	Inside S ²	Thanks
00000000	○●○○○○○○○○○	000000000	O
The perturbation			

Let

$$\Phi(x,t) = x + t\xi + Htx + ct\mathbf{k} + O(t^2)$$

where \mathbf{k} is the vertical unit vector and c is a constant.

I ≡ ▶ < </p>

Introduction

The perturbation

Let

$$\Phi(x,t) = x + t\xi + Htx + ct\mathbf{k} + O(t^2)$$

where **k** is the vertical unit vector and *c* is a constant. Computing ϕ for this particular perturbation one gets

$$\phi = 1 + H(x \cdot \xi) + c(\mathbf{k} \cdot \xi)$$

Introduction	
00000000	

The perturbation

Let

$$\Phi(x,t) = x + t\xi + Htx + ct\mathbf{k} + O(t^2)$$

where **k** is the vertical unit vector and *c* is a constant. Computing ϕ for this particular perturbation one gets

$$\phi = 1 + H(x \cdot \xi) + c(\mathbf{k} \cdot \xi)$$

Need to determine c to keep the volume fixed.

Introduction 00000000	Planar boundary case ○○●○○○○○○○○	Inside S ² 000000000	Thanks O
Lemma			
The volum	ne constraint implies that c =	$= -\cos(\gamma)$, i.e	
	$\phi = 1 + H(x \cdot \xi) - c$	$os(\gamma)(\mathbf{k}\cdot \xi)$	
in order to	keep the volume fixed.		

Introd	

Inside S² 0000000000

(日) (同) (三) (三)

3

Lemma

The volume constraint implies that $c = -\cos(\gamma)$, i.e

$$\phi = 1 + \mathcal{H}(x \cdot \xi) - \cos(\gamma) (\mathbf{k} \cdot \xi)$$

in order to keep the volume fixed.

Proof:

$$\begin{split} 0 &= \int \int_{D} \phi dS = \int \int_{D} (1 + H(x \cdot \xi) - c(\mathbf{k} \cdot \xi)) dS \\ &= |\Omega| + H \int \int_{D} (x \cdot \xi) dS + c \int \int_{D} (\mathbf{k} \cdot \xi) dS \end{split}$$

Introductio	

Inside S² 0000000000

(日)

Lemma

The volume constraint implies that $c = -\cos(\gamma)$, i.e

$$\phi = 1 + H(x \cdot \xi) - \cos(\gamma) (\mathbf{k} \cdot \xi)$$

in order to keep the volume fixed.

Proof:

$$0 = \int \int_{D} \phi dS = \int \int_{D} (1 + H(x \cdot \xi) - c(\mathbf{k} \cdot \xi)) dS$$
$$= |\Omega| + H \int \int_{D} (x \cdot \xi) dS + c \int \int_{D} (\mathbf{k} \cdot \xi) dS$$

We have

$$\int \int_{D} ({f k} \cdot \xi) dS = |\Sigma'|$$

Inside S² 000000000

*ロト *部ト *注ト *注ト

æ

Using conformal coordinates one has

$$\int \int_D H(x \cdot \xi) dS = \frac{1}{2} \int \int_D (x \cdot \Delta x) dS$$
$$= -\frac{1}{2} \int \int_D |\nabla x|^2 dS + \frac{1}{2} \oint_{\partial D} (x \cdot x_{\nu}) d\sigma$$

*ロト *部ト *注ト *注ト

æ

Using conformal coordinates one has

$$\int \int_D H(x \cdot \xi) dS = \frac{1}{2} \int \int_D (x \cdot \Delta x) dS$$
$$= -\frac{1}{2} \int \int_D |\nabla x|^2 dS + \frac{1}{2} \oint_{\partial D} (x \cdot x_\nu) d\sigma$$

$$|\nabla x|^2 = \frac{1}{E}((x_u \cdot x_u) + (x_v \cdot x_v)) = \frac{1}{E}(E + E) = 2$$

æ

Using conformal coordinates one has

$$\int \int_D H(x \cdot \xi) dS = \frac{1}{2} \int \int_D (x \cdot \Delta x) dS$$
$$= -\frac{1}{2} \int \int_D |\nabla x|^2 dS + \frac{1}{2} \oint_{\partial D} (x \cdot x_{\nu}) d\sigma$$

$$|\nabla x|^2 = \frac{1}{E}((x_u \cdot x_u) + (x_v \cdot x_v)) = \frac{1}{E}(E + E) = 2$$

therefore

$$-rac{1}{2}\int\int_{D}|
abla x|^{2}dS=-rac{1}{2}\int\int_{D}2dS=-|\Omega|$$

æ

<ロト <部ト < 注ト < 注ト

Using conformal coordinates one has

$$\int \int_D H(x \cdot \xi) dS = \frac{1}{2} \int \int_D (x \cdot \Delta x) dS$$
$$= -\frac{1}{2} \int \int_D |\nabla x|^2 dS + \frac{1}{2} \oint_{\partial D} (x \cdot x_\nu) d\sigma$$

$$|\nabla x|^2 = \frac{1}{E}((x_u \cdot x_u) + (x_v \cdot x_v)) = \frac{1}{E}(E + E) = 2$$

therefore

$$-\frac{1}{2}\int\int_{D}|\nabla x|^{2}dS=-\frac{1}{2}\int\int_{D}2dS=-|\Omega|$$

Also one has

$$\frac{1}{2}\oint_{\partial D}(x\cdot x_{\nu})d\sigma = \frac{\cos(\gamma)}{2}\oint_{\partial D}(x\cdot \mathbf{n})d\sigma = \cos(\gamma)|\Sigma'|$$

<ロ> <同> <同> < 同> < 同> < 同> < 同> - < 同> - < 同> - < 同 > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ >

æ

 $0 = |\Omega| + H \int \int_{\Omega} (x \cdot \xi) dS + c \int \int_{\Omega} (\mathbf{k} \cdot \xi) dS$

æ

$$\begin{split} 0 &= |\Omega| + H \int \int_{D} (x \cdot \xi) dS + c \int \int_{D} (\mathbf{k} \cdot \xi) dS \\ & c \int \int_{D} (\mathbf{k} \cdot \xi) dS = c |\Sigma'| \end{split}$$

æ

$$egin{aligned} 0 &= |\Omega| + H \int \int_D (x \cdot \xi) dS + c \int \int_D (\mathbf{k} \cdot \xi) dS \ &c \int \int_D (\mathbf{k} \cdot \xi) dS = c |\Sigma'| \ &\int \int_D H(x \cdot \xi) dS = -|\Omega| + rac{1}{2} \oint_{\partial D} (x \cdot x_
u) d\sigma \end{aligned}$$

æ

$$0 = |\Omega| + H \int \int_{D} (x \cdot \xi) dS + c \int \int_{D} (\mathbf{k} \cdot \xi) dS$$
$$c \int \int_{D} (\mathbf{k} \cdot \xi) dS = c |\Sigma'|$$
$$\int \int_{D} H(x \cdot \xi) dS = -|\Omega| + \frac{1}{2} \oint_{\partial D} (x \cdot x_{\nu}) d\sigma$$
$$\frac{1}{2} \oint_{\partial D} (x \cdot x_{\nu}) d\sigma = \cos(\gamma) |\Sigma'|$$

æ

So far we have

$$0 = |\Omega| + H \int \int_{D} (x \cdot \xi) dS + c \int \int_{D} (\mathbf{k} \cdot \xi) dS$$
$$c \int \int_{D} (\mathbf{k} \cdot \xi) dS = c |\Sigma'|$$
$$\int \int_{D} H(x \cdot \xi) dS = -|\Omega| + \frac{1}{2} \oint_{\partial D} (x \cdot x_{\nu}) d\sigma$$
$$\frac{1}{2} \oint_{\partial D} (x \cdot x_{\nu}) d\sigma = \cos(\gamma) |\Sigma'|$$

The above four formulae imply that

$$c = -\cos(\gamma)$$

and

$$\phi = 1 + H(x \cdot \xi) - \cos(\gamma)(\mathbf{k} \cdot \xi)$$

Introduction	Planar boundary case	Inside S ²	Thanks
00000000		000000000	O
Zero boundary t	erm		

Lemma

For $\phi = 1 + H(x \cdot \xi) - \cos(\gamma)(\mathbf{k} \cdot \xi)$ on the boundary curve Γ we have

$$\phi_{\nu} + p\phi = 0$$

▲□>
 ▲□>
 ▲□>
 ■

Introduction

Inside S² 000000000

< □ > < 同 > < 三 >

э

Zero boundary term

Lemma

For
$$\phi = 1 + H(x \cdot \xi) - \cos(\gamma)(\mathbf{k} \cdot \xi)$$
 on the boundary curve Γ we have

$$\phi_{\nu} + p\phi = 0$$

therefore

$$\partial^2 E = \int \int_D (-L\phi)\phi dS.$$

æ

<ロ> <同> <同> < 同> < 同> < 同> < 同> - < 同> - < 同> - < 同 > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ >

$L\phi = L1 + L(H(x \cdot \xi)) - \cos(\gamma)L(\mathbf{k} \cdot \xi) = k_1^2 + k_2^2 + HL(x \cdot \xi)$

Petko Marinov Stability of capillary surfaces

★ロト ★御 と ★ ヨ と ★ ヨ と 三 ヨー

$$L\phi = L1 + L(H(x \cdot \xi)) - \cos(\gamma)L(\mathbf{k} \cdot \xi) = k_1^2 + k_2^2 + HL(x \cdot \xi)$$

$$L1 = \Delta 1 + (k_1^2 + k_2^2) 1 = k_1^2 + k_2^2$$
$$L(\mathbf{k} \cdot \xi) = 0$$
$$L(\mathbf{x} \cdot \xi) = -2H$$
$$L\phi = L1 + L(H(x \cdot \xi)) - \cos(\gamma)L(\mathbf{k} \cdot \xi) = k_1^2 + k_2^2 + HL(x \cdot \xi)$$

$$L1 = \Delta 1 + (k_1^2 + k_2^2) = k_1^2 + k_2^2$$
$$L(\mathbf{k} \cdot \xi) = 0$$
$$L(\mathbf{x} \cdot \xi) = -2H$$

Taking this into account we have

$$L\phi = k_1^2 + k_2^2 - 2H^2 = k_1^2 + k_2^2 - \frac{(k_1 + k_2)^2}{2} = \frac{(k_1 - k_2)^2}{2}$$

therefore

$$\int \int_{D} (-L\phi)\phi dS = -\int \int_{D} \frac{(k_1 - k_2)^2}{2} dS$$
$$-\int \int_{D} \frac{(k_1 - k_2)^2}{2} (H(x \cdot \xi) - \cos(\gamma)(\mathbf{k} \cdot \xi)) dS$$

Introduction	Planar boundary case	Inside S^2	Thanks
	00000000000		

Rewriting the previous formula using theorems from differential geometry and some other facts we arrive at

$$\partial^{2} E = -\int \int_{D} \frac{(k_{1} - k_{2})^{2}}{2} dS$$

$$-\oint_{\partial D} \cos(\gamma) [2H^{2}(x \cdot \mathbf{n}) + 2Hsin(\gamma)] d\sigma$$

$$+\oint_{\partial D} \cos(\gamma) [\sin(\gamma)k_{\Gamma}H(x \cdot \mathbf{n}) + \sin^{2}(\gamma)k_{\Gamma}] d\sigma$$

Introduction	

Planar boundary case

Inside S² 0000000000

Auxiliary lemma

Lemma

• (i)

 $\oint_{\partial D} (\mathbf{x} \cdot \mathbf{n}) d\sigma = 2|\Sigma'|$

Introduction	

Planar boundary case

Inside S² 0000000000

Auxiliary lemma

Lemma (i)

 $\oint_{\partial D} (\mathbf{x} \cdot \mathbf{n}) d\sigma = 2|\Sigma'|$

• (ii)

 $\oint_{\partial D} k_{\Gamma}(x \cdot \mathbf{n}) d\sigma = -|\Gamma|$

Introduction	

Planar boundary case

Inside S² 0000000000

Auxiliary lemma

Lemma (i)

 $\oint_{\partial D} (\mathbf{x} \cdot \mathbf{n}) d\sigma = 2|\Sigma'|$

• (ii)

 $\oint_{\partial D} k_{\Gamma}(\mathbf{x} \cdot \mathbf{n}) d\sigma = -|\Gamma|$

• (iii)

$$\left| \oint_{\partial D} k_{\Gamma} d\sigma \right| \leq 2\pi d$$

Introduction 00000000	Planar boundary case	Inside S ² 000000000	Thank O
Auxiliary lemma			
Lemma			
• (i)	C		
	$\oint_{\partial D} (\mathbf{x} \cdot \mathbf{n}) d\sigma$	$=2 \Sigma' $	
• (ii)	c		
	$\oint_{\partial D} k_{\Gamma}(x \cdot \mathbf{n}) dx$	$\sigma = - \Gamma $	
• (iii)			
	$\left \oint_{\partial D} k_{\Gamma} d\sigma \right $	$\leq 2\pi d$	
• (iv)			

 $\sin(\gamma)|\Gamma|=-2H|\Sigma'|$

$$\frac{(k_1 - k_2)^2}{2} = 2H^2 - 2K$$

<ロ> <同> <同> < 回> < 回>

 Introduction
 Planar boundary case
 Inside S²
 Thanks

 000000000
 000
 0000000000
 000

 A key (well known) observation
 0

$$\frac{(k_1 - k_2)^2}{2} = 2H^2 - 2K$$

The auxiliary lemma and the above fact imply that

$$\partial^{2} E = -2 \int \int_{D} H^{2} dS + 2 \int \int_{D} K dS + \cos(\gamma) [2H^{2}|\Sigma'| + \sin^{2}(\gamma) \oint_{\partial D} k_{\Gamma} d\sigma].$$

(日) (同) (三) (三)

э

Introduction	

æ

(日) (同) (三) (三)

Now Gauss-Bonnet theorem and again the auxiliary lemma imply that:

$$\partial^{2} E = -2 \int \int_{D} H^{2} dS + 4\pi \chi(\Omega) - 2 \oint_{\partial D} k_{g} d\sigma + \cos \gamma [2H^{2}|\Sigma'| + \sin^{2} \gamma \oint_{\partial D} k_{\Gamma} d\sigma]$$

Introd	

< □ > < 同 >

- ₹ 🖹 🕨

æ

∃ >

$$\partial^{2} E = -2 \int \int_{D} H^{2} dS + 4\pi \chi(\Omega) - 2 \oint_{\partial D} k_{g} d\sigma + \cos \gamma [2H^{2}|\Sigma'| + \sin^{2} \gamma \oint_{\partial D} k_{\Gamma} d\sigma]$$

$$= -2H^{2}\left[\int \int_{D} dS - \cos \gamma |\Sigma'|\right] + 4\pi \chi(\Omega)$$
$$-2\oint_{\partial D} k_{g} d\sigma + \cos \gamma \sin^{2} \gamma \oint_{\partial D} k_{\Gamma} d\sigma$$

Introductio	

< 一型

∃ >

글▶ 글

Now Gauss-Bonnet theorem and again the auxiliary lemma imply that:

$$\partial^{2} E = -2 \int \int_{D} H^{2} dS + 4\pi \chi(\Omega) - 2 \oint_{\partial D} k_{g} d\sigma + \cos \gamma [2H^{2}|\Sigma'| + \sin^{2} \gamma \oint_{\partial D} k_{\Gamma} d\sigma]$$

$$= -2H^{2}\left[\int \int_{D} dS - \cos\gamma |\Sigma'|\right] + 4\pi\chi(\Omega)$$
$$-2\oint_{\partial D} k_{g}d\sigma + \cos\gamma \sin^{2}\gamma \oint_{\partial D} k_{\Gamma}d\sigma$$
$$\leq -2H^{2}[|\Omega| - \cos\gamma |\Sigma'|] + 4\pi(2 - 2g - d)$$
$$+ 4\pi d|\cos\gamma| + |\cos\gamma|(\sin^{2}\gamma)2\pi d$$

Introd	

-

$$\partial^{2} E = -2 \int \int_{D} H^{2} dS + 4\pi \chi(\Omega) - 2 \oint_{\partial D} k_{g} d\sigma + \cos \gamma [2H^{2}|\Sigma'| + \sin^{2} \gamma \oint_{\partial D} k_{\Gamma} d\sigma]$$

$$= -2H^{2}\left[\int \int_{D} dS - \cos\gamma |\Sigma'|\right] + 4\pi\chi(\Omega)$$
$$-2\oint_{\partial D} k_{g}d\sigma + \cos\gamma \sin^{2}\gamma \oint_{\partial D} k_{\Gamma}d\sigma$$
$$\leq -2H^{2}[|\Omega| - \cos\gamma |\Sigma'|] + 4\pi(2 - 2g - d)$$

$$+ 4\pi d |\cos \gamma| + |\cos \gamma| (\sin^2 \gamma) 2\pi d$$

$$= -2H^{2}[|\Omega| - \cos\gamma|\Sigma'|] + 4\pi(2 - 2g)$$
$$- 2\pi d[2 - 2|\cos\gamma| - |\cos\gamma|\sin^{2}\gamma].$$

Introduction	Planar boundary case	Inside S ²	Thanks
	0000000000		

We get

$$\partial^2 E \leq -2H^2[|\Omega| - \cos\gamma|\Sigma'|] + 4\pi(2-2g) - 2\pi d[2-2|\cos\gamma| - |\cos\gamma|\sin^2\gamma]$$

▲口 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶

Introduction	Planar boundary case	Inside S^2	Thanks
	0000000000		

We get

$$\partial^2 E \le -2H^2[|\Omega| - \cos\gamma|\Sigma'|] + 4\pi(2 - 2g) - 2\pi d[2 - 2|\cos\gamma| - |\cos\gamma|\sin^2\gamma]$$

which yields that for g > 0

 $\partial^2 E < 0.$

Introduction	Planar boundary case	Inside S^2	Thanks
		•••••	

Let z be the complex coordinate in \mathbb{R}^2 . The LFT's that map the unit disc into itself are of the form

$$w = e^{i\theta} \frac{z - \alpha}{1 - z\bar{\alpha}}$$

with $|\alpha| < 1$.

Introduction	Planar boundary case	Inside S^2	Thanks
		00000000	

Let z be the complex coordinate in \mathbb{R}^2 . The LFT's that map the unit disc into itself are of the form

$$w = e^{i\theta} \frac{z - \alpha}{1 - z\bar{\alpha}}$$

with $|\alpha| < 1$. Let

$$w_t = \frac{z+t}{1+tz}$$

with $t \in (-1, 1)$.

Introduction	Planar boundary case	Inside S^2	Thanks
		00000000	

Let z be the complex coordinate in \mathbb{R}^2 . The LFT's that map the unit disc into itself are of the form

$$w = e^{i\theta} \frac{z - \alpha}{1 - z\bar{\alpha}}$$

with $|\alpha| < 1$. Let

$$w_t = \frac{z+t}{1+tz}$$

with $t \in (-1, 1)$. This is a family of hyperbolic LFT's (two fixed points $z = \pm 1$) and $w_0 = Id$. To see that we normalize to make the determinant one and observe that the square of the trace is bigger than 4.

Introduction	Planar boundary case	Inside S^2	Thanks
0000000	0000000000	00000000	

$$\left.\frac{d}{dt}w_t\right|_{t=0} = 1 - z^2$$

æ

@▶ ∢ ≣▶

Introduction	Planar boundary case	Inside S^2	Thanks
		000000000	

$$\left. \frac{d}{dt} w_t \right|_{t=0} = 1 - z^2$$

In x, y-coordinates this vector field is

$$1 - z^2 = <1 - x^2 + y^2, -2xy >^{T}$$

Introduction	Planar boundary case	Inside S^2	Thanks
		000000000	

$$\left. \frac{d}{dt} w_t \right|_{t=0} = 1 - z^2$$

In x, y-coordinates this vector field is

$$1 - z^2 = <1 - x^2 + y^2, -2xy >^T$$

Rotating the above vector field about the x-axis we obtain a vector field F on \mathbb{R}^3

$$F = <1 - x^2 + y^2 + z^2, -2xy, -2xz >^T$$

Introduction	Planar boundary case	Inside S^2	Thanks
		000000000	

$$\left. \frac{d}{dt} w_t \right|_{t=0} = 1 - z^2$$

In x, y-coordinates this vector field is

$$1 - z^2 = <1 - x^2 + y^2, -2xy >^{T}$$

Rotating the above vector field about the x-axis we obtain a vector field F on \mathbb{R}^3

$$F = <1 - x^2 + y^2 + z^2, -2xy, -2xz >^T$$

This is a conformal vector field (also Killing for the hyperbolic metric), i.e. it is the derivative at zero of a family of conformal mappings $\Phi_t(x) : \mathbb{R}^3 \to \mathbb{R}^3$ with $\Phi_0(x) = Id$. The family of conformal mappings is also a Lie group.

Planar	boundary	
00000	0000000	

(日)

э

Theorem

$$F = \langle F_{1}(x, y, z), F_{2}(x, y, z), F_{3}(x, y, z) \rangle^{T} \text{ is a vector field on}$$

$$\mathbb{R}^{3}, \text{ and let}$$

$$DF = \begin{bmatrix} \frac{DF_{1}}{dx} & \frac{DF_{1}}{dy} & \frac{DF_{1}}{dz} \\ \frac{DF_{2}}{dx} & \frac{DF_{2}}{dy} & \frac{DF_{2}}{dz} \\ \frac{DF_{3}}{dx} & \frac{DF_{3}}{dy} & \frac{DF_{3}}{dz} \end{bmatrix} \text{ be the differential of } F. \text{ Then, } F \text{ is}$$

$$\text{conformal if and only if}$$

$$DF + DF^T = \lambda(x, y, z) Id$$

where $\lambda(x, y, z)$ is a scalar function.

• $\partial \gamma = \phi_{\nu} + p\phi$ which implies that for conformal F the boundary integral in $\partial^2 E$ is zero.

・ 同 ト ・ ヨ ト ・ ヨ ト

- $\partial \gamma = \phi_{\nu} + p\phi$ which implies that for conformal F the boundary integral in $\partial^2 E$ is zero.
- F is that it is tangent to \mathbb{S}^2 .

- $\partial \gamma = \phi_{\nu} + p\phi$ which implies that for conformal F the boundary integral in $\partial^2 E$ is zero.
- *F* is that it is tangent to \mathbb{S}^2 .
- $\phi = (F \cdot \xi) = (\mathbf{i} \cdot [(1 + |\bar{x}|^2)\xi 2(\bar{x} \cdot \xi)\bar{x}]).$

- $\partial \gamma = \phi_{\nu} + p\phi$ which implies that for conformal F the boundary integral in $\partial^2 E$ is zero.
- *F* is that it is tangent to \mathbb{S}^2 .
- $\phi = (F \cdot \xi) = (\mathbf{i} \cdot [(1 + |\bar{x}|^2)\xi 2(\bar{x} \cdot \xi)\bar{x}]).$
- $\partial V = \int \int_D \phi dS = \int \int_D (F \cdot \xi) dS = -6x_0 Vol(T)$ where $\langle x_0, y_0, z_0 \rangle$ is center of gravity of T.

Introduction	

Planar	boundary	

$$\begin{split} \phi &= (\mathbf{i} \cdot [(1+|\bar{x}|^2)\xi - 2(\bar{x} \cdot \xi)\bar{x}]) \\ \psi &= (\mathbf{j} \cdot [(1+|\bar{x}|^2)\xi - 2(\bar{x} \cdot \xi)\bar{x}]) \\ \eta &= (\mathbf{k} \cdot [(1+|\bar{x}|^2)\xi - 2(\bar{x} \cdot \xi)\bar{x}]) \end{split}$$

Introduction	Planar boundary case	Inside S ²	Thanks
00000000	00000000000	○○○○●○○○○○	0

$$\phi = (\mathbf{i} \cdot [(1 + |\bar{x}|^2)\xi - 2(\bar{x} \cdot \xi)\bar{x}])$$

$$\psi = (\mathbf{j} \cdot [(1 + |\bar{x}|^2)\xi - 2(\bar{x} \cdot \xi)\bar{x}])$$

$$\eta = (\mathbf{k} \cdot [(1 + |\bar{x}|^2)\xi - 2(\bar{x} \cdot \xi)\bar{x}])$$

Lemma

$$L\phi = 4(\mathbf{i} \cdot [\xi + H\bar{x}])$$
$$L\psi = 4(\mathbf{j} \cdot [\xi + H\bar{x}])$$
$$L\eta = 4(\mathbf{k} \cdot [\xi + H\bar{x}])$$

▲□> <圖> <필> <필> < =>

Introduction	Planar boundary case	Inside S ²	Thanks
		000000000	

$$\begin{aligned} Q_{11} &= -4 \int \int_{D} (\mathbf{i} \cdot [(1+|\bar{x}|^2)\xi - 2(\bar{x} \cdot \xi)\bar{x}]) (\mathbf{i} \cdot [\xi + H\bar{x}]) dS \\ Q_{22} &= -4 \int \int_{D} (\mathbf{j} \cdot [(1+|\bar{x}|^2)\xi - 2(\bar{x} \cdot \xi)\bar{x}]) (\mathbf{j} \cdot [\xi + H\bar{x}]) dS \\ Q_{33} &= -4 \int \int_{D} (\mathbf{k} \cdot [(1+|\bar{x}|^2)\xi - 2(\bar{x} \cdot \xi)\bar{x}]) (\mathbf{k} \cdot [\xi + H\bar{x}]) dS. \end{aligned}$$

Introduction	Planar boundary case	Inside S ²	Thanks
00000000	00000000000	000000000	0

$$Q_{11} = -4 \int \int_{D} (\mathbf{i} \cdot [(1 + |\bar{x}|^2)\xi - 2(\bar{x} \cdot \xi)\bar{x}]) (\mathbf{i} \cdot [\xi + H\bar{x}]) dS$$

$$Q_{22} = -4 \int \int_{D} (\mathbf{j} \cdot [(1 + |\bar{x}|^2)\xi - 2(\bar{x} \cdot \xi)\bar{x}]) (\mathbf{j} \cdot [\xi + H\bar{x}]) dS$$

$$Q_{33} = -4 \int \int_{D} (\mathbf{k} \cdot [(1 + |\bar{x}|^2)\xi - 2(\bar{x} \cdot \xi)\bar{x}]) (\mathbf{k} \cdot [\xi + H\bar{x}]) dS.$$

Want to show $Q_{11} + Q_{22} + Q_{33} \le 0.$

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Introduction	Planar boundary case	Inside S ²	Thanks
		000000000	

$$Q_{11} = -4 \int \int_{D} (\mathbf{i} \cdot [(1 + |\bar{x}|^2)\xi - 2(\bar{x} \cdot \xi)\bar{x}]) (\mathbf{i} \cdot [\xi + H\bar{x}]) dS$$
$$Q_{22} = -4 \int \int_{D} (\mathbf{j} \cdot [(1 + |\bar{x}|^2)\xi - 2(\bar{x} \cdot \xi)\bar{x}]) (\mathbf{j} \cdot [\xi + H\bar{x}]) dS$$
$$Q_{33} = -4 \int \int_{D} (\mathbf{k} \cdot [(1 + |\bar{x}|^2)\xi - 2(\bar{x} \cdot \xi)\bar{x}]) (\mathbf{k} \cdot [\xi + H\bar{x}]) dS.$$

Want to show $Q_{11} + Q_{22} + Q_{33} \le 0$.

Lemma

$$\Delta |\bar{x}|^2 = 4(1 + H(\bar{x} \cdot \xi)).$$

イロン イロン イヨン イヨン

Introduction	Planar boundary case	Inside S^2	Thanks
		0000000000	

$$(\mathbf{i} \cdot \xi)^2 + (\mathbf{j} \cdot \xi)^2 + (\mathbf{k} \cdot \xi)^2 = |\xi|^2 = 1$$

æ

3

P

Introduction	Planar boundary case	Inside S ²	Thanks
00000000		○○○○○●○○○	0

$$(\mathbf{i} \cdot \xi)^2 + (\mathbf{j} \cdot \xi)^2 + (\mathbf{k} \cdot \xi)^2 = |\xi|^2 = 1$$

$$(\mathbf{i}\cdotar{x})(\mathbf{i}\cdot\xi)+(\mathbf{j}\cdotar{x})(\mathbf{j}\cdot\xi)+(\mathbf{k}\cdotar{x})(\mathbf{k}\cdot\xi)=(ar{x}\cdot\xi)$$

P

æ

3

Introduction	Planar boundary case	Inside S ²	Thanks
		0000000000	

$$(\mathbf{i} \cdot \xi)^2 + (\mathbf{j} \cdot \xi)^2 + (\mathbf{k} \cdot \xi)^2 = |\xi|^2 = 1$$

$$(\mathbf{i}\cdot\bar{x})(\mathbf{i}\cdot\xi) + (\mathbf{j}\cdot\bar{x})(\mathbf{j}\cdot\xi) + (\mathbf{k}\cdot\bar{x})(\mathbf{k}\cdot\xi) = (\bar{x}\cdot\xi)$$

$$(\mathbf{i}\cdot\bar{x})^2 + (\mathbf{j}\cdot\bar{x})^2 + (\mathbf{k}\cdot\bar{x})^2 = |\bar{x}|^2$$

æ

Э

Introduction	Planar boundary case	Inside S ²	Thanks
		0000000000	

$$(\mathbf{i} \cdot \xi)^2 + (\mathbf{j} \cdot \xi)^2 + (\mathbf{k} \cdot \xi)^2 = |\xi|^2 = 1$$

$$(\mathbf{i}\cdot ar{x})(\mathbf{i}\cdot \xi) + (\mathbf{j}\cdot ar{x})(\mathbf{j}\cdot \xi) + (\mathbf{k}\cdot ar{x})(\mathbf{k}\cdot \xi) = (ar{x}\cdot \xi)$$

$$(\mathbf{i} \cdot \bar{x})^2 + (\mathbf{j} \cdot \bar{x})^2 + (\mathbf{k} \cdot \bar{x})^2 = |\bar{x}|^2$$

we get

$$\sum_{i=1}^{3} Q_{ii} = -4 \int \int_{D} [H(1-|\bar{x}|^2)(\bar{x}\cdot\xi) + 1 + |\bar{x}|^2 - 2(\bar{x}\cdot\xi)^2] dS.$$

Next, we estimate the integrand in the previous page. From Cauchy-Schwarz inequality it follows that $(\bar{x} \cdot \xi)^2 \leq |\bar{x}|^2 |\xi|^2 = |\bar{x}|^2$, therefore

$$1+|ar{x}|^2-2(ar{x}\cdot\xi)^2\geq 1+|ar{x}|^2-2|ar{x}|^2=1-|ar{x}|^2.$$

Notice that $1 - |\bar{x}|^2 \ge 0$ since \bar{x} represents the surface Ω which lies entirely in the unit ball B.
Next, we estimate the integrand in the previous page. From Cauchy-Schwarz inequality it follows that $(\bar{x} \cdot \xi)^2 \leq |\bar{x}|^2 |\xi|^2 = |\bar{x}|^2$, therefore

$$1+|ar{x}|^2-2(ar{x}\cdot\xi)^2\geq 1+|ar{x}|^2-2|ar{x}|^2=1-|ar{x}|^2$$

Notice that $1 - |\bar{x}|^2 \ge 0$ since \bar{x} represents the surface Ω which lies entirely in the unit ball B.

Using the previous lemma

$$egin{aligned} &-\sum_{i=1}^{3} \mathcal{Q}_{ii} \geq 4 \int \int_{D} [H(1-|ar{x}|^2)(ar{x}\cdot \xi)+1-|ar{x}|^2] dS \ &=4 \int \int_{D} [(1-|ar{x}|^2)(1+H(ar{x}\cdot \xi)) dS \ &=\int \int_{D} (1-|ar{x}|^2)\Delta |ar{x}|^2 dS. \end{aligned}$$

Introduction	Planar boundary case	Inside S^2	Thanks
		000000000	

Apply Green's First Identity and also the fact that $1 - |\bar{x}|^2 = 0$ on $\partial \Omega \subseteq \mathbb{S}^2$.

$$egin{aligned} &-\sum_{i=1}^3 Q_{ii} \geq \int \int_D (1-|ar{x}|^2)\Delta|ar{x}|^2 dS \ &= -\int \int_D (
abla (1-|ar{x}|^2)\cdot
abla |ar{x}|^2) dS \ &= \int \int_D (
abla |ar{x}|^2\cdot
abla |ar{x}|^2) dS \ &= \int \int_D |
abla |ar{x}|^2|^2 dS \geq 0. \end{aligned}$$

Introduction	Planar boundary case	Inside S ²	Thanks
		00000000	

Therefore $\sum_{i=1}^{3} Q_{ii} < 0$ for nontrivial \bar{x} satisfing the centroid condition.

Introduction	Planar boundary case	Inside S^2	Thanks
		00000000	

Therefore $\sum_{i=1}^{3} Q_{ii} < 0$ for nontrivial \bar{x} satisfing the centroid condition.

This method proves Barbosa and Do Carmo's theorem. One need just to put the centroid at the origin, which is possible since there is no boundary.

Introduction	Planar boundary case	Inside S^2	Thanks
			•

Thank you for your patience!