On holomorphic embeddings of Riemann surfaces into \mathbb{C}^2

The Bell-Narasimhan Conjecture

Antonio Alarcón

Dep. Geometría y Topología Universidad de Granada

Joint work with Francisco J. López Granada, October 2011

Definition (Stein 1951)

A complex manifold **S** of complex dimension *n* is said to be a **Stein manifold** iff the following two conditions hold:

• S is holomorphically convex, i.e.,

$$\hat{K} := \left\{ z \in \mathbf{S} \ \left| \ |f(z)| \leq \sup_{\mathcal{K}} |f| \ orall f : \mathbf{S}
ightarrow \mathbb{C} \ ext{holomorphic}
ight\}
ight\}$$

is compact for all compact $K \subset S$. Equivalently, if $E \subset S$ is unbounded then there exists $f : S \to \mathbb{C}$ holomorphic such that $f|_E$ is unbounded.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Definition (Stein 1951)

A complex manifold **S** of complex dimension *n* is said to be a **Stein manifold** iff the following two conditions hold:

• S is holomorphically convex, i.e.,

$$\hat{K} := \left\{ z \in \mathbf{S} \mid |f(z)| \leq \sup_{K} |f| \; \forall f : \mathbf{S} \to \mathbb{C} \; \text{holomorphic}
ight\}$$

is compact for all compact $K \subset \mathbf{S}$. Equivalently, if $E \subset \mathbf{S}$ is unbounded then there exists $f : \mathbf{S} \to \mathbb{C}$ holomorphic such that $f|_E$ is unbounded.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

S is holomorphically separable, i.e., for any z, w ∈ S, z ≠ w, there exists f : S → C holomorphic with f(z) ≠ f(w).

Definition (Stein 1951)

A complex manifold **S** of complex dimension *n* is said to be a **Stein manifold** iff the following two conditions hold:

• S is holomorphically convex, i.e.,

$$\hat{K} := \left\{ z \in \mathbf{S} \mid |f(z)| \leq \sup_{K} |f| \; \forall f : \mathbf{S} \to \mathbb{C} \; \text{holomorphic}
ight\}$$

is compact for all compact $K \subset \mathbf{S}$. Equivalently, if $E \subset \mathbf{S}$ is unbounded then there exists $f : \mathbf{S} \to \mathbb{C}$ holomorphic such that $f|_E$ is unbounded.

- S is holomorphically separable, i.e., for any z, w ∈ S, z ≠ w, there exists f : S → C holomorphic with f(z) ≠ f(w).
- Roughly speaking, a Stein manifold **S** is a complex manifold that carries many holomorphic functions $\mathbf{S} \to \mathbb{C}$.

• \mathbb{C}^N is a Stein manifold $\forall N \in \mathbb{N}$.

- \mathbb{C}^N is a Stein manifold $\forall N \in \mathbb{N}$.
- Every closed embedded complex submanifold of \mathbb{C}^N is a Stein manifold.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

- \mathbb{C}^N is a Stein manifold $\forall N \in \mathbb{N}$.
- Every closed embedded complex submanifold of \mathbb{C}^N is a Stein manifold.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

• A one-dimensional Stein manifold is the same thing as an open Riemann surface.

- \mathbb{C}^N is a Stein manifold $\forall N \in \mathbb{N}$.
- Every closed embedded complex submanifold of \mathbb{C}^N is a Stein manifold.
- A one-dimensional Stein manifold is the same thing as an open Riemann surface.

Theorem (Runge)

Let \mathscr{R} be an open Riemann surface, let $K \subset \mathscr{R}$ be a compact set such that $\mathscr{R} - K$ has no bounded connected components (i.e., K is Runge), let $\varepsilon > 0$ and let $f : K \to \mathbb{C}$ holomorphic. Then there exists $g : \mathscr{R} \to \mathbb{C}$ holomorphic such that

 $|f(z)-g(z)|<\varepsilon \ \forall z\in K.$

• Roughly speaking, Stein manifolds are the complex manifolds whose function theory is similar to that of domains in C.

Theorem (Weierstrass Theorem)

On a discrete subset of a domain Ω in \mathbb{C} , one can prescribe the values of a holomorphic function on Ω .

Theorem (Cartan Extension Theorem)

If **T** is a closed complex submanifold of a Stein manifold **S**, then every holomorphic function on **T** extends to a holomorphic function on **S**.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• Roughly speaking, Stein manifolds are the complex manifolds whose function theory is similar to that of domains in C.

Theorem (Oka-Weil Approximation Theorem)

If a compact subset K of a Stein manifold **S** is holomorphically convex, i.e., $K = \hat{K}$, then every holomorphic function on K can be approximated uniformly on K by holomorphic functions on **S**.

 A compact subset K of an open Riemann surface is holomorphically convex if and only if it is Runge.
 In higher dimensions, holomorphic convexity is much more subtle; in particular, it is not a topological property.

• Remmert 1956 A connected complex manifold **S** is Stein iff **S** is biholomorphic to a closed complex embedded submanifold of \mathbb{C}^N for some $N \in \mathbb{N}$.

• Remmert 1956 A connected complex manifold **S** is Stein iff **S** is biholomorphic to a closed complex embedded submanifold of \mathbb{C}^N for some $N \in \mathbb{N}$. Equivalently, iff there exists a proper holomorphic embedding $\mathbf{X} : \mathbf{S} \to \mathbb{C}^N$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Remmert 1956 A connected complex manifold **S** is Stein iff **S** is biholomorphic to a closed complex embedded submanifold of \mathbb{C}^N for some $N \in \mathbb{N}$. Equivalently, iff there exists a proper holomorphic embedding $\mathbf{X} : \mathbf{S} \to \mathbb{C}^N$.

Conjecture (Forster 1967)

Any Stein manifold of complex dimension

admits a proper holomorphic embedding into \mathbb{C}^N (and a proper holomorphic immersion into \mathbb{C}^{N-1}) with

$$N = \left[\frac{n}{2}\right] + n + 1.$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• Remmert 1956 A connected complex manifold **S** is Stein iff **S** is biholomorphic to a closed complex embedded submanifold of \mathbb{C}^N for some $N \in \mathbb{N}$. Equivalently, iff there exists a proper holomorphic embedding $\mathbf{X} : \mathbf{S} \to \mathbb{C}^N$.

Conjecture (Forster 1967)

Any Stein manifold of complex dimension

admits a proper holomorphic embedding into \mathbb{C}^N (and a proper holomorphic immersion into \mathbb{C}^{N-1}) with

$$N = \left[\frac{n}{2}\right] + n + 1.$$

• Forster 1967 For each n > 1, no smaller value of N works.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• Remmert 1956 A connected complex manifold **S** is Stein iff **S** is biholomorphic to a closed complex embedded submanifold of \mathbb{C}^N for some $N \in \mathbb{N}$. Equivalently, iff there exists a proper holomorphic embedding $\mathbf{X} : \mathbf{S} \to \mathbb{C}^N$.

Conjecture (Forster 1967)

Any Stein manifold of complex dimension

n > 1

admits a proper holomorphic embedding into \mathbb{C}^N (and a proper holomorphic immersion into \mathbb{C}^{N-1}) with

$$N = \left[\frac{n}{2}\right] + n + 1.$$

- Forster 1967 For each n > 1, no smaller value of N works.
- Eliashberg-Gromov 1992, Schürmann 1997 The Forster conjecture holds.

- A one-dimensional Stein manifold is the same thing as an open Riemann surface.

- A one-dimensional Stein manifold is the same thing as an open Riemann surface.
- For n = 1 the Forster conjecture would predict that any open Riemann surface admits a proper holomorphic embedding into C², but the proof in the cited papers breaks down in this case.

• The main problem is that self-intersections of an immersed complex curve in \mathbb{C}^2 are stable under deformations.

Conjecture (Bell-Narasimhan 1990)

Any open Riemann surface admits a proper holomorphic embedding into \mathbb{C}^2 .

What is known

• Remmert 1956, Narasimhan 1960, Bishop 1961 Any open Riemann surface admits

- $\bullet\,$ a proper holomorphic embedding into $\mathbb{C}^3,$ and
- a proper holomorphic immersion into \mathbb{C}^2 .

What is known

- Remmert 1956, Narasimhan 1960, Bishop 1961 Any open Riemann surface admits
 - \bullet a proper holomorphic embedding into $\mathbb{C}^3,$ and
 - a proper holomorphic immersion into $\mathbb{C}^2.$
- Kasahara-Nishino 1970 The unit disc (properly holomorphically) embeds (in \mathbb{C}^2).
- Laufer 1973, Alexander 1977 Any annulus embeds.

—— Bell-Narasimhan's survey 1990 ——

What is known

- Remmert 1956, Narasimhan 1960, Bishop 1961 Any open Riemann surface admits
 - a proper holomorphic embedding into \mathbb{C}^3 , and
 - a proper holomorphic immersion into $\mathbb{C}^2.$
- Kasahara-Nishino 1970 The unit disc (properly holomorphically) embeds (in \mathbb{C}^2).
- Laufer 1973, Alexander 1977 Any annulus embeds.

—— Bell-Narasimhan's survey 1990 ——

- Globevnik-Stensønes 1995 Any finitely connected planar domain without isolated boundary points embeds.
- Černe-Forstnerič 2002 Any open orientable surface of **finite topology** admits a complex structure that embeds.

(Slow development.)

Prof. Franc Forstnerič

Forstnerič will visit Granada in late November'11

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の�?

Definition

A domain $\Omega \subsetneq \mathbb{C}^2$ is said to be a Fatou-Bieberbach domain if there exists a biholomorphism

$$\boldsymbol{\psi}: \Omega \to \mathbb{C}^2.$$

In this case, ψ is said to be a Fatou-Bieberbach map.

Definition

A domain $\Omega \subsetneq \mathbb{C}^2$ is said to be a Fatou-Bieberbach domain if there exists a biholomorphism

$$\boldsymbol{\psi}: \Omega \to \mathbb{C}^2.$$

In this case, ψ is said to be a Fatou-Bieberbach map.

Wold's idea 2006 Let $\overline{\mathscr{R}}$ be a compact Riemann surface with non-empty boundary and let $\psi: \Omega \to \mathbb{C}^2$ be a Fatou-Bieberbach map. If there exists a holomorphic embedding

$$\mathbf{X}:\overline{\mathscr{R}}\to\mathbb{C}^2$$

with

$$\mathbf{X}(\mathscr{R}) \subset \Omega$$
 and $\mathbf{X}(\partial \mathscr{R}) \subset \partial \Omega$,

San

then $\psi \circ \mathbf{X} : \mathscr{R} \to \mathbb{C}^2$ is a proper holomorphic embbeding.

Let *R* = D. Let Ω ⊂ C² be a Runge Fatou-Bieberbach domain. Let U be a connected component of Ω ∩ (C × {z₀}), U ≠ (C × {z₀}). Since Ω is Runge then U is simply connected. Let X : D → U be a biholomorphism and let ψ : Ω → C² be a Fatou-Bieberbach map.

Then $\psi \circ \mathbf{X} : \mathbb{D} \to \mathbb{C}^2$ is a proper holomorphic embedding.

Let *R* = D. Let Ω ⊂ C² be a Runge Fatou-Bieberbach domain. Let U be a connected component of Ω ∩ (C × {z₀}), U ≠ (C × {z₀}). Since Ω is Runge then U is simply connected. Let X : D → U be a biholomorphism and let ψ : Ω → C² be a Fatou-Bieberbach map. Then ψ ∘ X : D → C² is a proper holomorphic embedding.

• Wold 2006 Under some (very technical) conditions, there

exists a holomorphic embedding

$$\mathbf{X}:\overline{\mathscr{R}}
ightarrow\mathbb{C}^{2}$$

with

$$\mathbf{X}(\mathscr{R}) \subset \Omega$$
 and $\mathbf{X}(\partial \mathscr{R}) \subset \partial \Omega$,

where Ω is a Fatou-Bieberbach domain.

Let *R* = D. Let Ω ⊂ C² be a Runge Fatou-Bieberbach domain. Let *U* be a connected component of Ω ∩ (C × {z₀}), U ≠ (C × {z₀}). Since Ω is Runge then U is simply connected. Let X : D → U be a biholomorphism and let ψ : Ω → C² be a Fatou-Bieberbach map.

Then $\psi \circ \mathbf{X} : \mathbb{D} \to \mathbb{C}^2$ is a proper holomorphic embedding.

• Wold 2006 Under some (very technical) conditions, there exists a holomorphic embedding

$$\mathbf{X}:\overline{\mathscr{R}}\to\mathbb{C}^2$$

with

$$\mathbf{X}(\mathscr{R}) \subset \Omega$$
 and $\mathbf{X}(\partial \mathscr{R}) \subset \partial \Omega$,

where Ω is a Fatou-Bieberbach domain.

- Any finitely-connected planar domain embeds.

Theorem (Forstnerič-Wold 2009)

Let \mathscr{R} be a **bordered Riemann surface** (i.e., the interior of a compact Riemann surface with non-empty boundary consisting of a finite family of smooth Jordan curves) that admits a (non-necessarily proper) holomorphic embedding into \mathbb{C}^2 . Then \mathscr{R} embeds.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Theorem (Forstnerič-Wold 2009)

Let \mathscr{R} be a **bordered Riemann surface** (i.e., the interior of a compact Riemann surface with non-empty boundary consisting of a finite family of smooth Jordan curves) that admits a (non-necessarily proper) holomorphic embedding into \mathbb{C}^2 . Then \mathscr{R} embeds.

- **(** Consider a (non-proper) holomorphic embedding $X : \mathscr{R} \to \mathbb{C}^2$.
- Modify the embedding X so that X(*R*) satifies the Wold conditions. Then

$$\mathbf{X}(\mathscr{R}) \subset \Omega$$
 and $\mathbf{X}(\partial \mathscr{R}) \subset \partial \Omega$,

where $\Omega \subset \mathbb{C}^2$ is a Fatou-Bieberbach domain.

Some compose the modified **X** with a Fatou-Bieberbach map $\psi: \Omega \to \mathbb{C}^2$.

• The embedding problem naturally decouples in the following two problems:

Question

Does any open Riemann surface admit a (non-necessarily proper) holomorphic embedding into \mathbb{C}^2 ?

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• The embedding problem naturally decouples in the following two problems:

Question

Does any open Riemann surface admit a (non-necessarily proper) holomorphic embedding into \mathbb{C}^2 ?

Question

If an open Riemann surface admit a (non-necessarily proper) holomorphic embedding into \mathbb{C}^2 , does it embed?

Question

What about open Riemann surfaces with infinite topology?

Question

What about open Riemann surfaces with infinite topology?

• Idea: Modify the embedding ${\bf X}$ but also the Riemann surface ${\mathscr R}.$

Question

What about open Riemann surfaces with infinite topology?

• Idea: Modify the embedding **X** but also the Riemann surface \mathscr{R} .

Theorem (Alarcón-López 2011)

Let N be an open Riemann surface. Then there exists an open domain $M \subset N$ such that

- hom
- $M \cong N$, and
- M embeds.

In particular, any open orientable surface \mathscr{S} admits a complex structure \mathscr{C} such that the Riemann surface $\mathscr{R} := (\mathscr{S}, \mathscr{C})$ embeds.

Lemma

Lemma

Let N be an open Riemann surface, let $\mathscr{R} \subset N$ be a Runge compact region, let $X : \mathscr{R} \to \mathbb{C}^2$ be a holomorphic embedding and let r > 0 such that

$$\mathbf{X}(\partial \mathscr{R}) \subset \mathbb{C}^2 - \overline{\mathbb{B}}(r).$$

Then for any $\varepsilon > 0$ and any $\rho > r$ there exists a Runge compact region $\mathscr{S} \subset \mathbf{N}$ and a embedding $\mathbf{Y} : \mathscr{S} \to \mathbb{C}^2$ with

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

•
$$\mathscr{S} \stackrel{hom}{\cong} \mathscr{R}, \, \mathscr{R} \subset \mathscr{S}^{\circ},$$

- $\|\mathbf{Y}(z) \mathbf{X}(z)\| < \varepsilon \ \forall z \in \mathscr{R},$
- $\mathbf{Y}(\partial \mathscr{S}) \subset \mathbb{C}^2 \overline{\mathbb{B}}(\rho)$, and
- $\mathbf{Y}(\mathscr{I}-\mathscr{R})\subset\mathbb{C}^2-\overline{\mathbb{B}}(r).$

Lemma

Lemma

Let **N** be an open Riemann surface, let $\mathscr{R} \subset \mathbf{N}$ be a Runge compact region, let $\mathbf{X} : \mathscr{R} \to \mathbb{C}^2$ be a holomorphic embedding and let r > 0 such that

$$\mathbf{X}(\partial \mathscr{R}) \subset \mathbb{C}^2 - \overline{\mathbb{B}}(r).$$

Then for any $\varepsilon > 0$ and any $\rho > r$ there exists a Runge compact region $\mathscr{S} \subset \mathbf{N}$ and a embedding $\mathbf{Y} : \mathscr{S} \to \mathbb{C}^2$ with

•
$$\mathscr{S} \stackrel{hom}{\cong} \mathscr{R}, \, \mathscr{R} \subset \mathscr{S}^{\circ},$$

•
$$\|\mathbf{Y}(z) - \mathbf{X}(z)\| < \varepsilon \ \forall z \in \mathscr{R},$$

•
$$\mathbf{Y}(\partial \mathscr{S}) \subset \mathbb{C}^2 - \overline{\mathbb{B}}(\rho)$$
, and

•
$$\mathbf{Y}(\mathscr{S}-\mathscr{R}) \subset \mathbb{C}^2 - \overline{\mathbb{B}}(r).$$

Lemma

Lemma

Let **N** be an open Riemann surface, let $\mathscr{R} \subset \mathbf{N}$ be a Runge compact region, let $\mathbf{X} : \mathscr{R} \to \mathbb{C}^2$ be a holomorphic embedding and let r > 0 such that

$$\mathbf{X}(\partial \mathscr{R}) \subset \mathbb{C}^2 - \overline{\mathbb{B}}(r).$$

Then for any $\varepsilon > 0$ and any $\rho > r$ there exists a Runge compact region $\mathscr{S} \subset \mathbf{N}$ and a embedding $\mathbf{Y} : \mathscr{S} \to \mathbb{C}^2$ with

•
$$\mathscr{S} \stackrel{hom}{\cong} \mathscr{R}, \, \mathscr{R} \subset \mathscr{S}^{\circ},$$

•
$$\|\mathbf{Y}(z) - \mathbf{X}(z)\| < \varepsilon \ \forall z \in \mathscr{R},$$

•
$$\mathbf{Y}(\partial \mathscr{S}) \subset \mathbb{C}^2 - \overline{\mathbb{B}}(\rho)$$
, and

•
$$\mathbf{Y}(\mathscr{S}-\mathscr{R})\subset\mathbb{C}^2-\overline{\mathbb{B}}(r).$$

 Applying the lemma recursively one can find a Riemann surface 𝔐_∞ homeomorphic to 𝔐[◦] that embeds.

San

• How can one complicate the topology?

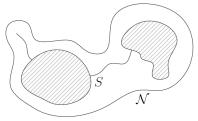
Theorem (Mergelyan-Bishop 1951-1958)

Let \mathscr{R} be an open Riemann surface, let $K \subset \mathscr{R}$ be a Runge compact set, let $\varepsilon > 0$ and let $f : K \to \mathbb{C}$ continuous with $f|_{K^{\circ}} : K^{\circ} \to \mathbb{C}$ holomorphic. Then there exists $g : \mathscr{R} \to \mathbb{C}$ holomorphic such that

$$|f(z)-g(z)| < \varepsilon \ \forall z \in K.$$

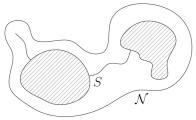
Tools

- Given an open Riemann surface *R*, a compact subset *S* ⊂ *R* is said to be admissible iff
 - S is Runge,
 - R_S := S^o consists of a finite collection of pairwise disjoint compact regions in *R*,
 - $C_S := \overline{S R_S}$ consists of a finite collection of pairwise disjoint Jordan arcs.



Tools

- Given an open Riemann surface \mathscr{R} , a compact subset $S \subset \mathscr{R}$ is said to be admissible iff
 - **S** is Runge,
 - *R_S* := *S*[◦] consists of a finite collection of pairwise disjoint compact regions in *ℛ*,
 - $C_S := \overline{S R_S}$ consists of a finite collection of pairwise disjoint Jordan arcs.



• Let $f: S \to \mathbb{C}$ be a continuous function such that $f|_{R_S}: R_S \to \mathbb{C}$ is holomorphic and let $\varepsilon > 0$, then there exists $g: S \to \mathbb{C}$ holomorphic with $|f(z) - g(z)| < \varepsilon \quad \forall z \in S$. • Mergelyan's Theorem \Rightarrow One can add handles/ends to a complex curve of $\mathbb{C}^2.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

- Mergelyan's Theorem \Rightarrow One can add handles/ends to a complex curve of $\mathbb{C}^2.$
- Ferrer-Martín-Meeks 2009 Every (open orientable) topological surface can be obtained in a recursive process by adding either a handle or an end in each step.

- Mergelyan's Theorem \Rightarrow One can add handles/ends to a complex curve of $\mathbb{C}^2.$
- Ferrer-Martín-Meeks 2009 Every (open orientable) topological surface can be obtained in a recursive process by adding either a handle or an end in each step.

• Lemma + Mergelyan + Ferrer-Martín-Meeks \Rightarrow Theorem

Lemma

Let N be an open Riemann surface, let $\mathscr{R} \subset N$ be a Runge compact region, let $X : \mathscr{R} \to \mathbb{C}^2$ be a holomorphic embedding and let r > 0 such that

$$\mathbf{X}(\partial \mathscr{R}) \subset \mathbb{C}^2 - \overline{\mathbb{B}}(r).$$

Then for any $\varepsilon > 0$ and any $\rho > r$ there exists a Runge compact region $\mathscr{S} \subset \mathbf{N}$ and a holomorphic embedding $\mathbf{Y} : \mathscr{S} \to \mathbb{C}^2$ with

- $\mathscr{S} \stackrel{hom}{\cong} \mathscr{R}, \, \mathscr{R} \subset \mathscr{S}^{\circ},$
- $\|\mathbf{Y}(z) \mathbf{X}(z)\| < \varepsilon \ \forall z \in \mathscr{R},$
- $\mathbf{Y}(\partial \mathscr{S}) \subset \mathbb{C}^2 \overline{\mathbb{B}}(\rho)$, and
- $\mathbf{Y}(\partial \mathscr{S} \partial \mathscr{R}) \subset \mathbb{C}^2 \overline{\mathbb{B}}(r).$

1. Expose boundary points $\{b_j\} \subset \partial \mathscr{R}$ with respect to $\pi_1 : \mathbb{C}^2 \to \mathbb{C}, \ \pi_1(z_1, z_2) = z_1$. Be careful with $\overline{\mathbb{B}(r)}$ and $\overline{\mathbb{B}(\rho)}$.

Definition

Let $\mathscr{R} \subset \mathbf{N}$ be a Riemann surface possibly with boundary, and let $X : \mathscr{R} \to \mathbb{C}^2$ be a proper holomorphic embedding. A point $p = (p_1, p_2)$ of the complex curve $\Sigma := X(\mathscr{R})$ is said to be *exposed* with respect to π_1 if the complex line

$$\Lambda_{p} = \pi_{1}^{-1}(\pi_{1}(p)) = \{(p_{1}, w) \mid w \in \mathbb{C}\}$$

intersects Σ only at p and this intersection is transverse, that is to say, $\Lambda_p \cap \Sigma = \{p\}$ and $T_p \Lambda_p \cap T_p \Sigma = \{0\}$.

1. Expose boundary points $\{b_j\} \subset \partial \mathscr{R}$ with respect to $\pi_1 : \mathbb{C}^2 \to \mathbb{C}, \ \pi_1(z_1, z_2) = z_1$. Be careful with $\overline{\mathbb{B}(r)}$ and $\overline{\mathbb{B}(\rho)}$.

1. Expose boundary points $\{b_j\} \subset \partial \mathscr{R}$ with respect to $\pi_1 : \mathbb{C}^2 \to \mathbb{C}, \ \pi_1(z_1, z_2) = z_1$. Be careful with $\overline{\mathbb{B}(r)}$ and $\overline{\mathbb{B}(\rho)}$. Approximate with Mergelyan's Theorem. (Relabel \mathscr{R} and \mathbf{X} .)

- **1.** Expose boundary points $\{b_j\} \subset \partial \mathscr{R}$ with respect to $\pi_1 : \mathbb{C}^2 \to \mathbb{C}, \ \pi_1(z_1, z_2) = z_1$. Be careful with $\overline{\mathbb{B}(r)}$ and $\overline{\mathbb{B}(\rho)}$. Approximate with Mergelyan's Theorem. (Relabel \mathscr{R} and \mathbf{X} .)
- **2.** Blow up the exposed points $\{b_j\}$ with respect to $\pi_2 : \mathbb{C}^2 \to \mathbb{C}$, $\pi_2(z_1, z_2) = z_2$. Compose **X** with the map

$$\mathbf{g}: \mathbb{C}^2 o \mathbb{C} imes \overline{\mathbb{C}}$$
 $\mathbf{g}(z, w) = \left(z, w + \sum rac{lpha_j}{z - \pi_1(\mathbf{X}(b_j))}
ight).$

- **3.** Wold's technique \Rightarrow
 - (a) $(\mathbf{g} \circ \mathbf{X})(\partial \mathscr{R})$ admits an exhaustion by compact regions $K_1 \subset K_2 \subset \ldots$ which are polynomially convex in \mathbb{C}^2 .

- **3.** Wold's technique \Rightarrow
 - (a) (g ∘ X)(∂𝔅) admits an exhaustion by compact regions K₁ ⊂ K₂ ⊂ ... which are polynomially convex in C².
 (b) For any compact polynomially convex set K ⊂ C² − ∂[(g ∘ X)(∂𝔅)], the compact set K ∪ K_j is also polynomially convex in C² for all large j ∈ N.

- **3.** Wold's technique \Rightarrow
 - (a) (g ∘ X)(∂𝔅) admits an exhaustion by compact regions K₁ ⊂ K₂ ⊂ ... which are polynomially convex in C².
 (b) For any compact polynomially convex set K ⊂ C² − ∂[(g ∘ X)(∂𝔅)], the compact set K ∪ K_j is also polynomially convex in C² for all large j ∈ N.
 (c) For every compact polynomially convex set K contained in C² − ∂[(g ∘ X)(∂𝔅)], and for every pair of numbers ξ > 0 and R > 0 there exists a holomorphic automorphism φ of C² such

that

 $\| \boldsymbol{\varphi} - \operatorname{Id} \| < \boldsymbol{\xi} \text{ on } \mathcal{K} \quad \text{and} \quad \boldsymbol{\varphi} \left(\partial \left[(\mathbf{g} \circ \mathbf{X}) (\partial \mathscr{R}) \right] \right) \subset \mathbb{C}^2 - \overline{\mathbb{B}(R)}.$

- **3.** Wold's technique \Rightarrow
 - (a) (g ∘ X)(∂𝔅) admits an exhaustion by compact regions K₁ ⊂ K₂ ⊂ ... which are polynomially convex in C².
 (b) For any compact polynomially convex set K ⊂ C² − ∂ [(g ∘ X)(∂𝔅)], the compact set K ∪ K_j is also polynomially convex in C² for all large j ∈ N.
 (c) For every compact polynomially convex set K contained in C² − ∂ [(g ∘ X)(∂𝔅)], and for every pair of numbers ξ > 0 and R > 0 there exists a holomorphic automorphism φ of C² such that

$$\| \boldsymbol{\varphi} - \mathrm{Id} \| < \xi \text{ on } \mathcal{K} \quad \text{and} \quad \boldsymbol{\varphi} \left(\partial \left[(\mathbf{g} \circ \mathbf{X}) (\partial \mathscr{R}) \right] \right) \subset \mathbb{C}^2 - \overline{\mathbb{B}(R)}.$$

4. Apply (c) to $K := \overline{\mathbb{B}(r)} \cup K_j$ for a large enough j and $R > \rho$, and compose $\mathbf{g} \circ \mathbf{X}$ with the resulting φ .

- **3.** Wold's technique \Rightarrow
 - (a) (g ∘ X)(∂𝔅) admits an exhaustion by compact regions K₁ ⊂ K₂ ⊂ ... which are polynomially convex in C².
 (b) For any compact polynomially convex set K ⊂ C² − ∂ [(g ∘ X)(∂𝔅)], the compact set K ∪ K_j is also polynomially convex in C² for all large j ∈ N.
 (c) For every compact polynomially convex set K contained in C² − ∂ [(g ∘ X)(∂𝔅)], and for every pair of numbers ξ > 0 and R > 0 there exists a holomorphic automorphism φ of C² such that

$$\| \boldsymbol{\varphi} - \mathrm{Id} \| < \xi \text{ on } K \quad \text{and} \quad \boldsymbol{\varphi} \left(\partial \left[(\mathbf{g} \circ \mathbf{X}) (\partial \mathscr{R}) \right] \right) \subset \mathbb{C}^2 - \overline{\mathbb{B}(R)}.$$

4. Apply (c) to $K := \mathbb{B}(r) \cup K_j$ for a large enough j and $R > \rho$, and compose $\mathbf{g} \circ \mathbf{X}$ with the resulting φ . Shrink \mathscr{R} suitably.

On holomorphic embeddings of Riemann surfaces into \mathbb{C}^2

The Bell-Narasimhan Conjecture

Antonio Alarcón

Dep. Geometría y Topología Universidad de Granada

Joint work with Francisco J. López Granada, October 2011