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Stein manifolds

Definition (Stein 1951)

A complex manifold S of complex dimension n is said to be a
Stein manifold iff the following two conditions hold:

S is holomorphically convex, i.e.,

K̂ :=

{
z ∈ S

∣∣∣∣ |f (z)| ≤ sup
K
|f | ∀f : S→ C holomorphic

}
is compact for all compact K ⊂ S. Equivalently, if E ⊂ S is
unbounded then there exists f : S→ C holomorphic such that
f |E is unbounded.

S is holomorphically separable, i.e., for any z ,w ∈ S, z 6= w ,
there exists f : S→ C holomorphic with f (z) 6= f (w).

Roughly speaking, a Stein manifold S is a complex manifold
that carries many holomorphic functions

S→ C.
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Stein manifolds

CN is a Stein manifold ∀N ∈ N.

Every closed embedded complex submanifold of CN is a Stein
manifold.

A one-dimensional Stein manifold is the same thing as an
open Riemann surface.

Theorem (Runge)

Let R be an open Riemann surface, let K ⊂R be a compact set
such that R−K has no bounded connected components (i.e., K is
Runge), let ε > 0 and let f : K → C holomorphic.
Then there exists g : R→ C holomorphic such that

|f (z)−g(z)|< ε ∀z ∈ K .
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Stein manifolds

Roughly speaking, Stein manifolds are the complex manifolds
whose function theory is similar to that of domains in C.

Theorem (Weierstrass Theorem)

On a discrete subset of a domain Ω in C, one can prescribe the
values of a holomorphic function on Ω.

Theorem (Cartan Extension Theorem)

If T is a closed complex submanifold of a Stein manifold S, then
every holomorphic function on T extends to a holomorphic
function on S.



Stein manifolds

Roughly speaking, Stein manifolds are the complex manifolds
whose function theory is similar to that of domains in C.

Theorem (Oka-Weil Approximation Theorem)

If a compact subset K of a Stein manifold S is holomorphically
convex, i.e., K = K̂ , then every holomorphic function on K can be
approximated uniformly on K by holomorphic functions on S.

A compact subset K of an open Riemann surface is
holomorphically convex if and only if it is Runge.
In higher dimensions, holomorphic convexity is much more
subtle; in particular, it is not a topological property.



Motivation

Remmert 1956 A connected complex manifold S is Stein iff S
is biholomorphic to a closed complex embedded submanifold
of CN for some N ∈ N.

Equivalently, iff there exists a proper
holomorphic embedding X : S→ CN .

Conjecture (Forster 1967)

Any Stein manifold of complex dimension

n > 1

admits a proper holomorphic embedding into CN (and a proper
holomorphic immersion into CN−1) with

N =
[n

2

]
+ n + 1.

Forster 1967 For each n > 1, no smaller value of N works.
Eliashberg-Gromov 1992, Schürmann 1997 The Forster
conjecture holds.
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conjecture holds.



Motivation

Remmert 1956 A connected complex manifold S is Stein iff S
is biholomorphic to a closed complex embedded submanifold
of CN for some N ∈ N. Equivalently, iff there exists a proper
holomorphic embedding X : S→ CN .

Conjecture (Forster 1967)

Any Stein manifold of complex dimension

n > 1

admits a proper holomorphic embedding into CN (and a proper
holomorphic immersion into CN−1) with

N =
[n

2

]
+ n + 1.

Forster 1967 For each n > 1, no smaller value of N works.
Eliashberg-Gromov 1992, Schürmann 1997 The Forster
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Case n = 1

A one-dimensional Stein manifold is the same thing as an
open Riemann surface.

For n = 1 the Forster conjecture would predict that any open
Riemann surface admits a proper holomorphic embedding into
C2, but the proof in the cited papers breaks down in this case.

The main problem is that self-intersections of an immersed
complex curve in C2 are stable under deformations.
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The Conjecture

Conjecture (Bell-Narasimhan 1990)

Any open Riemann surface admits a proper holomorphic
embedding into C2.



What is known

Remmert 1956, Narasimhan 1960, Bishop 1961 Any open
Riemann surface admits

a proper holomorphic embedding into C3, and
a proper holomorphic immersion into C2.

Kasahara-Nishino 1970 The unit disc (properly
holomorphically) embeds (in C2).

Laufer 1973, Alexander 1977 Any annulus embeds.

—— Bell-Narasimhan’s survey 1990 ——

Globevnik-Stensønes 1995 Any finitely connected planar
domain without isolated boundary points embeds.

C̆erne-Forstneric̆ 2002 Any open orientable surface of finite
topology admits a complex structure that embeds.

(Slow development.)
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Prof. Franc Forstneric̆

Forstneric̆ will visit Granada in late November’11



Wold’s idea: Fatou-Bieberbach domains

Definition

A domain Ω (C2 is said to be a Fatou-Bieberbach domain if there
exists a biholomorphism

ψ : Ω→ C2.

In this case, ψ is said to be a Fatou-Bieberbach map.

Wold’s idea 2006 Let R be a compact Riemann surface with
non-empty boundary and let ψ : Ω→ C2 be a Fatou-Bieberbach
map. If there exists a holomorphic embedding

X : R→ C2

with
X(R)⊂ Ω and X(∂R)⊂ ∂ Ω,

then ψ ◦X : R→ C2 is a proper holomorphic embbeding.
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Wold’s idea: Fatou-Bieberbach domains

Let R = D. Let Ω⊂ C2 be a Runge Fatou-Bieberbach
domain. Let U be a connected component of Ω∩ (C×{z0}),
U 6= (C×{z0}). Since Ω is Runge then U is simply connected.
Let X : D→ U be a biholomorphism and let ψ : Ω→ C2 be a
Fatou-Bieberbach map.
Then ψ ◦X : D→ C2 is a proper holomorphic embedding.

Wold 2006 Under some (very technical) conditions, there
exists a holomorphic embedding

X : R→ C2

with
X(R)⊂ Ω and X(∂R)⊂ ∂ Ω,

where Ω is a Fatou-Bieberbach domain.

Any finitely-connected planar domain embeds.
Any subset of a torus with two boundary components embeds.
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Forstneric̆-Wold technique

Theorem (Forstneric̆-Wold 2009)

Let R be a bordered Riemann surface (i.e., the interior of a
compact Riemann surface with non-empty boundary consisting of a
finite family of smooth Jordan curves) that admits a
(non-necessarily proper) holomorphic embedding into C2.
Then R embeds.

1 Consider a (non-proper) holomorphic embedding X : R→ C2.

2 Modify the embedding X so that X(R) satifies the Wold
conditions. Then

X(R)⊂ Ω and X(∂R)⊂ ∂ Ω,

where Ω⊂ C2 is a Fatou-Bieberbach domain.

3 Compose the modified X with a Fatou-Bieberbach map
ψ : Ω→ C2.
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Open Questions

The embedding problem naturally decouples in the following
two problems:

Question

Does any open Riemann surface admit a (non-necessarily proper)
holomorphic embedding into C2?

Question

If an open Riemann surface admit a (non-necessarily proper)
holomorphic embedding into C2, does it embed?
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Arbitrary topology

Question

What about open Riemann surfaces with infinite topology?

Idea: Modify the embedding X but also the Riemann surface
R.

Theorem (Alarcón-López 2011)

Let N be an open Riemann surface.
Then there exists an open domain M⊂N such that

M
hom∼= N, and

M embeds.

In particular, any open orientable surface S admits a complex
structure C such that the Riemann surface R := (S ,C ) embeds.
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Lemma

Lemma

Let N be an open Riemann surface, let R ⊂N be a Runge
compact region, let X : R→ C2 be a holomorphic embedding and
let r > 0 such that

X(∂R)⊂ C2−B(r).

Then for any ε > 0 and any ρ > r there exists a Runge compact
region S ⊂N and a embedding Y : S → C2 with

S
hom∼= R, R ⊂S ◦,

‖Y(z)−X(z)‖< ε ∀z ∈R,

Y(∂S )⊂ C2−B(ρ), and

Y(S −R)⊂ C2−B(r).

Applying the lemma recursively one can find a Riemann
surface R∞ homeomorphic to R◦ that embeds.



Lemma

Lemma

Let N be an open Riemann surface, let R ⊂N be a Runge
compact region, let X : R→ C2 be a holomorphic embedding and
let r > 0 such that

X(∂R)⊂ C2−B(r).

Then for any ε > 0 and any ρ > r there exists a Runge compact
region S ⊂N and a embedding Y : S → C2 with

S
hom∼= R, R ⊂S ◦,

‖Y(z)−X(z)‖< ε ∀z ∈R,

Y(∂S )⊂ C2−B(ρ), and

Y(S −R)⊂ C2−B(r).

Applying the lemma recursively one can find a Riemann
surface R∞ homeomorphic to R◦ that embeds.



Lemma

Lemma

Let N be an open Riemann surface, let R ⊂N be a Runge
compact region, let X : R→ C2 be a holomorphic embedding and
let r > 0 such that

X(∂R)⊂ C2−B(r).

Then for any ε > 0 and any ρ > r there exists a Runge compact
region S ⊂N and a embedding Y : S → C2 with

S
hom∼= R, R ⊂S ◦,

‖Y(z)−X(z)‖< ε ∀z ∈R,

Y(∂S )⊂ C2−B(ρ), and

Y(S −R)⊂ C2−B(r).

Applying the lemma recursively one can find a Riemann
surface R∞ homeomorphic to R◦ that embeds.



Tools

How can one complicate the topology?

Theorem (Mergelyan-Bishop 1951-1958)

Let R be an open Riemann surface, let K ⊂R be a Runge
compact set, let ε > 0 and let f : K → C continuous with
f |K ◦ : K ◦→ C holomorphic.
Then there exists g : R→ C holomorphic such that

|f (z)−g(z)|< ε ∀z ∈ K .



Tools

Given an open Riemann surface R, a compact subset S ⊂R
is said to be admissible iff

S is Runge,
RS := S◦ consists of a finite collection of pairwise disjoint
compact regions in R,
CS := S−RS consists of a finite collection of pairwise disjoint
Jordan arcs.

Let f : S → C be a continuous function such that
f |RS

: RS → C is holomorphic and let ε > 0, then there exists
g : S → C holomorphic with |f (z)−g(z)|< ε ∀z ∈ S .



Tools

Given an open Riemann surface R, a compact subset S ⊂R
is said to be admissible iff

S is Runge,
RS := S◦ consists of a finite collection of pairwise disjoint
compact regions in R,
CS := S−RS consists of a finite collection of pairwise disjoint
Jordan arcs.

Let f : S → C be a continuous function such that
f |RS

: RS → C is holomorphic and let ε > 0, then there exists
g : S → C holomorphic with |f (z)−g(z)|< ε ∀z ∈ S .



Tools

Mergelyan’s Theorem ⇒ One can add handles/ends to a
complex curve of C2.

Ferrer-Mart́ın-Meeks 2009 Every (open orientable) topological
surface can be obtained in a recursive process by adding either
a handle or an end in each step.

Lemma + Mergelyan + Ferrer-Mart́ın-Meeks ⇒ Theorem
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Let N be an open Riemann surface, let R ⊂N be a Runge
compact region, let X : R→ C2 be a holomorphic embedding and
let r > 0 such that
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Steps of the proof of the Lemma

1. Expose boundary points {bj} ⊂ ∂R with respect to

π1 : C2→ C, π1(z1,z2) = z1. Be careful with B(r) and B(ρ).

Approximate with Mergelyan’s Theorem. (Relabel R and X.)

2. Blow up the exposed points {bj} with respect to π2 : C2→ C,
π2(z1,z2) = z2. Compose X with the map

g : C2→ C×C

g(z ,w) =

(
z , w +∑

αj

z−π1(X(bj))

)
.
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Let R ⊂N be a Riemann surface possibly with boundary, and let
X : R→ C2 be a proper holomorphic embedding. A point
p = (p1,p2) of the complex curve Σ := X (R) is said to be exposed
with respect to π1 if the complex line

Λp = π
−1
1 (π1(p)) = {(p1,w) | w ∈ C}

intersects Σ only at p and this intersection is transverse, that is to
say, Λp ∩Σ = {p} and TpΛp ∩TpΣ = {0}.
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Steps of the proof of the Lemma

3. Wold’s technique ⇒
(a) (g ◦X)(∂R) admits an exhaustion by compact regions

K1 ⊂ K2 ⊂ . . . which are polynomially convex in C2.

(b) For any compact polynomially convex set
K ⊂ C2−∂

[
(g ◦X)(∂R)

]
, the compact set K ∪Kj is also

polynomially convex in C2 for all large j ∈ N.
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