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Stein manifolds

Definition (Stein 1951)

A complex manifold S of complex dimension n is said to be a
Stein manifold iff the following two conditions hold:

@ S is holomorphically convex, i.e.,
K= {z €S ‘ |f(z)| <sup|f| Vf:S—=C holomorphic}
K

is compact for all compact K C S. Equivalently, if ECS is
unbounded then there exists f : S — C holomorphic such that
f|g is unbounded.
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Stein manifolds

Definition (Stein 1951)

A complex manifold S of complex dimension n is said to be a
Stein manifold iff the following two conditions hold:

@ S is holomorphically convex, i.e.,
K= {z €S ‘ |f(z)| <sup|f| Vf:S—=C holomorphic}
K

is compact for all compact K C S. Equivalently, if ECS is
unbounded then there exists f : S — C holomorphic such that

f|g is unbounded.
@ S is holomorphically separable, i.e., for any z,w € S, z # w,
there exists f : S — C holomorphic with f(z) # f(w).

@ Roughly speaking, a Stein manifold S is a complex manifold

that carries many holomorphic functions
S—C.



@ CN is a Stein manifold YN € N.
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@ CN is a Stein manifold YN € N.

@ Every closed embedded complex submanifold of CV is a Stein
manifold.
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@ CN is a Stein manifold YN € N.
manifold.

@ Every closed embedded complex submanifold of CV is a Stein

@ A one-dimensional Stein manifold is the same thing as an
open Riemann surface.
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Stein manifolds

@ CN is a Stein manifold YN € N.

@ Every closed embedded complex submanifold of CV is a Stein
manifold.

@ A one-dimensional Stein manifold is the same thing as an
open Riemann surface.
Theorem (Runge)

Let # be an open Riemann surface, let K C % be a compact set
such that % — K has no bounded connected components (i.e., K is
Runge), let € > 0 and let f : K — C holomorphic.

Then there exists g : #Z — C holomorphic such that

If(z)—g(z)| <e Vze K.




Stein manifolds

@ Roughly speaking, Stein manifolds are the complex manifolds
whose function theory is similar to that of domains in C.

Theorem (Weierstrass Theorem)

On a discrete subset of a domain 2 in C, one can prescribe the
values of a holomorphic function on Q.

Theorem (Cartan Extension Theorem)

If T is a closed complex submanifold of a Stein manifold S, then
every holomorphic function on T extends to a holomorphic
function on S.




Stein manifolds

@ Roughly speaking, Stein manifolds are the complex manifolds
whose function theory is similar to that of domains in C.

Theorem (Oka-Weil Approximation Theorem)

If a compact subset K of a Stein manifold S is holomorphically
convex, i.e., K = K, then every holomorphic function on K can be
approximated uniformly on K by holomorphic functions on S.

@ A compact subset K of an open Riemann surface is
holomorphically convex if and only if it is Runge.
In higher dimensions, holomorphic convexity is much more
subtle; in particular, it is not a topological property.



@ Remmert 1956 A connected complex manifold S is Stein iff S
is biholomorphic to a closed complex embedded submanifold
of CN for some N € N.
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@ Remmert 1956 A connected complex manifold S is Stein iff S
is biholomorphic to a closed complex embedded submanifold
of CN for some N € N. Equivalently, iff there exists a proper
holomorphic embedding X : S — CN.
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Motivation

° A connected complex manifold S is Stein iff S
is biholomorphic to a closed complex embedded submanifold
of CN for some N € N. Equivalently, iff there exists a proper
holomorphic embedding X : S — CV.

Conjecture (Forster 1967)
Any Stein manifold of complex dimension

n>1

admits a proper holomorphic embedding into C" (and a proper
holomorphic immersion into CN=1) with

N

[g} +n+1.
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Motivation

° A connected complex manifold S is Stein iff S
is biholomorphic to a closed complex embedded submanifold
of CN for some N € N. Equivalently, iff there exists a proper
holomorphic embedding X : S — CV.

Conjecture (Forster 1967)
Any Stein manifold of complex dimension

n>1

admits a proper holomorphic embedding into C" (and a proper
holomorphic immersion into CN=1) with

N:[g}+n+1.

° For each n> 1, no smaller value of N works.
° The Forster
conjecture holds.



Case n=1

@ A one-dimensional Stein manifold is the same thing as an
open Riemann surface.

@ For n=1 the Forster conjecture would predict that any open
Riemann surface admits a proper holomorphic embedding into
C?2, but the proof in the cited papers breaks down in this case.



Case n=1

@ A one-dimensional Stein manifold is the same thing as an
open Riemann surface.

@ For n=1 the Forster conjecture would predict that any open
Riemann surface admits a proper holomorphic embedding into
C?2, but the proof in the cited papers breaks down in this case.

@ The main problem is that self-intersections of an immersed
complex curve in C? are stable under deformations.



Any open Riemann surface admits a proper holomorphic
embedding into C2.
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® Remmert 1956, Narasimhan 1960, Bishop 1961 Any open
Riemann surface admits

e a proper holomorphic embedding into C3, and
e a proper holomorphic immersion into C2.

«O» «Fr « =>»

« =

DA



® Remmert 1956, Narasimhan 1960, Bishop 1961 Any open
Riemann surface admits

e a proper holomorphic embedding into C3, and
e a proper holomorphic immersion into C2.

@ asahara-Nishino 1970 The unit disc (properly
holomorphically) embeds (in C?).

o Laufer 1973 Alexander 1977 Any annulus embeds

—— Bell-Narasimhan's survey 1990 ——
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What is known

° Any open
Riemann surface admits

e a proper holomorphic embedding into C3, and
e a proper holomorphic immersion into C2.

° The unit disc (properly
holomorphically) embeds (in C?).
° Any annulus embeds.
—_— 's survey —_—
° Any finitely connected planar

domain without isolated boundary points embeds.

° Any open orientable surface of finite
topology admits a complex structure that embeds.

(Slow development.)



Prof. Franc Forstnerié

Forstneri¢ will visit Granada in late November'11



A domain Q C C? is said to be a Fatou-Bieberbach domain if there
exists a biholomorphism

v:Q—C2

In this case, V¥ is said to be a Fatou-Bieberbach map
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Wold's idea: Fatou-Bieberbach domains

Definition
A domain Q C C? is said to be a Fatou-Bieberbach domain if there
exists a biholomorphism

v:Q—C2

In this case, V¥ is said to be a Fatou-Bieberbach map.

Let # be a compact Riemann surface with
non-empty boundary and let y: Q — C? be a Fatou-Bieberbach
map. If there exists a holomorphic embedding

X: % — C?

with
X(Z) C Q and X(0Z) C 99,

then woX : % — C? is a proper holomorphic embbeding.



Wold's idea: Fatou-Bieberbach domains

o Let Z=D. Let Q C C? be a Runge Fatou-Bieberbach
domain. Let U be a connected component of QN (C x {z}),
U# (Cx{z}). Since Q is Runge then U is simply connected.
Let X : D — U be a biholomorphism and let w: Q — C? be a
Fatou-Bieberbach map.

Then yoX : D — C? is a proper holomorphic embedding.
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Wold's idea: Fatou-Bieberbach domains

o Let Z=D. Let Q C C? be a Runge Fatou-Bieberbach
domain. Let U be a connected component of QN (C x {z}),
U# (Cx{z}). Since Q is Runge then U is simply connected.
Let X : D — U be a biholomorphism and let w: Q — C? be a
Fatou-Bieberbach map.

Then yoX : D — C? is a proper holomorphic embedding.

° Under some (very technical) conditions, there

exists a holomorphic embedding

X: % — C?
with
X(#) C Q and X(dZ#) C 99,

where 2 is a Fatou-Bieberbach domain.

e Any finitely-connected planar domain embeds.
e Any subset of a torus with two boundary components embeds.



Forstneri¢-Wold technique

Theorem (Forstneri¢-Wold 2009)

Let Z be a bordered Riemann surface (i.e., the interior of a
compact Riemann surface with non-empty boundary consisting of a
finite family of smooth Jordan curves) that admits a

(non-necessarily proper) holomorphic embedding into C2.
Then % embeds.




Forstneri¢-Wold technique

Theorem (Forstneri¢-Wold 2009)

Let Z be a bordered Riemann surface (i.e., the interior of a
compact Riemann surface with non-empty boundary consisting of a
finite family of smooth Jordan curves) that admits a

(non-necessarily proper) holomorphic embedding into C2.
Then % embeds.

@ Consider a (non-proper) holomorphic embedding X : Z — C2.

@ Modify the embedding X so that X(%) satifies the Wold
conditions. Then

X(#) C Q and X(dZ%) C 09,

where Q € C2 is a Fatou-Bieberbach domain.

© Compose the modified X with a Fatou-Bieberbach map
v Q—C2




@ The embedding problem naturally decouples in the following
two problems:

Does any open Riemann surface admit a (non-necessarily proper)
holomorphic embedding into C??

«O» «F»r « =>»

« =

DA



two problems:

@ The embedding problem naturally decouples in the following

Does any open Riemann surface admit a (non-necessarily proper)
holomorphic embedding into C2?

If an open Riemann surface admit a (non-necessarily proper)
holomorphic embedding into C?, does it embed?

DA



What about open Riemann surfaces with infinite topology? '
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o Idea: Modify the embedding X but also the Riemann surface
X .

What about open Riemann surfaces with infinite topology? I
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Arbitrary topology

Question
What about open Riemann surfaces with infinite topology?

@ Idea: Modify the embedding X but also the Riemann surface
X .

Theorem (Alarcén-Lépez 2011)

Let N be an open Riemann surface.
Then there exists an open domain M C N such that

hom

e M = N, and
@ M embeds.

In particular, any open orientable surface . admits a complex
structure ¢ such that the Riemann surface # = (., ¢") embeds.




Lemma

Lemma

Let N be an open Riemann surface, let # C N be a Runge
compact region, let X : % — C? be a holomorphic embedding and
let r > 0 such that

X(0%#) c C? —B(r).

Then for any € > 0 and any p > r there exists a Runge compact
region . C N and a embedding Y : .7 — C? with

o X #CI

o |Y(z)—X(2)|| <eVzeZ,
e Y(0.7)C C?-B(p), and
o Y(S—%)C C?—B(r).
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Lemma

Let N be an open Riemann surface, let # C N be a Runge
compact region, let X : % — C? be a holomorphic embedding and
let r > 0 such that

X(0%#) c C? —B(r).

Then for any € > 0 and any p > r there exists a Runge compact
region . C N and a embedding Y : ¥ — C? with

o X #CI
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Lemma

Lemma

Let N be an open Riemann surface, let # C N be a Runge
compact region, let X : % — C? be a holomorphic embedding and
let r > 0 such that

X(0%#) c C? —B(r).

Then for any € > 0 and any p > r there exists a Runge compact
region . C N and a embedding Y : ¥ — C? with

o X #CI

o |Y(z)—X(2)|| <eVzeZ,
e Y(0.7)C C?-B(p), and
o Y(S—%)C C?—B(r).

@ Applying the lemma recursively one can find a Riemann
surface Z.. homeomorphic to Z° that embeds.




Tools

@ How can one complicate the topology?

Theorem (Mergelyan-Bishop 1951-1958)

Let # be an open Riemann surface, let K C #Z be a Runge
compact set, let € >0 and let f : K — C continuous with
flko : K® — C holomorphic.

Then there exists g : # — C holomorphic such that

1f(z) —g(z)| <& Vze K.




@ Given an open Riemann surface %, a compact subset S C #
is said to be admissible iff

e Sis Rlﬂge,

e Rs:= 5° consists of a finite collection of pairwise disjoint
compact regions in %,

o Cs:=5— Rs consists of a finite collection of pairwise disjoint
Jordan arcs.
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Tools

@ Given an open Riemann surface %, a compact subset S C #Z
is said to be admissible iff
e S is Runge,
e Rs:=S5° consists of a finite collection of pairwise disjoint
compact regions in %,
e Cs:=5— Rs consists of a finite collection of pairwise disjoint
Jordan arcs.

N

@ Let f: S — C be a continuous function such that
flr; : Rs — C is holomorphic and let € > 0, then there exists
g : S — C holomorphic with |f(z) —g(z)| < e Vz € S.



@ Mergelyan's Theorem = One can add handles/ends to a
complex curve of C2.
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@ Mergelyan's Theorem = One can add handles/ends to a
complex curve of C2.

@ errer-Martin-Meeks 2009 Every (open orientable) topological

surface can be obtained in a recursive process by adding either
a handle or an end in each step.
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Tools

@ Mergelyan's Theorem = One can add handles/ends to a
complex curve of C?.

° Every (open orientable) topological
surface can be obtained in a recursive process by adding either
a handle or an end in each step.

@ Lemma + Mergelyan + Ferrer-Martin-Meeks = Theorem



Lemma

Lemma

Let N be an open Riemann surface, let Z C N be a Runge
compact region, let X : Z — C? be a holomorphic embedding and
let r > 0 such that

X(92) c C>—B(r).

Then for any € >0 and any p > r there exists a Runge compact
region . C N and a holomorphic embedding Y : . — C? with

o7 X2 RCF

o |Y(z2)—X(2)| < eVzeZ,
e Y(0.)CC?-B(p), and
o Y(0.7 —0%) C C?>—B(r).




1. Expose boundary points {b;} C d.% with respect to

7 : C? — C, my(z1,22) = z1. Be careful with B(r) and B(p).
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Steps of the proof of the Lemma

Definition

Let Z C N be a Riemann surface possibly with boundary, and let
X : % — C? be a proper holomorphic embedding. A point

p = (p1,p2) of the complex curve X := X(Z) is said to be exposed
with respect to m; if the complex line

Ao =m(m1(p)) = {(p1,w) | w € C}

intersects X only at p and this intersection is transverse, that is to
say, \pNX ={p} and ToA, N T,X = {0}.




1. Expose boundary points {b;} C d.% with respect to

7 : C? — C, my(z1,22) = z1. Be careful with B(r) and B(p).
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1. Expose boundary points {b;} C d.% with respect to

7 : C? — C, my(z1,22) = z1. Be careful with B(r) and B(p).
Approximate with Mergelyan's Theorem. (Relabel % and X.)
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Steps of the proof of the Lemma

1. Expose boundary points {b;} C d.% with respect to
my : C2 = C, my(z1,22) = z1. Be careful with B(r) and B(p).
Approximate with Mergelyan's Theorem. (Relabel % and X.)

2. Blow up the exposed points {b;} with respect to m, : C*> — C,
m(z1,22) = z2. Compose X with the map

g:C>-5CxC

g(z,w) = (z W+Zz—7r1 J))>.



3. Wold's technique =

(a) (goX)(dZ) admits an exhaustion by compact regions

K1 C Ky C ... which are polynomially convex in C?.
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Steps of the proof of the Lemma

3. Wold’s technique =

(a) (goX)(dZ) admits an exhaustion by compact regions
K1 C K» C ... which are polynomially convex in C2.

(b) For any compact polynomially convex set
KcC?-9 [(goX)(&%’)]z, the compact set KUK; is also
polynomially convex in C= for all large j € N.
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KcC?-9 [(goX)(&%’)]z, the compact set KUK; is also
polynomially convex in C= for all large j € N.

(c) For every compact polynomially convex set K contained in
C?—09[(goX)(9Z)], and for every pair of numbers & >0 and
R > 0 there exists a holomorphic automorphism ¢ of C? such
that

lp—1d| <Eon K and ¢ (2[(goX)(0%)]) c C2—B(R).
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3. Wold's technique =

(a) (goX)(dZ) admits an exhaustion by compact regions
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C?—09[(goX)(9Z)], and for every pair of numbers & >0 and
R > 0 there exists a holomorphic automorphism ¢ of C? such
that

lp—1d| <Eon K and ¢ (2[(goX)(0%)]) c C2—B(R).

4. Apply (c) to K:=B(r)UK;] for a large enough j and R > p,
and compose go X with the resulting ¢.



Steps of the proof of the Lemma

3. Wold's technique =

(a) (goX)(dZ) admits an exhaustion by compact regions
K1 C K» C ... which are polynomially convex in C2.

(b) For any compact polynomially convex set
KcC?-9 [(goX)(&%’)]z, the compact set KUK; is also
polynomially convex in C= for all large j € N.

(c) For every compact polynomially convex set K contained in
C?—09[(goX)(9Z)], and for every pair of numbers & >0 and
R > 0 there exists a holomorphic automorphism ¢ of C? such
that

lp—1d| <Eon K and ¢ (2[(goX)(0%)]) c C2—B(R).

4. Apply (c) to K:=B(r)UK;] for a large enough j and R > p,
and compose go X with the resulting ¢. Shrink Z suitably.
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