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Harmonic maps between Riemannian manifolds

Let M = (M,g) and N = (N,h) be smooth Riemannian
manifolds.

Given a smooth map f : M→N and a domain Ω⊂M with
piecewise smooth boundary,

EΩ(f) =
1

2

∫
Ω
|df|2dVg

is said to be the energy of f over Ω.

A smooth map f : M→N is said to be harmonic if it is a
critical point of the energy functional.



Well known facts

Harmonicity of a map from a Riemann surface is well defined.
If M = (M2,g) is a surface, then the energy integral of a
smooth map f : M→N is invariant under conformal changes
of the metric g , and thus so is the harmonicity of f.

Harmonicity of a map into a Riemannian surface N = (N2,h)
is highly sensible under conformal changes of the metric h.

An isometric immersion f : M→N is harmonic if and only if
f(M) is a minimal submanifold of N.
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Existence or not of harmonic diffeomorphisms

Liouville There is no non-constant harmonic map C→ D, with
the euclidean metric.

Heinz 1952 There is no harmonic diffeomorphism D→ C with
the euclidean metric.
Bernstein theorem: An entire minimal graph over the
euclidean plane is a plane.

Conjecture (Schoen-Yau 1985)

There is no proper harmonic map D→ C. In particular, no
hyperbolic minimal surface in R3 properly projects into a plane.

Theorem (A-López 2009)

Any open Riemann surface admits a conformal minimal immersion
in R3 properly projecting into a plane.
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Existence or not of harmonic diffeomorphisms

Question (Schoen-Yau 1985)

Are Riemannian surfaces which are related by a harmonic
diffeomorphism quasiconformally related?

No!

Theorem (Markovic 2002)

There is a pair of Riemannian surfaces of infinite topology which
are related by a harmonic diffeomorphism but not by a
quasiconformal diffeomorphism.

But...

Theorem (Markovic 2002)

The answer to the question by Schoen and Yau is positive in the
finite topology case, under some additional assumptions.
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Existence or not of harmonic diffeomorphisms

Conjecture (Schoen-Yau 1985)

There is no harmonic diffeomorphism from C onto the hyperbolic
plane H.

Collin-Rosenberg 2010 There exists an entire minimal graph Σ
over H in the Riemannian product H×R with the conformal
type of C.
In particular, the vertical projection Σ→H is a harmonic
diffeomorphism from C into H.



Existence or not of harmonic diffeomorphisms

A domain in the Riemann sphere C is said to be a circular
domain if every connected component of its boundary is a
circle.

Theorem (A-Souam 2011)

(i) For any m ∈ N, m≥ 2, and any subet {p1, . . . ,pm} ∈ S2 there
exist a circular domain U⊂C and a harmonic diffeomorphism
U→ S2−{p1, . . . ,pm}.

(ii) There exists no harmonic diffeomorphism D→ S2−{p},
p ∈ S2.

(iii) For any m ∈ N, any subset {z1, . . . ,zm} ⊂ C and any pairwise
disjoint closed discs D1, . . . ,Dm in S2, there exists no
harmonic diffeomorphism C−{z1, . . . ,zm}→ S2−∪mj=1Dj .



(i)
Existence of harmonic diffeomorphisms

U→ S2−{p1, . . . ,pm}.



Strategy

Similarly to Collin-Rosenberg,

our strategy to show the harmonic diffeomorphism of Item (i)
consists of constructing a maximal graph Σ over
S2−{p1, . . . ,pm} in the Lorentzian manifold S2×R1, with the
conformal structure of a circular domain. Then, the projection

Σ→ S2−{p1, . . . ,pm}

is a surjective harmonic diffeomorphism,

but...

our construction method is completely different and relies on
the theory of maximal hypersurfaces in Lorentzian manifolds.
More precisely, we proceed by solving Dirichlet problems.
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Maximal graphs. Notation

M = (M,〈·, ·〉M) ≡ compact n-dimensional Riemannian
manifold without boundary, n ∈ N, n≥ 2.

M×R1 ≡ the Lorentzian product space M×R endowed with
the Lorentzian metric

〈·, ·〉= π
∗
M(〈·, ·〉M)−π

∗
R(dt2) = 〈·, ·〉M−dt2.

Ω⊂M ≡ connected domain.

u : Ω→ R ≡ smooth function.

X u : Ω→M×R1, X u(p) = (p,u(p)).

〈·, ·〉u := (X u)∗(〈·, ·〉) = 〈·, ·〉M−du2 ≡ metric induced on Ω by
〈·, ·〉 via X u.

X u, u is spacelike (i.e., induces a Riemannian metric on Ω) if
and only if |∇u|< 1 on Ω.

X u, u is maximal if u is spacelike and H vanishes identically
on Ω.



Maximal graphs. Notation

M = (M,〈·, ·〉M) ≡ compact n-dimensional Riemannian
manifold without boundary, n ∈ N, n≥ 2.

M×R1 ≡ the Lorentzian product space M×R endowed with
the Lorentzian metric

〈·, ·〉= π
∗
M(〈·, ·〉M)−π

∗
R(dt2) = 〈·, ·〉M−dt2.

Ω⊂M ≡ connected domain.

u : Ω→ R ≡ smooth function.

X u : Ω→M×R1, X u(p) = (p,u(p)).

〈·, ·〉u := (X u)∗(〈·, ·〉) = 〈·, ·〉M−du2 ≡ metric induced on Ω by
〈·, ·〉 via X u.

X u, u is spacelike (i.e., induces a Riemannian metric on Ω) if
and only if |∇u|< 1 on Ω.

X u, u is maximal if u is spacelike and H vanishes identically
on Ω.



Maximal graphs. Notation

M = (M,〈·, ·〉M) ≡ compact n-dimensional Riemannian
manifold without boundary, n ∈ N, n≥ 2.

M×R1 ≡ the Lorentzian product space M×R endowed with
the Lorentzian metric

〈·, ·〉= π
∗
M(〈·, ·〉M)−π

∗
R(dt2) = 〈·, ·〉M−dt2.

Ω⊂M ≡ connected domain.

u : Ω→ R ≡ smooth function.

X u : Ω→M×R1, X u(p) = (p,u(p)).

〈·, ·〉u := (X u)∗(〈·, ·〉) = 〈·, ·〉M−du2 ≡ metric induced on Ω by
〈·, ·〉 via X u.

X u, u is spacelike (i.e., induces a Riemannian metric on Ω) if
and only if |∇u|< 1 on Ω.

X u, u is maximal if u is spacelike and H vanishes identically
on Ω.



Maximal graphs. Notation

M = (M,〈·, ·〉M) ≡ compact n-dimensional Riemannian
manifold without boundary, n ∈ N, n≥ 2.

M×R1 ≡ the Lorentzian product space M×R endowed with
the Lorentzian metric

〈·, ·〉= π
∗
M(〈·, ·〉M)−π

∗
R(dt2) = 〈·, ·〉M−dt2.

Ω⊂M ≡ connected domain.

u : Ω→ R ≡ smooth function.

X u : Ω→M×R1, X u(p) = (p,u(p)).

〈·, ·〉u := (X u)∗(〈·, ·〉) = 〈·, ·〉M−du2 ≡ metric induced on Ω by
〈·, ·〉 via X u.

X u, u is spacelike (i.e., induces a Riemannian metric on Ω) if
and only if |∇u|< 1 on Ω.

X u, u is maximal if u is spacelike and H vanishes identically
on Ω.



Maximal graphs. Notation

M = (M,〈·, ·〉M) ≡ compact n-dimensional Riemannian
manifold without boundary, n ∈ N, n≥ 2.

M×R1 ≡ the Lorentzian product space M×R endowed with
the Lorentzian metric

〈·, ·〉= π
∗
M(〈·, ·〉M)−π

∗
R(dt2) = 〈·, ·〉M−dt2.

Ω⊂M ≡ connected domain.

u : Ω→ R ≡ smooth function.

X u : Ω→M×R1, X u(p) = (p,u(p)).

〈·, ·〉u := (X u)∗(〈·, ·〉) = 〈·, ·〉M−du2 ≡ metric induced on Ω by
〈·, ·〉 via X u.

X u, u is spacelike (i.e., induces a Riemannian metric on Ω) if
and only if |∇u|< 1 on Ω.

X u, u is maximal if u is spacelike and H vanishes identically
on Ω.



Maximal graphs. Notation

M = (M,〈·, ·〉M) ≡ compact n-dimensional Riemannian
manifold without boundary, n ∈ N, n≥ 2.

M×R1 ≡ the Lorentzian product space M×R endowed with
the Lorentzian metric

〈·, ·〉= π
∗
M(〈·, ·〉M)−π

∗
R(dt2) = 〈·, ·〉M−dt2.

Ω⊂M ≡ connected domain.

u : Ω→ R ≡ smooth function.

X u : Ω→M×R1, X u(p) = (p,u(p)).

〈·, ·〉u := (X u)∗(〈·, ·〉) = 〈·, ·〉M−du2 ≡ metric induced on Ω by
〈·, ·〉 via X u.

X u, u is spacelike (i.e., induces a Riemannian metric on Ω) if
and only if |∇u|< 1 on Ω.

X u, u is maximal if u is spacelike and H vanishes identically
on Ω.



Maximal graphs. Notation

M = (M,〈·, ·〉M) ≡ compact n-dimensional Riemannian
manifold without boundary, n ∈ N, n≥ 2.

M×R1 ≡ the Lorentzian product space M×R endowed with
the Lorentzian metric

〈·, ·〉= π
∗
M(〈·, ·〉M)−π

∗
R(dt2) = 〈·, ·〉M−dt2.

Ω⊂M ≡ connected domain.

u : Ω→ R ≡ smooth function.

X u : Ω→M×R1, X u(p) = (p,u(p)).

〈·, ·〉u := (X u)∗(〈·, ·〉) = 〈·, ·〉M−du2 ≡ metric induced on Ω by
〈·, ·〉 via X u.

X u, u is spacelike (i.e., induces a Riemannian metric on Ω) if
and only if |∇u|< 1 on Ω.

X u, u is maximal if u is spacelike and H vanishes identically
on Ω.



Maximal graphs. Notation

M = (M,〈·, ·〉M) ≡ compact n-dimensional Riemannian
manifold without boundary, n ∈ N, n≥ 2.

M×R1 ≡ the Lorentzian product space M×R endowed with
the Lorentzian metric

〈·, ·〉= π
∗
M(〈·, ·〉M)−π

∗
R(dt2) = 〈·, ·〉M−dt2.

Ω⊂M ≡ connected domain.

u : Ω→ R ≡ smooth function.

X u : Ω→M×R1, X u(p) = (p,u(p)).

〈·, ·〉u := (X u)∗(〈·, ·〉) = 〈·, ·〉M−du2 ≡ metric induced on Ω by
〈·, ·〉 via X u.

X u, u is spacelike (i.e., induces a Riemannian metric on Ω) if
and only if |∇u|< 1 on Ω.

X u, u is maximal if u is spacelike and H vanishes identically
on Ω.



Maximal graphs and harmonic diffeomorphisms

If u : Ω→ R is maximal then

X u : (Ω,〈·, ·〉u)→ (M×R1,〈·, ·〉)

is a harmonic map.

In particular
Id : (Ω,〈·, ·〉u)→ (Ω,〈·, ·〉M)

is a harmonic diffeomorphism, and

u : (Ω,〈·, ·〉u)→ R

is a harmonic function.



Maximal graphs and harmonic diffeomorphisms

m ∈ N, m≥ 2.

{p1, . . . ,pm} ⊂M.

Ω = M−{p1, . . . ,pm}.

Is there a maximal graph over Ω in M×R1?

If M = S2, does such a graph have the conformal structure of
a circular domain?
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Maximal graphs over M−{p1, . . . ,pm} in M×R1

A = {(pi , ti )}mi=1 ⊂M×R such that

|ti − tj |< distM(pi ,pj) ∀i , j ∈ {1, . . . ,m}, i 6= j

(spacelike condition).

Bn
i , (i ,n) ∈ {1, . . . ,m}×N, open disc in M

∂ Bn
i smooth Jordan curve,

Bn
i ∩Bn

j = /0 if i 6= j ,

Bn+1
i ⊂ Bn

i ,
{pi}= ∩n∈NBn

i .

∆n = M−∪mi=1Bn
i , n ∈ N.

tni ∈ R, {tni }n∈N→ ti , i = 1, . . . ,m.
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Maximal graphs over M−{p1, . . . ,pm} in M×R1

ϕn : ∂ ∆n→ R

ϕn|∂Bn
i

= tni , i = 1, . . . ,m,

is εn-Lipschitz, εn ∈ (0,1).

Federer 1969 ϕn extends to ∆n as an εn-Lipschitz function

ϕ̃n : ∆n→ R.

Smoothing ϕ̃n, there exists a smooth spacelike function

ϕn : ∆n→ R

such that
ϕn|∂Bn

i
= tni , i = 1, . . . ,m.
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Maximal graphs over M−{p1, . . . ,pm} in M×R1

Gerhardt 1983 There exists a maximal function

un : ∆n→ R

such that un|∂Bn
i

= ϕn|∂Bn
i

= tni .

{un}n∈N uniformly bounded
|∇un|< 1 on ∆n

}
(Ascoli-Arzela)

=⇒

{un}n∈N uniformly converges on compact sets of
M−{pi}mi=1 = ∪n∈N∆n to a Lipschitz function

û : M−{pi}mi=1→ R

with |∇û| ≤ 1 a.e. in M−{pi}mi=1.

û extends to a Lipschitz function

u : M→ R

with |∇u| ≤ 1 a.e. in M−{pi}mi=1 and u(pi ) = ti
∀i = 1, . . . ,m.
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Maximal graphs over M−{p1, . . . ,pm} in M×R1

Bartnik 1988 û is smooth (hence, a maximal function) except
for a set of points

Λ⊂M−{pi}mi=1,

Λ :=
{

p ∈M−{pi}mi=1 | (p, û(p)) = γ(s0) for some 0 < s0 < 1,

where
γ : [0,1]→M×R1

is a null geodesic such that

γ((0,1))⊂ X û(M−{pi}mi=1)

and
πM({γ(0),γ(1)})⊂ {pi}mi=1

}
.

Since A satisfies the spacelike condition then Λ = /0 and

û : M−{p1, . . . ,pm}→ R

determines a maximal graph over M−{p1, . . . ,pm} in M×R1.
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Maximal graphs over M−{p1, . . . ,pm} in M×R1

Theorem

Let M be a compact Riemannian manifold, let m ∈ N, m≥ 2, and
let

A = {(pi , ti )}mi=1 ⊂M×R

satisfying the spacelike condition.
Then there exists exactly one entire graph Σ over M in M×R1

such that

A⊂ Σ and

Σ−A is a spacelike maximal graph over M−{pi}i=1,...,m.

Moreover the space Gm of entire maximal graphs over M in M×R1

with precisely m singularities, endowed with the topology of
uniform convergence, is non-empty, and there exists a m!-sheeted
covering, Gm→Gm, where Gm is an open subset of (M×R)m.
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Σ−A is a spacelike maximal graph over M−{pi}i=1,...,m.
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Maximal graphs over M−{p1, . . . ,pm} in M×R1

If M is a surface

X u : (M−{p1, . . . ,pm},〈·, ·〉u)→M×R1 conformal harmonic
map, with singularities precisely at the points {p1, . . . ,pm}.

A ≡ annular end of (M−{p1, . . . ,pm},〈·, ·〉u) corresponding to
pi .

A is conformally equivalent to an annulus
A(r ,1) := {z ∈ C | r < |z | ≤ 1} for some 0≤ r < 1. Identify
A≡ A(r ,1) and notice that u extends continuously to
S(r) = {z ∈ C | |z |= r} with u|S(r) = u(pi ).

Bartnik 1989 X u(A) is tangent to either the upper or the
lower light cone at X u(pi ) in M×R1. In particular pi is either
a strict local minimum or a strict local maximum of u.

Up to a shrinking of A, we can assume that u|S1 is constant.

u|A is harmonic, bounded and non-constant ⇒ r > 0 and A
has hyperbolic conformal type.
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Maximal graphs over M−{p1, . . . ,pm} in M×R1

If M is a surface

(M−{p1, . . . ,pm},〈·, ·〉u) is conformally an open Riemann surface
with the same genus as M and m hyperbolic ends.

Corollary

Let M be a compact Riemannian surface, let m≥ 2 and let
{p1, . . . ,pm} ⊂M. Then there exist an open Riemann surface R
and a harmonic diffeomorphism R→M−{p1, . . . ,pm} such that
every end of R is of hyperbolic type.

If M = S2, by Koebe’s uniformization theorem,

Corollary

Let m ∈ N, m≥ 2, and let {p1, . . . ,pm} ⊂ S2.
Then there exist a circular domain U in C and a harmonic
diffeomorphism U→ S2−{p1, . . . ,pm}.
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(ii)
Non-existence of harmonic diffeomorphisms

D→ S2−{p}.



Strategy

Why the above argument does not work for m = 1?

Our argument uses Constant Gauss Curvature Surface Theory.
It was suggested to us by José A. Gálvez, thank you very
much!
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Constant Gauss Curvature Surfaces

S smooth simply-connected surface.

X : S → R3 immersion with constant Gauss curvature K = 1.

IIX positive definite metric ⇒ IIX induces on S a conformal
structure, S .

z = u + ıv conformal parameter on S .

Gálvez-Mart́ınez 2000 The Gauss map N : S → S2 satisfies

Xu = N×Nv and Xv = N×Nu, (1)

hence it is a harmonic local diffeomorphism.
Conversely, let N : S → S2 be a harmonic local
diffeomorphism. Then the map X : S →R3 given by (1) is an
immersion with constant Gauss curvature K = 1.
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Constant Gauss Curvature Surfaces

Gálvez-Hauswirth-Mira 2010
IX = 〈dX ,dX 〉R3 = Qdz2 + 2µ|dz |2 + Qdz2

IIX = 〈dX ,dN〉R3 = 2ρ|dz |2
IIIX = 〈dN,dN〉R3 = −Qdz2 + 2µ|dz |2−Qdz2,

Klotz 1980 There exists an immersion Y : S → R3 of
constant Gauss curvature K = 1 such that IY = IIIX , IIY = IIX
and IIIY = IX .
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Non-existence of harmonic diffeomorphisms D→ S2−{p}.

S simply-connected Riemann surface, ϕ : S → S2−{p}
harmonic diffeomorphism. Is S conformally equivalent to C?

∃ X : S → R3 with Gauss map ϕ, constant curvature KX = 1
and such that the conformal structure of S is the one
induced by IIX .

∃ Y : S → R3 with constant curvature KY = 1, IY = IIIX ,
IIY = IIX and IIIY = IX , and the conformal structure of S is
the one induced by IIY = IIX .

ϕ : S → S2−{p} is a diffeomorphism and

IY = IIIX = 〈dϕ,dϕ〉R3 = ϕ
∗(〈·, ·〉S2),

hence ϕ−1 : S2−{p}→ (S , IY ) is an isometry.

Y : (S , IY )→ R3 isometric immersion.

Y ◦ϕ−1 : S2−{p}→ R3 isometric immersion.

Pogorelov 1973 S2−{p} is rigid in R3.

Y (S )⊂ R3 is a once punctured round sphere.

The conformal structure induced on S by IIY = IIX is C.
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(iii)
Non-existence of harmonic diffeomorphisms

C−{z1, . . . ,zm}→ S2−∪mj=1Dj



Strategy

Use the Bochner formula (Schoen-Yau 1997)

Proposition

Let R be a parabolic open Riemann surface, let N be an oriented
Riemannian surface and let φ : R→ N be a harmonic local
diffeomorphism. Suppose that N has Gaussian curvature KN > 0.
Then φ is either holomorphic or antiholomorphic.
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Non-existence, C−{z1, . . . ,zm}→ S2−∪mj=1Dj

Assume that φ preserves orientation. Is φ holomorphic?

Let z (resp. φ) be a local conformal parameter in R (resp. in
N). The metric on N writes ρ(φ)|dφ |2. A conformal metric
on R writes λ (z)|dz |2.
|∂φ |2 = ρ(φ(z))

λ(z) |
∂φ

∂z |
2 and |∂φ |2 = ρ(φ(z))

λ(z) |
∂φ

∂ z̄ |
2.

The Jacobian of φ , J(φ) = |∂φ |2−|∂φ |2 > 0.

By contradiction: If φ is not holomorphic, then the zeros of
|∂φ | are isolated.

R∗ = R−{|∂φ |= 0}.
log(|∂φ |/|∂φ |) < 0 on R∗.

Bochner formula: ∆R log(|∂φ |/|∂φ |) = 2KNJ(φ).

Since KN > 0, then log(|∂φ |/|∂φ |) is a non-constant negative
subharmonic function on the parabolic surface R∗, a
contradiction.

In the case when φ reverses orientation then a parallel
argument gives that φ is antiholomorphic.
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