Harmonic diffeomorphisms between domains in \mathbb{S}^2

Antonio Alarcón

Universidad de Granada

Joint work with R. Souam

Granada, January 2012

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Harmonic maps between Riemannian manifolds

- Let $\mathbf{M} = (M,g)$ and $\mathbf{N} = (N,h)$ be smooth Riemannian manifolds.
- Given a smooth map $f:M\to N$ and a domain $\Omega\subset M$ with piecewise smooth boundary,

$$E_{\Omega}(\mathbf{f}) = \frac{1}{2} \int_{\Omega} |d\mathbf{f}|^2 dV_g$$

- ロ ト - 4 回 ト - 4 □

is said to be the energy of \mathbf{f} over Ω .

• A smooth map $\mathbf{f}: \mathbf{M} \to \mathbf{N}$ is said to be harmonic if it is a critical point of the energy functional.

 Harmonicity of a map from a Riemann surface is well defined. If M = (M²,g) is a surface, then the energy integral of a smooth map f : M → N is invariant under conformal changes of the metric g, and thus so is the harmonicity of f.

- Harmonicity of a map from a Riemann surface is well defined. If $\mathbf{M} = (M^2, g)$ is a surface, then the energy integral of a smooth map $\mathbf{f} : \mathbf{M} \to \mathbf{N}$ is invariant under conformal changes of the metric g, and thus so is the harmonicity of \mathbf{f} .
- Harmonicity of a map into a Riemannian surface $\mathbf{N} = (N^2, h)$ is highly sensible under conformal changes of the metric h.

- Harmonicity of a map from a Riemann surface is well defined. If $\mathbf{M} = (M^2, g)$ is a surface, then the energy integral of a smooth map $\mathbf{f} : \mathbf{M} \to \mathbf{N}$ is invariant under conformal changes of the metric g, and thus so is the harmonicity of \mathbf{f} .
- Harmonicity of a map into a Riemannian surface $\mathbf{N} = (N^2, h)$ is highly sensible under conformal changes of the metric h.
- An isometric immersion $f: M \to N$ is harmonic if and only if f(M) is a minimal submanifold of N.

- Liouville There is no non-constant harmonic map $\mathbb{C}\to\mathbb{D},$ with the euclidean metric.
- Heinz 1952 There is no harmonic diffeomorphism D→ C with the euclidean metric.
 Bernstein theorem: An entire minimal graph over the euclidean plane is a plane.

- Liouville There is no non-constant harmonic map $\mathbb{C} \to \mathbb{D}$, with the euclidean metric.
- Heinz 1952 There is no harmonic diffeomorphism D→ C with the euclidean metric.
 Bernstein theorem: An entire minimal graph over the euclidean plane is a plane.

Conjecture (Schoen-Yau 1985)

There is no proper harmonic map $\mathbb{D} \to \mathbb{C}$. In particular, no hyperbolic minimal surface in \mathbb{R}^3 properly projects into a plane.

Theorem (A-López 2009)

Any open Riemann surface admits a conformal minimal immersion in \mathbb{R}^3 properly projecting into a plane.

Question (Schoen-Yau 1985)

Are Riemannian surfaces which are related by a harmonic diffeomorphism quasiconformally related?

Question (Schoen-Yau 1985)

Are Riemannian surfaces which are related by a harmonic diffeomorphism quasiconformally related?

No!

Theorem (Markovic 2002)

There is a pair of Riemannian surfaces of infinite topology which are related by a harmonic diffeomorphism but not by a quasiconformal diffeomorphism.

But...

Theorem (Markovic 2002)

The answer to the question by Schoen and Yau is positive in the finite topology case, under some additional assumptions.

Conjecture (Schoen-Yau 1985)

There is no harmonic diffeomorphism from \mathbb{C} onto the hyperbolic plane \mathbb{H} .

• Collin-Rosenberg 2010 There exists an entire minimal graph Σ over \mathbb{H} in the Riemannian product $\mathbb{H} \times \mathbb{R}$ with the conformal type of \mathbb{C} . In particular, the vertical projection $\Sigma \to \mathbb{H}$ is a harmonic diffeomorphism from \mathbb{C} into \mathbb{H} .

A domain in the Riemann sphere C
 is said to be a circular domain if every connected component of its boundary is a circle.

Theorem (A-Souam 2011)

- (i) For any m ∈ N, m ≥ 2, and any subet {p₁,..., p_m} ∈ S² there exist a circular domain U ⊂ C and a harmonic diffeomorphism U → S² {p₁,..., p_m}.
- (ii) There exists no harmonic diffeomorphism $\mathbb{D} \to \mathbb{S}^2 \{p\}, p \in \mathbb{S}^2$.
- (iii) For any m ∈ N, any subset {z₁,..., z_m} ⊂ C and any pairwise disjoint closed discs D₁,..., D_m in S², there exists no harmonic diffeomorphism C {z₁,..., z_m} → S² ∪^m_{j=1}D_j.

(i) Existence of harmonic diffeomorphisms

$$\mathbf{U} \rightarrow \mathbb{S}^2 - \{p_1, \dots, p_m\}.$$

Similarly to Collin-Rosenberg,

our strategy to show the harmonic diffeomorphism of Item (i) consists of constructing a maximal graph Σ over
 S² - {p₁,..., p_m} in the Lorentzian manifold S² × ℝ₁, with the conformal structure of a circular domain. Then, the projection

$$\Sigma \to \mathbb{S}^2 - \{p_1, \ldots, p_m\}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is a surjective harmonic diffeomorphism,

Similarly to Collin-Rosenberg,

our strategy to show the harmonic diffeomorphism of Item (i) consists of constructing a maximal graph Σ over
 S² - {p₁,..., p_m} in the Lorentzian manifold S² × ℝ₁, with the conformal structure of a circular domain. Then, the projection

$$\Sigma \to \mathbb{S}^2 - \{p_1, \dots, p_m\}$$

is a surjective harmonic diffeomorphism,

but...

 our construction method is completely different and relies on the theory of maximal hypersurfaces in Lorentzian manifolds. More precisely, we proceed by solving Dirichlet problems.

• $\mathbb{M} = (\mathbb{M}, \langle \cdot, \cdot \rangle_{\mathbb{M}}) \equiv \text{compact } \mathfrak{n}\text{-dimensional Riemannian}$ manifold without boundary, $\mathfrak{n} \in \mathbb{N}$, $\mathfrak{n} \geq 2$.

- $\mathbb{M} = (\mathbb{M}, \langle \cdot, \cdot \rangle_{\mathbb{M}}) \equiv \text{compact } \mathfrak{n}\text{-dimensional Riemannian}$ manifold without boundary, $\mathfrak{n} \in \mathbb{N}$, $\mathfrak{n} \geq 2$.
- $\mathbb{M}\times\mathbb{R}_1\equiv$ the Lorentzian product space $\mathbb{M}\times\mathbb{R}$ endowed with the Lorentzian metric

$$\langle \cdot, \cdot
angle = \pi^*_{\mathbb{M}}(\langle \cdot, \cdot
angle_{\mathbb{M}}) - \pi^*_{\mathbb{R}}(dt^2) = \langle \cdot, \cdot
angle_{\mathbb{M}} - dt^2.$$

・ロト・日本・モート モー うへぐ

- $\mathbb{M} = (\mathbb{M}, \langle \cdot, \cdot \rangle_{\mathbb{M}}) \equiv \text{compact } \mathfrak{n}\text{-dimensional Riemannian}$ manifold without boundary, $\mathfrak{n} \in \mathbb{N}$, $\mathfrak{n} \geq 2$.
- $\mathbb{M}\times\mathbb{R}_1\equiv$ the Lorentzian product space $\mathbb{M}\times\mathbb{R}$ endowed with the Lorentzian metric

$$\langle \cdot, \cdot
angle = \pi^*_{\mathbb{M}}(\langle \cdot, \cdot
angle_{\mathbb{M}}) - \pi^*_{\mathbb{R}}(dt^2) = \langle \cdot, \cdot
angle_{\mathbb{M}} - dt^2.$$

・ロト・日本・モート モー うへぐ

•
$$\Omega \subset \mathbb{M} \equiv \text{connected domain.}$$

- $\mathbb{M} = (\mathbb{M}, \langle \cdot, \cdot \rangle_{\mathbb{M}}) \equiv \text{compact } \mathfrak{n}\text{-dimensional Riemannian}$ manifold without boundary, $\mathfrak{n} \in \mathbb{N}$, $\mathfrak{n} \geq 2$.
- $\mathbb{M}\times\mathbb{R}_1\equiv$ the Lorentzian product space $\mathbb{M}\times\mathbb{R}$ endowed with the Lorentzian metric

$$\langle \cdot, \cdot
angle = \pi^*_{\mathbb{M}}(\langle \cdot, \cdot
angle_{\mathbb{M}}) - \pi^*_{\mathbb{R}}(dt^2) = \langle \cdot, \cdot
angle_{\mathbb{M}} - dt^2.$$

- $\Omega \subset \mathbb{M} \equiv$ connected domain.
- $u: \Omega \to \mathbb{R} \equiv$ smooth function.

- M = (M, ⟨·, ·⟩_M) ≡ compact n-dimensional Riemannian manifold without boundary, n ∈ N, n ≥ 2.
- $\mathbb{M}\times\mathbb{R}_1\equiv$ the Lorentzian product space $\mathbb{M}\times\mathbb{R}$ endowed with the Lorentzian metric

$$\langle \cdot, \cdot
angle = \pi^*_{\mathbb{M}}(\langle \cdot, \cdot
angle_{\mathbb{M}}) - \pi^*_{\mathbb{R}}(dt^2) = \langle \cdot, \cdot
angle_{\mathbb{M}} - dt^2.$$

- $\Omega \subset \mathbb{M} \equiv$ connected domain.
- $u: \Omega \to \mathbb{R} \equiv$ smooth function.
- $X^u: \Omega \to \mathbb{M} \times \mathbb{R}_1, X^u(p) = (p, u(p)).$

- $\mathbb{M} = (\mathbb{M}, \langle \cdot, \cdot \rangle_{\mathbb{M}}) \equiv \text{compact } \mathfrak{n}\text{-dimensional Riemannian}$ manifold without boundary, $\mathfrak{n} \in \mathbb{N}$, $\mathfrak{n} \geq 2$.
- $\mathbb{M}\times\mathbb{R}_1\equiv$ the Lorentzian product space $\mathbb{M}\times\mathbb{R}$ endowed with the Lorentzian metric

$$\langle \cdot, \cdot
angle = \pi^*_{\mathbb{M}}(\langle \cdot, \cdot
angle_{\mathbb{M}}) - \pi^*_{\mathbb{R}}(dt^2) = \langle \cdot, \cdot
angle_{\mathbb{M}} - dt^2$$

- $\Omega \subset \mathbb{M} \equiv$ connected domain.
- $u: \Omega \to \mathbb{R} \equiv$ smooth function.
- $X^u: \Omega \to \mathbb{M} \times \mathbb{R}_1, X^u(p) = (p, u(p)).$
- $\langle \cdot, \cdot \rangle_u := (X^u)^* (\langle \cdot, \cdot \rangle) = \langle \cdot, \cdot \rangle_{\mathbb{M}} du^2 \equiv \text{metric induced on } \Omega$ by $\langle \cdot, \cdot \rangle$ via X^u .

- $\mathbb{M} = (\mathbb{M}, \langle \cdot, \cdot \rangle_{\mathbb{M}}) \equiv \text{compact } \mathfrak{n}\text{-dimensional Riemannian}$ manifold without boundary, $\mathfrak{n} \in \mathbb{N}$, $\mathfrak{n} \geq 2$.
- $\mathbb{M}\times\mathbb{R}_1\equiv$ the Lorentzian product space $\mathbb{M}\times\mathbb{R}$ endowed with the Lorentzian metric

$$\langle \cdot, \cdot
angle = \pi^*_{\mathbb{M}}(\langle \cdot, \cdot
angle_{\mathbb{M}}) - \pi^*_{\mathbb{R}}(dt^2) = \langle \cdot, \cdot
angle_{\mathbb{M}} - dt^2$$

- $\Omega \subset \mathbb{M} \equiv$ connected domain.
- $u: \Omega \to \mathbb{R} \equiv$ smooth function.
- $X^u: \Omega \to \mathbb{M} \times \mathbb{R}_1, X^u(p) = (p, u(p)).$
- $\langle \cdot, \cdot \rangle_u := (X^u)^* (\langle \cdot, \cdot \rangle) = \langle \cdot, \cdot \rangle_{\mathbb{M}} du^2 \equiv \text{metric induced on } \Omega$ by $\langle \cdot, \cdot \rangle$ via X^u .
- X^u, u is spacelike (i.e., induces a Riemannian metric on Ω) if and only if |∇u| < 1 on Ω.

- $\mathbb{M} = (\mathbb{M}, \langle \cdot, \cdot \rangle_{\mathbb{M}}) \equiv \text{compact } \mathfrak{n}\text{-dimensional Riemannian}$ manifold without boundary, $\mathfrak{n} \in \mathbb{N}$, $\mathfrak{n} \geq 2$.
- $\mathbb{M}\times\mathbb{R}_1\equiv$ the Lorentzian product space $\mathbb{M}\times\mathbb{R}$ endowed with the Lorentzian metric

$$\langle \cdot, \cdot
angle = \pi^*_{\mathbb{M}}(\langle \cdot, \cdot
angle_{\mathbb{M}}) - \pi^*_{\mathbb{R}}(dt^2) = \langle \cdot, \cdot
angle_{\mathbb{M}} - dt^2$$

- $\Omega \subset \mathbb{M} \equiv$ connected domain.
- $u: \Omega \to \mathbb{R} \equiv$ smooth function.
- $X^u: \Omega \to \mathbb{M} \times \mathbb{R}_1, X^u(p) = (p, u(p)).$
- $\langle \cdot, \cdot \rangle_u := (X^u)^* (\langle \cdot, \cdot \rangle) = \langle \cdot, \cdot \rangle_{\mathbb{M}} du^2 \equiv \text{metric induced on } \Omega$ by $\langle \cdot, \cdot \rangle$ via X^u .
- X^u, u is spacelike (i.e., induces a Riemannian metric on Ω) if and only if |∇u| < 1 on Ω.
- X^u, u is maximal if u is spacelike and H vanishes identically on Ω.

• If $u: \Omega \to \mathbb{R}$ is maximal then

$$X^{u}: (\Omega, \langle \cdot, \cdot \rangle_{u}) \to (\mathbb{M} \times \mathbb{R}_{1}, \langle \cdot, \cdot \rangle)$$

is a harmonic map.

In particular

$$\mathrm{Id}:(\Omega,\langle\cdot,\cdot\rangle_u)\to(\Omega,\langle\cdot,\cdot\rangle_{\mathbb{M}})$$

is a harmonic diffeomorphism, and

 $u: (\Omega, \langle \cdot, \cdot \rangle_u) \to \mathbb{R}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

is a harmonic function.

- $\mathfrak{m} \in \mathbb{N}, \ \mathfrak{m} \geq 2.$
- $\{p_1,\ldots,p_m\} \subset \mathbb{M}.$
- $\Omega = \mathbb{M} \{p_1, \ldots, p_m\}.$

- $\mathfrak{m} \in \mathbb{N}, \ \mathfrak{m} \geq 2.$
- $\{p_1,\ldots,p_m\} \subset \mathbb{M}.$
- $\Omega = \mathbb{M} \{p_1, \ldots, p_m\}.$
- Is there a maximal graph over Ω in $\mathbb{M} \times \mathbb{R}_1$?

- $\mathfrak{m} \in \mathbb{N}, \ \mathfrak{m} \geq 2.$
- $\{p_1,\ldots,p_m\} \subset \mathbb{M}.$
- $\Omega = \mathbb{M} \{p_1, \ldots, p_m\}.$
- Is there a maximal graph over Ω in $\mathbb{M} \times \mathbb{R}_1$?
- If $\mathbb{M} = \mathbb{S}^2$, does such a graph have the conformal structure of a circular domain?

- ロ ト - 4 回 ト - 4 □

•
$$\mathfrak{A} = \{(p_i, t_i)\}_{i=1}^{\mathfrak{m}} \subset \mathbb{M} \times \mathbb{R}$$
 such that

$$|t_i-t_j| < \operatorname{dist}_{\mathbb{M}}(p_i,p_j) \quad \forall i,j \in \{1,\ldots,\mathfrak{m}\}, \ i \neq j$$

(spacelike condition).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

•
$$\mathfrak{A} = \{(p_i, t_i)\}_{i=1}^{\mathfrak{m}} \subset \mathbb{M} \times \mathbb{R}$$
 such that

$$|t_i-t_j| < \operatorname{dist}_{\mathbb{M}}(p_i,p_j) \quad \forall i,j \in \{1,\ldots,\mathfrak{m}\}, \ i \neq j$$

(spacelike condition).

・ロト・日本・モート モー うへぐ

•
$$B_i^n$$
, $(i, n) \in \{1, \dots, \mathfrak{m}\} \times \mathbb{N}$, open disc in \mathbb{M}

• ∂B_i^n smooth Jordan curve,

•
$$\overline{B_i^n} \cap \overline{B_j^n} = \emptyset$$
 if $i \neq j$,

•
$$B_i^{n+1} \subset B_i^n$$
,

•
$$\{p_i\} = \cap_{n \in \mathbb{N}} B_i^n$$
.

•
$$\mathfrak{A} = \{(p_i, t_i)\}_{i=1}^{\mathfrak{m}} \subset \mathbb{M} \times \mathbb{R}$$
 such that

$$|t_i-t_j| < \operatorname{dist}_{\mathbb{M}}(p_i,p_j) \quad \forall i,j \in \{1,\ldots,\mathfrak{m}\}, \ i \neq j$$

(spacelike condition).

・ロト・日本・モート モー うへぐ

•
$$B_i^n$$
, $(i, n) \in \{1, \dots, \mathfrak{m}\} \times \mathbb{N}$, open disc in \mathbb{M}

• ∂B_i^n smooth Jordan curve,

•
$$\overline{B_i^n} \cap \overline{B_j^n} = \emptyset$$
 if $i \neq j$,

•
$$B_i^{n+1} \subset B_i^n$$
,

•
$$\{p_i\} = \cap_{n \in \mathbb{N}} B_i^n$$
.

•
$$\Delta_n = \mathbb{M} - \bigcup_{i=1}^{\mathfrak{m}} B_i^n, n \in \mathbb{N}.$$

•
$$\mathfrak{A} = \{(p_i, t_i)\}_{i=1}^{\mathfrak{m}} \subset \mathbb{M} \times \mathbb{R}$$
 such that

$$|t_i-t_j| < \operatorname{dist}_{\mathbb{M}}(p_i,p_j) \quad \forall i,j \in \{1,\ldots,\mathfrak{m}\}, \ i \neq j$$

(spacelike condition).

•
$$B_i^n$$
, $(i, n) \in \{1, \dots, \mathfrak{m}\} \times \mathbb{N}$, open disc in \mathbb{M}

• ∂B_i^n smooth Jordan curve,

•
$$\overline{B_i^n} \cap \overline{B_j^n} = \emptyset$$
 if $i \neq j$,

•
$$B_i^{n+1} \subset B_i^n$$
,

•
$$\{p_i\} = \cap_{n \in \mathbb{N}} B_i^n$$
.

•
$$\Delta_n = \mathbb{M} - \bigcup_{i=1}^{\mathfrak{m}} B_i^n, n \in \mathbb{N}.$$

• $t_i^n \in \mathbb{R}, \{t_i^n\}_{n \in \mathbb{N}} \to t_i, i = 1, \dots, \mathfrak{m}.$

•
$$\varphi_n: \partial \Delta_n \to \mathbb{R}$$

$$\varphi_n|_{\partial B_i^n} = t_i^n, \quad i=1,\ldots,\mathfrak{m},$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

is ε_n -Lipschitz, $\varepsilon_n \in (0,1)$.

•
$$\varphi_n: \partial \Delta_n \to \mathbb{R}$$

$$\varphi_n|_{\partial B_i^n}=t_i^n, \quad i=1,\ldots,\mathfrak{m},$$

is ε_n -Lipschitz, $\varepsilon_n \in (0,1)$.

• Federer 1969 φ_n extends to Δ_n as an ε_n -Lipschitz function

$$\widetilde{\varphi}_n: \Delta_n \to \mathbb{R}.$$

•
$$\varphi_n: \partial \Delta_n \to \mathbb{R}$$

$$\varphi_n|_{\partial B_i^n} = t_i^n, \quad i=1,\ldots,\mathfrak{m},$$

is ε_n -Lipschitz, $\varepsilon_n \in (0,1)$.

• Federer 1969 φ_n extends to Δ_n as an ε_n -Lipschitz function

$$\widetilde{\varphi}_n: \Delta_n \to \mathbb{R}.$$

• Smoothing $\widetilde{\varphi}_n$, there exists a smooth spacelike function

$$\overline{\varphi}_n:\Delta_n\to\mathbb{R}$$

such that

$$\overline{\varphi}_n|_{\partial B_i^n} = t_i^n, \quad i = 1, \dots, \mathfrak{m}.$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• Gerhardt 1983 There exists a maximal function

 $u_n: \Delta_n \to \mathbb{R}$

such that $u_n|_{\partial B_i^n} = \overline{\varphi}_n|_{\partial B_i^n} = t_i^n$.

• Gerhardt 1983 There exists a maximal function

$$u_n:\Delta_n\to\mathbb{R}$$

such that $u_n|_{\partial B_i^n} = \overline{\varphi}_n|_{\partial B_i^n} = t_i^n$. • $\{u_n\}_{n \in \mathbb{N}}$ uniformly bounded $|\nabla u_n| < 1$ on Δ_n $\} \stackrel{(Ascoli-Arzela)}{\Longrightarrow}$

• $\{u_n\}_{n\in\mathbb{N}}$ uniformly converges on compact sets of $\mathbb{M} - \{p_i\}_{i=1}^m = \bigcup_{n\in\mathbb{N}}\Delta_n$ to a Lipschitz function

$$\hat{u}: \mathbb{M} - \{p_i\}_{i=1}^{\mathfrak{m}} \to \mathbb{R}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

with $|\nabla \hat{u}| \leq 1$ a.e. in $\mathbb{M} - \{p_i\}_{i=1}^{\mathfrak{m}}$.

• Gerhardt 1983 There exists a maximal function

$$u_n:\Delta_n\to\mathbb{R}$$

such that $u_n|_{\partial B_i^n} = \overline{\varphi}_n|_{\partial B_i^n} = t_i^n$. • $\{u_n\}_{n \in \mathbb{N}}$ uniformly bounded $|\nabla u_n| < 1$ on Δ_n $\} \stackrel{(\text{Ascoli-Arzela})}{\Longrightarrow}$

• $\{u_n\}_{n\in\mathbb{N}}$ uniformly converges on compact sets of $\mathbb{M} - \{p_i\}_{i=1}^m = \bigcup_{n\in\mathbb{N}}\Delta_n$ to a Lipschitz function

$$\hat{u}: \mathbb{M} - \{p_i\}_{i=1}^{\mathfrak{m}} \to \mathbb{R}$$

with $|\nabla \hat{u}| \leq 1$ a.e. in $\mathbb{M} - \{p_i\}_{i=1}^{\mathfrak{m}}$.

• \hat{u} extends to a Lipschitz function

$$u:\mathbb{M}\to\mathbb{R}$$

with $|\nabla u| \leq 1$ a.e. in $\mathbb{M} - \{p_i\}_{i=1}^{\mathfrak{m}}$ and $u(p_i) = t_i$ $\forall i = 1, \dots, \mathfrak{m}.$

• Bartnik 1988 \hat{u} is smooth (hence, a maximal function) except for a set of points

$$\Lambda \subset \mathbb{M} - \{p_i\}_{i=1}^{\mathfrak{m}},$$

 $\Lambda := \left\{ p \in \mathbb{M} - \{ p_i \}_{i=1}^{\mathfrak{m}} \mid (p, \hat{u}(p)) = \gamma(s_0) \text{ for some } 0 < s_0 < 1, \right.$ where

$$\gamma\colon [0,1]\to\mathbb{M}\times\mathbb{R}_1$$

is a null geodesic such that

$$\gamma((0,1)) \subset X^{\hat{u}}(\mathbb{M} - \{p_i\}_{i=1}^{\mathfrak{m}})$$

and

$$\pi_{\mathbb{M}}({\gamma(0),\gamma(1)}) \subset {p_i}_{i=1}^{\mathfrak{m}}.$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• Bartnik 1988 \hat{u} is smooth (hence, a maximal function) except for a set of points

$$\Lambda \subset \mathbb{M} - \{p_i\}_{i=1}^{\mathfrak{m}},$$

 $\Lambda := \big\{ p \in \mathbb{M} - \{ p_i \}_{i=1}^{\mathfrak{m}} \mid (p, \hat{u}(p)) = \gamma(s_0) \text{ for some } 0 < s_0 < 1,$ where

$$\gamma\colon [0,1]\to\mathbb{M}\times\mathbb{R}_1$$

is a null geodesic such that

$$\gamma((0,1)) \subset X^{\hat{u}}(\mathbb{M} - \{p_i\}_{i=1}^{\mathfrak{m}})$$

and

$$\pi_{\mathbb{M}}(\{\gamma(0),\gamma(1)\})\subset\{p_i\}_{i=1}^{\mathfrak{m}}\}.$$

• Since \mathfrak{A} satisfies the spacelike condition then $\Lambda = \emptyset$ and

$$\hat{u}: \mathbb{M} - \{p_1, \ldots, p_m\} \to \mathbb{R}$$

determines a maximal graph over $\mathbb{M} - \{p_1, \dots, p_m\}$ in $\mathbb{M} \times \mathbb{R}_1$.

Let $\mathbb M$ be a compact Riemannian manifold, let $\mathfrak m\in\mathbb N,\ \mathfrak m\geq 2,$ and let

$$\mathfrak{A} = \{(p_i, t_i)\}_{i=1}^{\mathfrak{m}} \subset \mathbb{M} \times \mathbb{R}$$

satisfying the spacelike condition.

Then there exists exactly one entire graph Σ over $\mathbb M$ in $\mathbb M\times\mathbb R_1$ such that

- $\mathfrak{A} \subset \Sigma$ and
- $\Sigma \mathfrak{A}$ is a spacelike maximal graph over $\mathbb{M} \{p_i\}_{i=1,...,\mathfrak{m}}$.

Let $\mathbb M$ be a compact Riemannian manifold, let $\mathfrak m\in\mathbb N,\ \mathfrak m\geq 2,$ and let

$$\mathfrak{A} = \{(p_i, t_i)\}_{i=1}^{\mathfrak{m}} \subset \mathbb{M} \times \mathbb{R}$$

satisfying the spacelike condition.

Then there exists exactly one entire graph Σ over $\mathbb M$ in $\mathbb M\times\mathbb R_1$ such that

- $\mathfrak{A} \subset \Sigma$ and
- $\Sigma \mathfrak{A}$ is a spacelike maximal graph over $\mathbb{M} \{p_i\}_{i=1,...,\mathfrak{m}}$.

Let $\mathbb M$ be a compact Riemannian manifold, let $\mathfrak m\in\mathbb N,\ \mathfrak m\geq 2,$ and let

$$\mathfrak{A} = \{(p_i, t_i)\}_{i=1}^{\mathfrak{m}} \subset \mathbb{M} \times \mathbb{R}$$

satisfying the spacelike condition.

Then there exists exactly one entire graph Σ over $\mathbb M$ in $\mathbb M\times\mathbb R_1$ such that

• $\mathfrak{A} \subset \Sigma$ and

• $\Sigma - \mathfrak{A}$ is a spacelike maximal graph over $\mathbb{M} - \{p_i\}_{i=1,...,\mathfrak{m}}$.

Moreover the space $\mathfrak{G}_{\mathfrak{m}}$ of entire maximal graphs over \mathbb{M} in $\mathbb{M} \times \mathbb{R}_1$ with precisely \mathfrak{m} singularities, endowed with the topology of uniform convergence

Let $\mathbb M$ be a compact Riemannian manifold, let $\mathfrak m\in\mathbb N,\ \mathfrak m\geq 2,$ and let

$$\mathfrak{A} = \{(p_i, t_i)\}_{i=1}^{\mathfrak{m}} \subset \mathbb{M} \times \mathbb{R}$$

satisfying the spacelike condition.

Then there exists exactly one entire graph Σ over $\mathbb M$ in $\mathbb M\times\mathbb R_1$ such that

• $\mathfrak{A} \subset \Sigma$ and

• $\Sigma - \mathfrak{A}$ is a spacelike maximal graph over $\mathbb{M} - \{p_i\}_{i=1,...,\mathfrak{m}}$.

Moreover the space $\mathfrak{G}_{\mathfrak{m}}$ of entire maximal graphs over \mathbb{M} in $\mathbb{M} \times \mathbb{R}_1$ with precisely \mathfrak{m} singularities, endowed with the topology of uniform convergence, is non-empty

Let $\mathbb M$ be a compact Riemannian manifold, let $\mathfrak m\in\mathbb N,\ \mathfrak m\geq 2,$ and let

$$\mathfrak{A} = \{(p_i, t_i)\}_{i=1}^{\mathfrak{m}} \subset \mathbb{M} \times \mathbb{R}$$

satisfying the spacelike condition.

Then there exists exactly one entire graph Σ over $\mathbb M$ in $\mathbb M\times\mathbb R_1$ such that

• $\mathfrak{A} \subset \Sigma$ and

• $\Sigma - \mathfrak{A}$ is a spacelike maximal graph over $\mathbb{M} - \{p_i\}_{i=1,...,\mathfrak{m}}$.

Moreover the space $\mathfrak{G}_{\mathfrak{m}}$ of entire maximal graphs over \mathbb{M} in $\mathbb{M} \times \mathbb{R}_1$ with precisely \mathfrak{m} singularities, endowed with the topology of uniform convergence, is non-empty, and there exists a \mathfrak{m} !-sheeted covering, $\overline{\mathfrak{G}}_{\mathfrak{m}} \to \mathfrak{G}_{\mathfrak{m}}$, where $\overline{\mathfrak{G}}_{\mathfrak{m}}$ is an open subset of $(\mathbb{M} \times \mathbb{R})^{\mathfrak{m}}$.

If ${\mathbb M}$ is a surface

X^u: (M - {p₁,..., p_m}, ⟨·, ·⟩_u) → M × ℝ₁ conformal harmonic map, with singularities precisely at the points {p₁,..., p_m}.

If ${\mathbb M}$ is a surface

- X^u: (M {p₁,..., p_m}, ⟨·, ·⟩_u) → M × ℝ₁ conformal harmonic map, with singularities precisely at the points {p₁,..., p_m}.
- $A \equiv$ annular end of $(\mathbb{M} \{p_1, \dots, p_m\}, \langle \cdot, \cdot \rangle_u)$ corresponding to p_i .

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

If ${\mathbb M}$ is a surface

- X^u: (M {p₁,..., p_m}, ⟨·, ·⟩_u) → M × ℝ₁ conformal harmonic map, with singularities precisely at the points {p₁,..., p_m}.
- $A \equiv$ annular end of $(\mathbb{M} \{p_1, \dots, p_m\}, \langle \cdot, \cdot \rangle_u)$ corresponding to p_i .
- A is conformally equivalent to an annulus $A(r,1) := \{z \in \mathbb{C} \mid r < |z| \le 1\}$ for some $0 \le r < 1$. Identify $A \equiv A(r,1)$ and notice that u extends continuously to $S(r) = \{z \in \mathbb{C} \mid |z| = r\}$ with $u|_{S(r)} = u(p_i)$.

If ${\mathbb M}$ is a surface

- X^u: (M {p₁,..., p_m}, ⟨·, ·⟩_u) → M × ℝ₁ conformal harmonic map, with singularities precisely at the points {p₁,..., p_m}.
- $A \equiv$ annular end of $(\mathbb{M} \{p_1, \dots, p_m\}, \langle \cdot, \cdot \rangle_u)$ corresponding to p_i .
- A is conformally equivalent to an annulus $A(r,1) := \{z \in \mathbb{C} \mid r < |z| \le 1\}$ for some $0 \le r < 1$. Identify $A \equiv A(r,1)$ and notice that u extends continuously to $S(r) = \{z \in \mathbb{C} \mid |z| = r\}$ with $u|_{S(r)} = u(p_i)$.
- Bartnik 1989 $X^u(A)$ is tangent to either the upper or the lower light cone at $X^u(p_i)$ in $\mathbb{M} \times \mathbb{R}_1$. In particular p_i is either a strict local minimum or a strict local maximum of u.

If ${\mathbb M}$ is a surface

- X^u: (M {p₁,..., p_m}, ⟨·, ·⟩_u) → M × ℝ₁ conformal harmonic map, with singularities precisely at the points {p₁,..., p_m}.
- $A \equiv$ annular end of $(\mathbb{M} \{p_1, \dots, p_m\}, \langle \cdot, \cdot \rangle_u)$ corresponding to p_i .
- A is conformally equivalent to an annulus $A(r,1) := \{z \in \mathbb{C} \mid r < |z| \le 1\}$ for some $0 \le r < 1$. Identify $A \equiv A(r,1)$ and notice that u extends continuously to $S(r) = \{z \in \mathbb{C} \mid |z| = r\}$ with $u|_{S(r)} = u(p_i)$.
- Bartnik 1989 $X^u(A)$ is tangent to either the upper or the lower light cone at $X^u(p_i)$ in $\mathbb{M} \times \mathbb{R}_1$. In particular p_i is either a strict local minimum or a strict local maximum of u.
- Up to a shrinking of A, we can assume that $u|_{\mathbb{S}^1}$ is constant.

If ${\mathbb M}$ is a surface

- X^u: (M {p₁,..., p_m}, ⟨·, ·⟩_u) → M × ℝ₁ conformal harmonic map, with singularities precisely at the points {p₁,..., p_m}.
- $A \equiv$ annular end of $(\mathbb{M} \{p_1, \dots, p_m\}, \langle \cdot, \cdot \rangle_u)$ corresponding to p_i .
- A is conformally equivalent to an annulus $A(r,1) := \{z \in \mathbb{C} \mid r < |z| \le 1\}$ for some $0 \le r < 1$. Identify $A \equiv A(r,1)$ and notice that u extends continuously to $S(r) = \{z \in \mathbb{C} \mid |z| = r\}$ with $u|_{S(r)} = u(p_i)$.
- Bartnik 1989 $X^u(A)$ is tangent to either the upper or the lower light cone at $X^u(p_i)$ in $\mathbb{M} \times \mathbb{R}_1$. In particular p_i is either a strict local minimum or a strict local maximum of u.
- Up to a shrinking of A, we can assume that $u|_{\mathbb{S}^1}$ is constant.
- $u|_A$ is harmonic, bounded and non-constant $\Rightarrow r > 0$ and A has hyperbolic conformal type.

If ${\mathbb M}$ is a surface

 $(\mathbb{M} - \{p_1, \dots, p_m\}, \langle \cdot, \cdot \rangle_u)$ is conformally an open Riemann surface with the same genus as \mathbb{M} and \mathfrak{m} hyperbolic ends.

Corollary

Let \mathbb{M} be a compact Riemannian surface, let $\mathfrak{m} \geq 2$ and let $\{p_1, \ldots, p_{\mathfrak{m}}\} \subset \mathbb{M}$. Then there exist an open Riemann surface \mathscr{R} and a harmonic diffeomorphism $\mathscr{R} \to \mathbb{M} - \{p_1, \ldots, p_{\mathfrak{m}}\}$ such that every end of \mathscr{R} is of hyperbolic type.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

If ${\mathbb M}$ is a surface

 $(\mathbb{M} - \{p_1, \dots, p_m\}, \langle \cdot, \cdot \rangle_u)$ is conformally an open Riemann surface with the same genus as \mathbb{M} and \mathfrak{m} hyperbolic ends.

Corollary

Let \mathbb{M} be a compact Riemannian surface, let $\mathfrak{m} \geq 2$ and let $\{p_1, \ldots, p_{\mathfrak{m}}\} \subset \mathbb{M}$. Then there exist an open Riemann surface \mathscr{R} and a harmonic diffeomorphism $\mathscr{R} \to \mathbb{M} - \{p_1, \ldots, p_{\mathfrak{m}}\}$ such that every end of \mathscr{R} is of hyperbolic type.

If $\mathbb{M} = \mathbb{S}^2$, by Koebe's uniformization theorem,

Corollary

Let $\mathfrak{m} \in \mathbb{N}$, $\mathfrak{m} \geq 2$, and let $\{p_1, \dots, p_{\mathfrak{m}}\} \subset \mathbb{S}^2$. Then there exist a circular domain \mathbf{U} in $\overline{\mathbb{C}}$ and a harmonic diffeomorphism $\mathbf{U} \to \mathbb{S}^2 - \{p_1, \dots, p_{\mathfrak{m}}\}$.

(ii) Non-existence of harmonic diffeomorphisms

$$\mathbb{D}\to\mathbb{S}^2-\{p\}.$$

• Why the above argument does not work for $\mathfrak{m} = 1$?

- Why the above argument does not work for $\mathfrak{m}=1?$
- Our argument uses Constant Gauss Curvature Surface Theory.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

- Why the above argument does not work for $\mathfrak{m} = 1$?
- Our argument uses Constant Gauss Curvature Surface Theory. It was suggested to us by José A. Gálvez, thank you very much!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Constant Gauss Curvature Surfaces

- S smooth simply-connected surface.
- $X: S \to \mathbb{R}^3$ immersion with constant Gauss curvature K = 1.
- II_X positive definite metric $\Rightarrow II_X$ induces on S a conformal structure, \mathscr{S} .

• $z = u + \iota v$ conformal parameter on \mathscr{S} .

Constant Gauss Curvature Surfaces

- S smooth simply-connected surface.
- $X: S \to \mathbb{R}^3$ immersion with constant Gauss curvature K = 1.
- II_X positive definite metric $\Rightarrow II_X$ induces on S a conformal structure, \mathscr{S} .
- $z = u + \iota v$ conformal parameter on \mathscr{S} .
- Gálvez-Martínez 2000 The Gauss map $N: \mathscr{S} \to \mathbb{S}^2$ satisfies

$$X_u = N \times N_v$$
 and $X_v = N \times N_u$, (1)

hence it is a harmonic local diffeomorphism. Conversely, let $N : \mathscr{S} \to \mathbb{S}^2$ be a harmonic local diffeomorphism. Then the map $X : \mathscr{S} \to \mathbb{R}^3$ given by (1) is an immersion with constant Gauss curvature K = 1.

• Gálvez-Hauswirth-Mira 2010

$$\begin{cases} I_X = \langle dX, dX \rangle_{\mathbb{R}^3} = Qdz^2 + 2\mu |dz|^2 + \overline{Q}d\overline{z}^2 \\ II_X = \langle dX, dN \rangle_{\mathbb{R}^3} = 2\rho |dz|^2 \\ III_X = \langle dN, dN \rangle_{\mathbb{R}^3} = -Qdz^2 + 2\mu |dz|^2 - \overline{Q}d\overline{z}^2, \end{cases}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

• Gálvez-Hauswirth-Mira 2010

$$\begin{cases} I_X = \langle dX, dX \rangle_{\mathbb{R}^3} &= Qdz^2 + 2\mu |dz|^2 + \overline{Q}d\overline{z}^2 \\ II_X = \langle dX, dN \rangle_{\mathbb{R}^3} &= 2\rho |dz|^2 \\ III_X = \langle dN, dN \rangle_{\mathbb{R}^3} &= -Qdz^2 + 2\mu |dz|^2 - \overline{Q}d\overline{z}^2, \end{cases}$$

Klotz 1980 There exists an immersion Y : S → R³ of constant Gauss curvature K = 1 such that I_Y = III_X, II_Y = II_X and III_Y = I_X.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

S simply-connected Riemann surface, φ : *S* → S² - {p}

 harmonic diffeomorphism. Is *S* conformally equivalent to C?

- *S* simply-connected Riemann surface, φ : *S* → S² {p}

 harmonic diffeomorphism. Is *S* conformally equivalent to C?
- $\exists X : \mathscr{S} \to \mathbb{R}^3$ with Gauss map φ , constant curvature $K_X = 1$ and such that the conformal structure of \mathscr{S} is the one induced by II_X .

- *S* simply-connected Riemann surface, φ : *S* → S² {p}

 harmonic diffeomorphism. Is *S* conformally equivalent to C?
- $\exists X : \mathscr{S} \to \mathbb{R}^3$ with Gauss map φ , constant curvature $K_X = 1$ and such that the conformal structure of \mathscr{S} is the one induced by II_X .
- $\exists Y : \mathscr{S} \to \mathbb{R}^3$ with constant curvature $K_Y = 1$, $I_Y = III_X$, $II_Y = II_X$ and $III_Y = I_X$, and the conformal structure of \mathscr{S} is the one induced by $II_Y = II_X$.

- *S* simply-connected Riemann surface, φ : *S* → S² {p}

 harmonic diffeomorphism. Is *S* conformally equivalent to C?
- $\exists X : \mathscr{S} \to \mathbb{R}^3$ with Gauss map φ , constant curvature $K_X = 1$ and such that the conformal structure of \mathscr{S} is the one induced by II_X .
- $\exists Y : \mathscr{S} \to \mathbb{R}^3$ with constant curvature $K_Y = 1$, $I_Y = III_X$, $II_Y = II_X$ and $III_Y = I_X$, and the conformal structure of \mathscr{S} is the one induced by $II_Y = II_X$.
- $\varphi:\mathscr{S}
 ightarrow\mathbb{S}^2-\{p\}$ is a diffeomorphism and

$$I_Y = III_X = \langle d\varphi, d\varphi \rangle_{\mathbb{R}^3} = \varphi^*(\langle \cdot, \cdot \rangle_{\mathbb{S}^2}),$$

hence $\varphi^{-1}: \mathbb{S}^2 - \{p\}
ightarrow (\mathscr{S}, I_Y)$ is an isometry.

- *S* simply-connected Riemann surface, φ : *S* → S² {p}

 harmonic diffeomorphism. Is *S* conformally equivalent to C?
- $\exists X : \mathscr{S} \to \mathbb{R}^3$ with Gauss map φ , constant curvature $K_X = 1$ and such that the conformal structure of \mathscr{S} is the one induced by II_X .
- $\exists Y : \mathscr{S} \to \mathbb{R}^3$ with constant curvature $K_Y = 1$, $I_Y = III_X$, $II_Y = II_X$ and $III_Y = I_X$, and the conformal structure of \mathscr{S} is the one induced by $II_Y = II_X$.

• $\varphi:\mathscr{S}
ightarrow\mathbb{S}^2-\{p\}$ is a diffeomorphism and

$$I_Y = III_X = \langle d\varphi, d\varphi \rangle_{\mathbb{R}^3} = \varphi^*(\langle \cdot, \cdot \rangle_{\mathbb{S}^2}),$$

hence φ^{-1} : $\mathbb{S}^2 - \{p\} \rightarrow (\mathcal{S}, I_Y)$ is an isometry. • $Y : (\mathcal{S}, I_Y) \rightarrow \mathbb{R}^3$ isometric immersion.

- *S* simply-connected Riemann surface, φ : *S* → S² {p}

 harmonic diffeomorphism. Is *S* conformally equivalent to C?
- $\exists X : \mathscr{S} \to \mathbb{R}^3$ with Gauss map φ , constant curvature $K_X = 1$ and such that the conformal structure of \mathscr{S} is the one induced by II_X .
- $\exists Y : \mathscr{S} \to \mathbb{R}^3$ with constant curvature $K_Y = 1$, $I_Y = III_X$, $II_Y = II_X$ and $III_Y = I_X$, and the conformal structure of \mathscr{S} is the one induced by $II_Y = II_X$.
- $\varphi:\mathscr{S}
 ightarrow\mathbb{S}^2-\{p\}$ is a diffeomorphism and

$$I_Y = III_X = \langle d\varphi, d\varphi \rangle_{\mathbb{R}^3} = \varphi^*(\langle \cdot, \cdot \rangle_{\mathbb{S}^2}),$$

hence $\varphi^{-1}: \mathbb{S}^2 - \{p\} \to (\mathscr{S}, I_Y)$ is an isometry.

- $Y : (\mathscr{S}, I_Y) \to \mathbb{R}^3$ isometric immersion.
- $Y \circ \varphi^{-1} : \mathbb{S}^2 \{p\} \to \mathbb{R}^3$ isometric immersion.

- *S* simply-connected Riemann surface, φ : *S* → S² {p}

 harmonic diffeomorphism. Is *S* conformally equivalent to C?
- $\exists X : \mathscr{S} \to \mathbb{R}^3$ with Gauss map φ , constant curvature $K_X = 1$ and such that the conformal structure of \mathscr{S} is the one induced by II_X .
- $\exists Y : \mathscr{S} \to \mathbb{R}^3$ with constant curvature $K_Y = 1$, $I_Y = III_X$, $II_Y = II_X$ and $III_Y = I_X$, and the conformal structure of \mathscr{S} is the one induced by $II_Y = II_X$.
- $\varphi:\mathscr{S}
 ightarrow\mathbb{S}^2-\{p\}$ is a diffeomorphism and

$$I_Y = III_X = \langle d\varphi, d\varphi \rangle_{\mathbb{R}^3} = \varphi^*(\langle \cdot, \cdot \rangle_{\mathbb{S}^2}),$$

hence $\varphi^{-1}: \mathbb{S}^2 - \{p\} \to (\mathscr{S}, I_Y)$ is an isometry.

- $Y : (\mathscr{S}, I_Y) \to \mathbb{R}^3$ isometric immersion.
- $Y \circ \varphi^{-1} : \mathbb{S}^2 \{p\} \to \mathbb{R}^3$ isometric immersion.
- Pogorelov 1973 $\mathbb{S}^2 \{p\}$ is rigid in \mathbb{R}^3 .

- *S* simply-connected Riemann surface, φ : *S* → S² {p}

 harmonic diffeomorphism. Is *S* conformally equivalent to C?
- $\exists X : \mathscr{S} \to \mathbb{R}^3$ with Gauss map φ , constant curvature $K_X = 1$ and such that the conformal structure of \mathscr{S} is the one induced by II_X .
- $\exists Y : \mathscr{S} \to \mathbb{R}^3$ with constant curvature $K_Y = 1$, $I_Y = III_X$, $II_Y = II_X$ and $III_Y = I_X$, and the conformal structure of \mathscr{S} is the one induced by $II_Y = II_X$.
- $\varphi:\mathscr{S}
 ightarrow\mathbb{S}^2-\{p\}$ is a diffeomorphism and

$$I_Y = III_X = \langle d\varphi, d\varphi \rangle_{\mathbb{R}^3} = \varphi^*(\langle \cdot, \cdot \rangle_{\mathbb{S}^2}),$$

hence $\varphi^{-1}: \mathbb{S}^2 - \{p\}
ightarrow (\mathscr{S}, I_Y)$ is an isometry.

- $Y : (\mathscr{S}, I_Y) \to \mathbb{R}^3$ isometric immersion.
- $Y \circ \varphi^{-1} : \mathbb{S}^2 \{p\} \to \mathbb{R}^3$ isometric immersion.
- Pogorelov 1973 $\mathbb{S}^2 \{p\}$ is rigid in \mathbb{R}^3 .
- $Y(\mathscr{S}) \subset \mathbb{R}^3$ is a once punctured round sphere.

- *S* simply-connected Riemann surface, φ : *S* → S² {p}

 harmonic diffeomorphism. Is *S* conformally equivalent to C?
- $\exists X : \mathscr{S} \to \mathbb{R}^3$ with Gauss map φ , constant curvature $K_X = 1$ and such that the conformal structure of \mathscr{S} is the one induced by II_X .
- $\exists Y : \mathscr{S} \to \mathbb{R}^3$ with constant curvature $K_Y = 1$, $I_Y = III_X$, $II_Y = II_X$ and $III_Y = I_X$, and the conformal structure of \mathscr{S} is the one induced by $II_Y = II_X$.
- $\varphi:\mathscr{S}
 ightarrow\mathbb{S}^2-\{p\}$ is a diffeomorphism and

$$I_Y = III_X = \langle d\varphi, d\varphi \rangle_{\mathbb{R}^3} = \varphi^*(\langle \cdot, \cdot \rangle_{\mathbb{S}^2}),$$

hence $\varphi^{-1}: \mathbb{S}^2 - \{p\} \to (\mathscr{S}, I_Y)$ is an isometry.

- $Y : (\mathscr{S}, I_Y) \to \mathbb{R}^3$ isometric immersion.
- $Y \circ \varphi^{-1} : \mathbb{S}^2 \{p\} \to \mathbb{R}^3$ isometric immersion.
- Pogorelov 1973 $\mathbb{S}^2 \{p\}$ is rigid in \mathbb{R}^3 .
- $Y(\mathscr{S}) \subset \mathbb{R}^3$ is a once punctured round sphere.
- The conformal structure induced on \mathscr{S} by $II_Y = II_X$ is \mathbb{C} .

(iii) Non-existence of harmonic diffeomorphisms

$$\overline{\mathbb{C}} - \{z_1, \ldots, z_{\mathfrak{m}}\} \to \mathbb{S}^2 - \cup_{j=1}^{\mathfrak{m}} D_j$$

• Use the Bochner formula (Schoen-Yau 1997)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

• Use the Bochner formula (Schoen-Yau 1997)

Proposition

Let \mathscr{R} be a parabolic open Riemann surface, let N be an oriented Riemannian surface and let $\phi : \mathscr{R} \to N$ be a harmonic local diffeomorphism. Suppose that N has Gaussian curvature $K_N > 0$. Then ϕ is either holomorphic or antiholomorphic.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Non-existence,
$$\overline{\mathbb{C}} - \{z_1, \ldots, z_m\} \rightarrow \mathbb{S}^2 - \bigcup_{j=1}^m D_j$$

• Assume that ϕ preserves orientation. Is ϕ holomorphic?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

- Assume that ϕ preserves orientation. Is ϕ holomorphic?
- Let z (resp. φ) be a local conformal parameter in *R* (resp. in N). The metric on N writes ρ(φ)|dφ|². A conformal metric on *R* writes λ(z)|dz|².

- Assume that ϕ preserves orientation. Is ϕ holomorphic?
- Let z (resp. φ) be a local conformal parameter in *R* (resp. in N). The metric on N writes ρ(φ)|dφ|². A conformal metric on *R* writes λ(z)|dz|².

• $|\partial \phi|^2 = \frac{\rho(\phi(z))}{\lambda(z)} |\frac{\partial \phi}{\partial z}|^2$ and $|\overline{\partial} \phi|^2 = \frac{\rho(\phi(z))}{\lambda(z)} |\frac{\partial \phi}{\partial \overline{z}}|^2$.

- Assume that ϕ preserves orientation. Is ϕ holomorphic?
- Let z (resp. φ) be a local conformal parameter in *R* (resp. in N). The metric on N writes ρ(φ)|dφ|². A conformal metric on *R* writes λ(z)|dz|².

- $|\partial \phi|^2 = \frac{\rho(\phi(z))}{\lambda(z)} |\frac{\partial \phi}{\partial z}|^2$ and $|\overline{\partial} \phi|^2 = \frac{\rho(\phi(z))}{\lambda(z)} |\frac{\partial \phi}{\partial \overline{z}}|^2$.
- The Jacobian of ϕ , $J(\phi) = |\partial \phi|^2 |\overline{\partial} \phi|^2 > 0$.

- Assume that ϕ preserves orientation. Is ϕ holomorphic?
- Let z (resp. φ) be a local conformal parameter in *R* (resp. in N). The metric on N writes ρ(φ)|dφ|². A conformal metric on *R* writes λ(z)|dz|².
- $|\partial \phi|^2 = \frac{\rho(\phi(z))}{\lambda(z)} |\frac{\partial \phi}{\partial z}|^2$ and $|\overline{\partial} \phi|^2 = \frac{\rho(\phi(z))}{\lambda(z)} |\frac{\partial \phi}{\partial \overline{z}}|^2$.
- The Jacobian of ϕ , $J(\phi) = |\partial \phi|^2 |\overline{\partial} \phi|^2 > 0$.
- By contradiction: If ϕ is not holomorphic, then the zeros of $|\overline{\partial}\phi|$ are isolated.

- Assume that ϕ preserves orientation. Is ϕ holomorphic?
- Let z (resp. φ) be a local conformal parameter in *R* (resp. in N). The metric on N writes ρ(φ)|dφ|². A conformal metric on *R* writes λ(z)|dz|².
- $|\partial \phi|^2 = \frac{\rho(\phi(z))}{\lambda(z)} |\frac{\partial \phi}{\partial z}|^2$ and $|\overline{\partial} \phi|^2 = \frac{\rho(\phi(z))}{\lambda(z)} |\frac{\partial \phi}{\partial \overline{z}}|^2$.
- The Jacobian of ϕ , $J(\phi) = |\partial \phi|^2 |\overline{\partial} \phi|^2 > 0$.
- By contradiction: If ϕ is not holomorphic, then the zeros of $|\overline{\partial}\phi|$ are isolated.

•
$$\mathscr{R}^* = \mathscr{R} - \{ |\overline{\partial} \phi| = 0 \}.$$

- Assume that ϕ preserves orientation. Is ϕ holomorphic?
- Let z (resp. φ) be a local conformal parameter in *R* (resp. in N). The metric on N writes ρ(φ)|dφ|². A conformal metric on *R* writes λ(z)|dz|².
- $|\partial \phi|^2 = \frac{\rho(\phi(z))}{\lambda(z)} |\frac{\partial \phi}{\partial z}|^2$ and $|\overline{\partial} \phi|^2 = \frac{\rho(\phi(z))}{\lambda(z)} |\frac{\partial \phi}{\partial \overline{z}}|^2$.
- The Jacobian of ϕ , $J(\phi) = |\partial \phi|^2 |\overline{\partial} \phi|^2 > 0$.
- By contradiction: If ϕ is not holomorphic, then the zeros of $|\overline{\partial}\phi|$ are isolated.

•
$$\mathscr{R}^* = \mathscr{R} - \{ |\overline{\partial} \phi| = 0 \}.$$

•
$$\log(|\overline{\partial}\phi|/|\partial\phi|) < 0$$
 on \mathscr{R}^*

- Assume that ϕ preserves orientation. Is ϕ holomorphic?
- Let z (resp. φ) be a local conformal parameter in *R* (resp. in N). The metric on N writes ρ(φ)|dφ|². A conformal metric on *R* writes λ(z)|dz|².
- $|\partial \phi|^2 = \frac{\rho(\phi(z))}{\lambda(z)} |\frac{\partial \phi}{\partial z}|^2$ and $|\overline{\partial} \phi|^2 = \frac{\rho(\phi(z))}{\lambda(z)} |\frac{\partial \phi}{\partial \overline{z}}|^2$.
- The Jacobian of ϕ , $J(\phi) = |\partial \phi|^2 |\overline{\partial} \phi|^2 > 0$.
- By contradiction: If ϕ is not holomorphic, then the zeros of $|\overline{\partial}\phi|$ are isolated.

•
$$\mathscr{R}^* = \mathscr{R} - \{ |\overline{\partial}\phi| = 0 \}.$$

- $\log(|\overline{\partial}\phi|/|\partial\phi|) < 0$ on \mathscr{R}^* .
- Bochner formula: $\Delta_{\mathscr{R}} \log(|\overline{\partial}\phi|/|\partial\phi|) = 2K_N J(\phi).$

- Assume that ϕ preserves orientation. Is ϕ holomorphic?
- Let z (resp. φ) be a local conformal parameter in *R* (resp. in N). The metric on N writes ρ(φ)|dφ|². A conformal metric on *R* writes λ(z)|dz|².
- $|\partial \phi|^2 = \frac{\rho(\phi(z))}{\lambda(z)} |\frac{\partial \phi}{\partial z}|^2$ and $|\overline{\partial} \phi|^2 = \frac{\rho(\phi(z))}{\lambda(z)} |\frac{\partial \phi}{\partial \overline{z}}|^2$.
- The Jacobian of ϕ , $J(\phi) = |\partial \phi|^2 |\overline{\partial} \phi|^2 > 0$.
- By contradiction: If ϕ is not holomorphic, then the zeros of $|\overline{\partial}\phi|$ are isolated.

•
$$\mathscr{R}^* = \mathscr{R} - \{ |\overline{\partial} \phi| = 0 \}.$$

- $\log(|\overline{\partial}\phi|/|\partial\phi|) < 0$ on \mathscr{R}^* .
- Bochner formula: $\Delta_{\mathscr{R}}\log(|\overline{\partial}\phi|/|\partial\phi|) = 2K_N J(\phi).$
- Since K_N > 0, then log(|∂φ|/|∂φ|) is a non-constant negative subharmonic function on the parabolic surface *R*^{*}, a contradiction.

- Assume that ϕ preserves orientation. Is ϕ holomorphic?
- Let z (resp. φ) be a local conformal parameter in *R* (resp. in N). The metric on N writes ρ(φ)|dφ|². A conformal metric on *R* writes λ(z)|dz|².
- $|\partial \phi|^2 = \frac{\rho(\phi(z))}{\lambda(z)} |\frac{\partial \phi}{\partial z}|^2$ and $|\overline{\partial} \phi|^2 = \frac{\rho(\phi(z))}{\lambda(z)} |\frac{\partial \phi}{\partial \overline{z}}|^2$.
- The Jacobian of ϕ , $J(\phi) = |\partial \phi|^2 |\overline{\partial} \phi|^2 > 0$.
- By contradiction: If ϕ is not holomorphic, then the zeros of $|\overline{\partial}\phi|$ are isolated.

•
$$\mathscr{R}^* = \mathscr{R} - \{ |\overline{\partial} \phi| = 0 \}.$$

- $\log(|\overline{\partial}\phi|/|\partial\phi|) < 0$ on \mathscr{R}^* .
- Bochner formula: $\Delta_{\mathscr{R}}\log(|\overline{\partial}\phi|/|\partial\phi|) = 2K_N J(\phi).$
- Since K_N > 0, then log(|∂φ|/|∂φ|) is a non-constant negative subharmonic function on the parabolic surface *R*^{*}, a contradiction.
- In the case when φ reverses orientation then a parallel argument gives that φ is antiholomorphic.

Harmonic diffeomorphisms between domains in \mathbb{S}^2

Antonio Alarcón

Universidad de Granada

Joint work with R. Souam

Granada, January 2012

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ