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Aim

and reference

The aim of this talk is to show that

any convex domain of C2 carries complete properly embedded
complex curves.

In particular,

there exist complete bounded embedded complex curves in C2.

• Antonio Alarcón and Francisco J. López, Complete bounded embedded
complex curves in C2. Preprint May 2013 (arXiv:1305.2118).
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complex curves in C2. Preprint May 2013 (arXiv:1305.2118).



Introduction

• (General position) If R is an open Riemann surface, then any
holomorphic function R → C3 can be approximated in compact
subsets by holomorphic embeddings.

• Self-intersections of complex curves in C2 (generically, isolated double
points) are stable under deformations.
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Global problems: Properness

Conjecture (Forster 1967, Bell-Narasimhan 1990)

Every open Riemann surface admits a proper holomorphic embedding
into C2.

• Remmert 1956, Narasimhan 1960, Bishop 1961 Every open Riemann
surface admits

a proper holomorphic embedding into C3, and
a proper holomorphic immersion into C2.

• Forstnerič-Wold 2009-2011 If a bordered Riemann surface embeds in
C2 then it properly embeds. Every circled domain in the Riemann
sphere properly embeds.

• A-López 2011 The problem is purely complex analytic: there are no
topological obstructions.
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Global problems: Completeness

+ boundedness

Question (Yang 1977)

Do there exist complete holomorphic embeddings Mk → Cn, k < n,
which have a bounded image?

• Jones 1979 Yes! k = 1, n ≥ 3, M1 = D.

• A-Forstnerič 2012 k = 1, n ≥ 3, M1 any given bordered Riemann
surface.

• A-Forstnerič 2012 k ∈N, n ≥ 3k, Mk = Dk .

Question
Given k ∈N, what is the smallest n?
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Complex curves in C2

Question
What about the case k = 1 and n = 2? Do there exist complete
bounded embedded complex curves in C2?

• Main Problem: Self-intersections of complex curves in C2 are stable
under deformations.

• There are plenty of complete bounded immersed complex curves in C2:

• Jones 1979 Simply-connected examples.
• Mart́ın-Umehara-Yamada 2009 Examples with finite topology.
• A-López 2012 Examples with any given (possibly infinite) topology.
• A-Forstnerič 2012 Examples normalized by any given bordered Riemann

surface.



Main Theorem

Theorem

Any convex domain B ⊂ C2 carries complete properly embedded
complex curves.

• B = C2  Bell-Narasimhan conjecture.

• The topology of the curves in the theorem is NOT controlled; possibly
infinite genus. Compare with the Calabi-Yau problem for embedded
minimal surfaces in R3.

minimal surfaces R3

complex curves C2 null curves C3

finite Colding-Minicozzi

A-López

genus Meeks-Pérez-Ros
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Main Theorem

Theorem

Any convex domain B ⊂ C2 carries complete properly embedded
complex curves.

Corollary

Let k ∈N. There exist

• complete bounded embedded complex k-dimensional submanifolds of
C2k , and

• complete bounded embedded complex k-dimensional submanifolds of
C4k with strongly negative holomorphic sectional curvature. (Topic in
Yang’s paper.)



Main Theorem

Theorem

Any convex domain B ⊂ C2 carries complete properly embedded
complex curves.

• Now it is the time to explain the primary idea of the proof!



Image completeness

• Idea: Take an already known immersed example and desingularize it
(replacing every normal crossing in the curve by an embedded annulus).

Problem: Completeness is NOT preserved under desingularization
procedures.

• Given X : R → C2, we denote by distX(R) the (intrinsic) induced

Euclidean distance in X(R):

distX(R)(p, q) = inf{`(γ) : γ ⊂ X(R)
rectifiable arc connecting p and q}, p, q ∈ X(R).

distX(R), (X(R), distX(R)) ≡ image distance, image metric space of

X : R → C2.

• X ≡ image complete if (X(R), distX(R)) is a complete metric space ≡
if every rectifiable divergent arc in X(R) has infinite Euclidean length.
Image completeness implies completeness, and both notions are
equivalent on injective immersions.
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Tangent nets

• D bounded regular strictly convex domain in C2, ∆ ⊂ FrD finite set,

Γ :=
⋃
p∈∆

(p + Tp FrD) ⊂ C2 \ D.

T := {q ∈ C2 : dist(q, Γ) < ε} ≡ tangent net of radius ε > 0 for D.

T 0 := ∆ ≡ 0-skeleton, T 1 := Γ ≡ 1-skeleton.
Given p ∈ T 0, T (p) := {q ∈ Rn : dist(q, p + TpFrD) < ε} ≡ slab of
T based at p.

• If D b D′ and ε > 0 is small, then `(γ) is large (comparatively with
dist(D, FrD)) for any arc γ ⊂ T connecting FrD and FrD′.
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The tangent net lemma

d(D, FrD′) :=
(

dist(D, FrD′) + 1

κ(D)

)√ dist(D, FrD′)
dist(D, FrD′) + 2/κ(D)

• Any convex domain B of C2 admits an exhaustion {Dn}n∈N of
bounded regular strictly convex domains such that

∑
n∈N

d(Dn, FrDn+1) = +∞.

Lemma

Let D and D′ be bounded regular strictly convex domains in C2,
D b D′. Let A ⊂ FrD consisting of a finite collection of smooth closed
curves.
Then for any ε > 0 there exists a tangent net T of radius < ε for D
such that

• A ⊂ T and

• `(γ) > d(D, FrD′)− ε for any Jordan arc γ ⊂ T connecting FrD and
FrD′.
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Deforming curves along tangent nets

Lemma

Let D and D′ be bounded regular strictly convex domains in C2,
D b D′. Let ε > 0 and let T be a tangent net of radius ε for D.
Let N be an open connected Riemann surface, let R b N be a bordered
domain, and let X : R → C2 be a holomorphic immersion such that

X(bR) ⊂ T ∩ FrD (hence X(R) ⊂ D).

Then, for any δ > 0, there exist a bordered domain S b N and a
holomorphic immersion Y : S → C2 enjoying the following properties:

• R b S and S \R consists of a finite collection of pairwise disjoint
compact annuli.

• ‖Y−X‖ < δ on R.

• Y(S \R) ⊂ D′ \ D−ε.

• Y(bS) ⊂ FrD′, hence Y(S) ⊂ D′.
• Y(S) ⊂ D ∪ T .

• TpFrD ≡ C⊕R = spanC(up)⊕ spanR(J (νD(p))) has real
dimension 3, for all p ∈ FrD.
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The desingularization lemma

Lemma

Let D ⊂ C2 be a strictly convex bounded regular domain. Let N be an
open Riemann surface and let R and M be bordered domains in N ,
R bM. Let X : N → C2 be a holomorphic immersion satisfying that

• X(bM) ⊂ FrD (hence X(R) ⊂ D), and

• X(R) contains no double point of X(M); in particular, X|R is an
embedding.

Then, for any ε > 0 there exist an open Riemann surface W , a bordered
domain S bW , and a holomorphic immersion F : W → C2 such that:

• R ⊂ S (in particular, the closures of R in N and W agree).

• ‖F−X‖ < ε on R and the Hausdorff distance

dH(X(M\R),F(S \R)) < ε.

In particular, dH(X(M),F(S)
)
< ε.

• F(bS) ⊂ FrD.

• F|S is an embedding.
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Image complete bounded complex curves

Theorem

Let S be an open orientable smooth surface and let B ⊂ C2 be a convex
domain.
Then there exist a complex structure J on S and an image complete
proper holomorphic immersion (S ,J )→ B.

• The proof follows from the same argument but without desingularizing
at each step.
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