The Willmore and other L² curvature functionals in Riemannian manifolds

Andrea Mondino Scuola Normale Superiore

Granada, Seminario de Geometría, 7th March 2012

▲口を▲聞を▲回を→回を ● ● ●

NOTATION:

- ► (*M*, *g*) 3-d Riemannian manifold
- Σ closed (compact, $\partial \Sigma = \emptyset$) 2-d surface
- $f: \Sigma \hookrightarrow M$ immersion, \mathring{g} induced metric on Σ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

NOTATION:

- ► (*M*, *g*) 3-d Riemannian manifold
- Σ closed (compact, $\partial \Sigma = \emptyset$) 2-d surface
- $f: \Sigma \hookrightarrow M$ immersion, \mathring{g} induced metric on Σ
- $A_{ij} = \langle \nabla_{\partial_{x^i}} N, \partial_{x^j} \rangle$ II fundamental form of $f(\Sigma)$

- $H = A_{ij} \mathring{g}^{ij} = k_1 + k_2 =$ mean curvature
- $A_{ij}^{\circ} = A_{ij} \frac{1}{2}H\dot{g}_{ij}$ = traceless II fundamental form

NOTATION:

- ► (*M*, *g*) 3-d Riemannian manifold
- Σ closed (compact, $\partial \Sigma = \emptyset$) 2-d surface
- $f: \Sigma \hookrightarrow M$ immersion, \mathring{g} induced metric on Σ
- $A_{ij} = \langle \nabla_{\partial_{x^i}} N, \partial_{x^j} \rangle$ II fundamental form of $f(\Sigma)$

- $H = A_{ij} \mathring{g}^{ij} = k_1 + k_2 =$ mean curvature
- ► $A_{ij}^{\circ} = A_{ij} \frac{1}{2}H\dot{g}_{ij}$ = traceless II fundamental form

Question

Which are the best immersions f?

Classical special immersions

• $H \equiv 0 \Rightarrow$ MINIMAL immersion (\rightsquigarrow critical point of Area)

H ≡ 0 ⇒ MINIMAL immersion (~→ critical point of Area)
 A ≡ 0 ⇒ TOTALLY GEODESIC immersion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• $H \equiv 0 \Rightarrow$ MINIMAL immersion (\rightsquigarrow critical point of Area)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $A \equiv 0 \Rightarrow$ TOTALLY GEODESIC immersion
- $A^{\circ} \equiv 0 \Rightarrow k_1 = k_2$ TOTALLY UMBILIC immersion

- $H \equiv 0 \Rightarrow$ MINIMAL immersion (\rightsquigarrow critical point of Area)
- $A \equiv 0 \Rightarrow$ TOTALLY GEODESIC immersion
- $A^{\circ} \equiv 0 \Rightarrow k_1 = k_2$ TOTALLY UMBILIC immersion

FACT: in general they may not exist (ex. minimal in \mathbb{R}^3 or totally umbilical in Berger Spheres)

- $H \equiv 0 \Rightarrow$ MINIMAL immersion (\rightsquigarrow critical point of Area)
- $A \equiv 0 \Rightarrow$ TOTALLY GEODESIC immersion
- $A^{\circ} \equiv 0 \Rightarrow k_1 = k_2$ TOTALLY UMBILIC immersion

FACT: in general they may not exist (ex. minimal in \mathbb{R}^3 or totally umbilical in Berger Spheres)

Question

How it is possible to relax the definitions in order to get existence?

$$\int_{f(\Sigma)} |H|^p, p > 1$$

$$\int_{f(\Sigma)} |H|^p, p>1 \rightsquigarrow$$
 "generalized minimal"

$$\int_{f(\Sigma)} |H|^p, p>1 \rightsquigarrow$$
 "generalized minimal" $\int_{f(\Sigma)} |A|^p, p>1$

◆□ ▶ <圖 ▶ < E ▶ < E ▶ E • 9 < 0</p>

$$\int_{f(\Sigma)} |H|^p, p > 1 \rightsquigarrow "generalized minimal"$$

$$\int_{f(\Sigma)} |A|^p, p > 1 \rightsquigarrow "generalized totally geodesic"$$

$$\begin{split} &\int_{f(\Sigma)} |H|^p, p>1 \rightsquigarrow " \text{generalized minimal"} \\ &\int_{f(\Sigma)} |A|^p, p>1 \rightsquigarrow " \text{generalized totally geodesic"} \\ &\int_{f(\Sigma)} |A^\circ|^p, p>1 \end{split}$$

$$\begin{split} & \int_{f(\Sigma)} |H|^p, p > 1 \rightsquigarrow \text{"generalized minimal"} \\ & \int_{f(\Sigma)} |A|^p, p > 1 \rightsquigarrow \text{"generalized totally geodesic"} \\ & \int_{f(\Sigma)} |A^\circ|^p, p > 1 \rightsquigarrow \text{"generalized totally umbilic"} \end{split}$$

$$\begin{split} &\int_{f(\Sigma)} |H|^p, p>1 \rightsquigarrow \text{"generalized minimal"} \\ &\int_{f(\Sigma)} |A|^p, p>1 \rightsquigarrow \text{"generalized totally geodesic"} \\ &\int_{f(\Sigma)} |A^\circ|^p, p>1 \rightsquigarrow \text{"generalized totally umbilic"} \end{split}$$

Remark

(M,g) and Σ are fixed at the beginning, minimize in the immersion f

$p = 2 \rightsquigarrow$ Willmore functionals

$p = 2 \rightsquigarrow$ Willmore functionals

Definition

In case p = 2,

$$W(f) := rac{1}{4} \int_{f(\Sigma)} |H|^2$$
 Willmore functional $W_{cnf}(f) := rac{1}{2} \int_{f(\Sigma)} |A^\circ|^2$ Conformal Willmore functional

$${\sf E}(f):=rac{1}{2}\int_{f(\Sigma)}|{\sf A}|^2$$
 Energy functional

<□> <圖> < ≧> < ≧> < ≧> < ≧ < ⊙へ⊙

$p = 2 \rightsquigarrow$ Willmore functionals

Definition

In case p = 2,

$$\begin{split} W(f) &:= \frac{1}{4} \int_{f(\Sigma)} |H|^2 \quad \text{Willmore functional} \\ W_{cnf}(f) &:= \frac{1}{2} \int_{f(\Sigma)} |A^\circ|^2 \quad \text{Conformal Willmore functional} \\ E(f) &:= \frac{1}{2} \int_{f(\Sigma)} |A|^2 \quad \text{Energy functional} \end{split}$$

Remark: if $(M,g) = (\mathbb{R}^3, eucl)$ then by Gauss Bonnet Theorem

$$W(f) = W_{cnf}(f) + 2\pi\chi_E(\Sigma) = \frac{1}{2}E(f) + \pi\chi_E(\Sigma)$$

・ロト・日本・モト・モート ヨー うへで

Conformal invariance

Theorem (Wiener)

 $W_{cnf} = \frac{1}{2} \int |A^{\circ}|^2$ is conformally invariant, i.e. $\forall u \in C^{\infty}(M)$ called $g[u] := e^{2u}g \Rightarrow W_{cnf}(f)[u] = W_{cnf}(f)$

where $W_{cnf}(f)[u]$ is the conformal Willmore functional evaluated on $f(\Sigma)$ immersed in (M, g[u]).

Theorem (Wiener)

 $W_{cnf}=rac{1}{2}\int |{\cal A}^{\circ}|^2$ is conformally invariant, i.e.

 $\forall u \in C^{\infty}(M) \text{ called } g[u] := e^{2u}g \Rightarrow W_{cnf}(f)[u] = W_{cnf}(f)$

where $W_{cnf}(f)[u]$ is the conformal Willmore functional evaluated on $f(\Sigma)$ immersed in (M, g[u]).

Remark

W is conformal invariant in \mathbb{R}^3 but not in a general manifold \Rightarrow W_{cnf} is the "correct" Willmore functional from a conformal point of view.

Applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ろのの

$$Mass(\Sigma) := \sqrt{rac{Area(\Sigma)}{16\pi}}(1-rac{1}{16\pi}\int_{\Sigma}|H|^2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

$$Mass(\Sigma) := \sqrt{rac{Area(\Sigma)}{16\pi}}(1-rac{1}{16\pi}\int_{\Sigma}|H|^2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

String Theory: Polyakov extrinsic action

$$extsf{Mass}(\Sigma) := \sqrt{rac{ extsf{Area}(\Sigma)}{16\pi}} (1 - rac{1}{16\pi} \int_{\Sigma} |H|^2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

String Theory: Polyakov extrinsic action

Biology: Hellfrich Energy

$$\mathit{Mass}(\Sigma) := \sqrt{rac{\mathit{Area}(\Sigma)}{16\pi}}(1-rac{1}{16\pi}\int_{\Sigma}|\mathcal{H}|^2)$$

- String Theory: Polyakov extrinsic action
- Biology: Hellfrich Energy
- Reilly Theorem: if $\Sigma \hookrightarrow (\mathbb{R}^3, eucl)$

$$\lambda_1(\Sigma) \leq rac{2}{Area(\Sigma)} \int_{\Sigma} |H|^2$$

$$\mathit{Mass}(\Sigma) := \sqrt{rac{\mathit{Area}(\Sigma)}{16\pi}}(1-rac{1}{16\pi}\int_{\Sigma}|\mathcal{H}|^2)$$

- String Theory: Polyakov extrinsic action
- Biology: Hellfrich Energy
- Reilly Theorem: if $\Sigma \hookrightarrow (\mathbb{R}^3, eucl)$

$$\lambda_1(\Sigma) \leq rac{2}{\textit{Area}(\Sigma)} \int_{\Sigma} |H|^2$$

 Nonlinear elasticity theory, as Γ-limit of energy functionals (Friesecke-James-Müller)

Our problem

GOAL: Minimize or more generally find critical points of W, W_{cnf} , E and related functionals

ightarrow prove existence of "generalized special immersions".

Some literature about existence of minimizers or critical points

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Some literature about existence of minimizers or critical points

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Willmore functional $W = \frac{1}{4} \int H^2$ In Euclidean Space, i.e. $(M,g) = (\mathbb{R}^3, eucl)$:

Some literature about existence of minimizers or critical points

Willmore functional $W = \frac{1}{4} \int H^2$ In Euclidean Space, i.e. $(M,g) = (\mathbb{R}^3, eucl)$:

Strict global minimum on standard spheres S_{ρ}^{ρ} (Willmore '60): $\forall \Sigma, \forall f : \Sigma \hookrightarrow \mathbb{R}^{3} \Rightarrow W(f) \geq 4\pi$ and $W(f) = 4\pi \Leftrightarrow f(\Sigma) = S_{\rho}^{\rho}$

・ロト・日本・モン・モン・ ヨー うへぐ

Willmore functional $W = \frac{1}{4} \int H^2$ In Euclidean Space, i.e. $(M,g) = (\mathbb{R}^3, eucl)$:

- ► Strict global minimum on standard spheres S_p^{ρ} (Willmore '60): $\forall \Sigma, \forall f : \Sigma \hookrightarrow \mathbb{R}^3 \Rightarrow W(f) \ge 4\pi$ and $W(f) = 4\pi \Leftrightarrow f(\Sigma) = S_p^{\rho}$
- For each genus the infimum (> 4π) is reached: Simon (1993) and Bauer-Kuwert (2003), different proof by Rivière (2010)

Willmore functional $W = \frac{1}{4} \int H^2$ In Euclidean Space, i.e. $(M,g) = (\mathbb{R}^3, eucl)$:

- ► Strict global minimum on standard spheres S_p^{ρ} (Willmore '60): $\forall \Sigma, \forall f : \Sigma \hookrightarrow \mathbb{R}^3 \Rightarrow W(f) \ge 4\pi$ and $W(f) = 4\pi \Leftrightarrow f(\Sigma) = S_p^{\rho}$
- For each genus the infimum (> 4π) is reached: Simon (1993) and Bauer-Kuwert (2003), different proof by Rivière (2010)

Multiplicity results in genus 1 by Pinkall

Willmore functional $W = \frac{1}{4} \int H^2$ In Euclidean Space, i.e. $(M,g) = (\mathbb{R}^3, eucl)$:

- ► Strict global minimum on standard spheres S_p^{ρ} (Willmore '60): $\forall \Sigma, \forall f : \Sigma \hookrightarrow \mathbb{R}^3 \Rightarrow W(f) \ge 4\pi$ and $W(f) = 4\pi \Leftrightarrow f(\Sigma) = S_p^{\rho}$
- For each genus the infimum (> 4π) is reached: Simon (1993) and Bauer-Kuwert (2003), different proof by Rivière (2010)
- Multiplicity results in genus 1 by Pinkall
- Recent works by Rivière, Kuwert, Schätzle, Topping, Bernard, Schygulla etc.

Willmore functional $W = \frac{1}{4} \int H^2$ In Euclidean Space, i.e. $(M,g) = (\mathbb{R}^3, eucl)$:

- ► Strict global minimum on standard spheres S_p^{ρ} (Willmore '60): $\forall \Sigma, \forall f : \Sigma \hookrightarrow \mathbb{R}^3 \Rightarrow W(f) \ge 4\pi$ and $W(f) = 4\pi \Leftrightarrow f(\Sigma) = S_p^{\rho}$
- For each genus the infimum (> 4π) is reached: Simon (1993) and Bauer-Kuwert (2003), different proof by Rivière (2010)
- Multiplicity results in genus 1 by Pinkall
- Recent works by Rivière, Kuwert, Schätzle, Topping, Bernard, Schygulla etc.

In manifolds?

Willmore functional $W = \frac{1}{4} \int H^2$ In Euclidean Space, i.e. $(M,g) = (\mathbb{R}^3, eucl)$:

- ► Strict global minimum on standard spheres S_{ρ}^{ρ} (Willmore '60): $\forall \Sigma, \forall f : \Sigma \hookrightarrow \mathbb{R}^{3} \Rightarrow W(f) \ge 4\pi$ and $W(f) = 4\pi \Leftrightarrow f(\Sigma) = S_{\rho}^{\rho}$
- For each genus the infimum (> 4π) is reached: Simon (1993) and Bauer-Kuwert (2003), different proof by Rivière (2010)
- Multiplicity results in genus 1 by Pinkall
- Recent works by Rivière, Kuwert, Schätzle, Topping, Bernard, Schygulla etc.

In manifolds?Just in space forms: Bang-Yen Chen, Guo, Li-Yau, Montiel, Ritoré, Ros, Urbano, Wiener, etc.

Willmore functional $W = \frac{1}{4} \int H^2$ In Euclidean Space, i.e. $(M,g) = (\mathbb{R}^3, eucl)$:

- Strict global minimum on standard spheres S^ρ_p (Willmore '60):
 ∀Σ, ∀f : Σ → ℝ³ ⇒ W(f) ≥ 4π and W(f) = 4π ⇔ f(Σ) = S^ρ_p
- For each genus the infimum (> 4π) is reached: Simon (1993) and Bauer-Kuwert (2003), different proof by Rivière (2010)
- Multiplicity results in genus 1 by Pinkall
- Recent works by Rivière, Kuwert, Schätzle, Topping, Bernard, Schygulla etc.

In manifolds?Just in space forms: Bang-Yen Chen, Guo, Li-Yau, Montiel, Ritoré, Ros, Urbano, Wiener, etc. TODAY: give results, i.e. existence or non-existence of minimizers or critical points, in non constantly curved manifolds.

Perturbative setting

< ロ > < @ > < E > < E > E の < @</p>

Ambient manifold: $(M,g) = (\mathbb{R}^3, g_{\epsilon})$ where $(g_{\epsilon})_{\mu\nu} := \delta_{\mu\nu} + \epsilon h_{\mu\nu}$, $h_{\mu\nu}$ is symmetric (2,0) tensor field.

Ambient manifold: $(M,g) = (\mathbb{R}^3, g_{\epsilon})$ where $(g_{\epsilon})_{\mu\nu} := \delta_{\mu\nu} + \epsilon h_{\mu\nu}$, $h_{\mu\nu}$ is symmetric (2,0) tensor field.

IDEA: for $\epsilon = 0$ the ambient manifold is $\mathbb{R}^3 \Rightarrow$ the round spheres form a 4-d manifold of critical points

Ambient manifold: $(M,g) = (\mathbb{R}^3, g_{\epsilon})$ where $(g_{\epsilon})_{\mu\nu} := \delta_{\mu\nu} + \epsilon h_{\mu\nu}$, $h_{\mu\nu}$ is symmetric (2,0) tensor field.

IDEA: for $\epsilon = 0$ the ambient manifold is $\mathbb{R}^3 \Rightarrow$ the round spheres form a 4-d manifold of critical points \rightarrow use a perturbative method lying on a Lyapunov-Schmidt reduction.

NOTATION: if $(M, g) = (\mathbb{R}^3, g_{\epsilon} := eucl + \epsilon h)$, write $R = \epsilon R_1 + o(\epsilon)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

NOTATION: if $(M, g) = (\mathbb{R}^3, g_{\epsilon} := eucl + \epsilon h)$, write $R = \epsilon R_1 + o(\epsilon)$

Theorem [M.(Math. Zeit. '10)] Assume

- $\exists ar{p} \in \mathbb{R}^3$ such that $R_1(ar{p})
 eq 0$,
- Said $||h(p)|| := \sup_{|\nu|=1} |h_p(\nu, \nu)|$ *i*) $\lim_{|p|\to\infty} ||h(p)|| = 0.$ *ii*) $\exists C > 0$ and $\alpha > 2$ s.t. $|D_\lambda h_{\mu\nu}(p)| < \frac{C}{|p|^{\alpha}} \quad \forall \lambda, \mu, \nu = 1...3.$

NOTATION: if $(M, g) = (\mathbb{R}^3, g_{\epsilon} := eucl + \epsilon h)$, write $R = \epsilon R_1 + o(\epsilon)$

Theorem [M.(Math. Zeit. '10)] Assume

- $\exists ar{p} \in \mathbb{R}^3$ such that $R_1(ar{p})
 eq 0$,
- Said $||h(p)|| := \sup_{|v|=1} |h_p(v, v)|$ *i*) $\lim_{|p|\to\infty} ||h(p)|| = 0.$

ii) $\exists C > 0$ and $\alpha > 2$ s.t. $|D_{\lambda}h_{\mu\nu}(p)| < \frac{C}{|p|^{\alpha}} \quad \forall \lambda, \mu, \nu = 1...3$. Then, for ϵ small enough, there exists a perturbed standard sphere $S_{p_{\epsilon}}^{\rho_{\epsilon}}(w_{\epsilon}(p_{\epsilon}, \rho_{\epsilon}))$ (where $w_{\epsilon}(p_{\epsilon}, \rho_{\epsilon}) \in C^{4,\alpha}(S^2)$) which is a Willmore immersion of \mathbb{S}^2 in $(\mathbb{R}^3, g_{\epsilon})$

NOTATION: if $(M, g) = (\mathbb{R}^3, g_{\epsilon} := eucl + \epsilon h)$, write $R = \epsilon R_1 + o(\epsilon)$

Theorem [M.(Math. Zeit. '10)] Assume

- $\exists ar{p} \in \mathbb{R}^3$ such that $R_1(ar{p})
 eq 0$,
- Said $||h(p)|| := \sup_{|v|=1} |h_p(v, v)|$ *i*) $\lim_{|p|\to\infty} ||h(p)|| = 0.$

ii) $\exists C > 0$ and $\alpha > 2$ s.t. $|D_{\lambda}h_{\mu\nu}(p)| < \frac{C}{|p|^{\alpha}} \quad \forall \lambda, \mu, \nu = 1...3$. Then, for ϵ small enough, there exists a perturbed standard sphere $S_{p_{\epsilon}}^{\rho_{\epsilon}}(w_{\epsilon}(p_{\epsilon}, \rho_{\epsilon}))$ (where $w_{\epsilon}(p_{\epsilon}, \rho_{\epsilon}) \in C^{4,\alpha}(S^2)$) which is a Willmore immersion of \mathbb{S}^2 in $(\mathbb{R}^3, g_{\epsilon})$

Lemma[M. (Math. Zeit. '10)]:Let (M, g) be a general ambient manifold with scalar curvature R,

NOTATION: if $(M, g) = (\mathbb{R}^3, g_{\epsilon} := eucl + \epsilon h)$, write $R = \epsilon R_1 + o(\epsilon)$

Theorem [M.(Math. Zeit. '10)] Assume

- $\exists ar{p} \in \mathbb{R}^3$ such that $R_1(ar{p})
 eq 0$,
- Said $||h(p)|| := \sup_{|v|=1} |h_p(v, v)|$ *i*) $\lim_{|p|\to\infty} ||h(p)|| = 0.$

ii) $\exists C > 0$ and $\alpha > 2$ s.t. $|D_{\lambda}h_{\mu\nu}(p)| < \frac{C}{|p|^{\alpha}} \quad \forall \lambda, \mu, \nu = 1...3$. Then, for ϵ small enough, there exists a perturbed standard sphere $S_{p_{\epsilon}}^{\rho_{\epsilon}}(w_{\epsilon}(p_{\epsilon},\rho_{\epsilon}))$ (where $w_{\epsilon}(p_{\epsilon},\rho_{\epsilon}) \in C^{4,\alpha}(S^{2})$) which is a Willmore immersion of \mathbb{S}^{2} in $(\mathbb{R}^{3}, g_{\epsilon})$

Lemma[M. (Math. Zeit. '10)]:Let (M, g) be a general ambient manifold with scalar curvature R, then the following expansion of W on small geodesic spheres hold:

$$W(S_{p,
ho})=4\pi-rac{2\pi}{3}R(p)
ho^2+O_p(
ho_0^3)$$

REMARK: g_{ϵ} is close and asymptotical to euclidean but NOT CONSTANT CURVATURE

REMARK: g_{ϵ} is close and asymptotical to euclidean but NOT CONSTANT CURVATURE

Theorem (M.(Math. Zeit. '10))

Let (M, g) be a 3-d Riemannian manifold and assume that at the point $\bar{p} \in M$ the scalar curvature is non null:

$$R(\bar{p}) \neq 0.$$

Then, for radius ρ and perturbation $w \in C^{4,\alpha}(S^2)$ small enough, the perturbed geodesic spheres $S_{\overline{p},\rho}(w)$ are not critical points of the Willmore functional W.

REMARK: g_{ϵ} is close and asymptotical to euclidean but NOT CONSTANT CURVATURE

Theorem (M.(Math. Zeit. '10))

Let (M, g) be a 3-d Riemannian manifold and assume that at the point $\bar{p} \in M$ the scalar curvature is non null:

$$R(\bar{p}) \neq 0.$$

Then, for radius ρ and perturbation $w \in C^{4,\alpha}(S^2)$ small enough, the perturbed geodesic spheres $S_{\bar{p},\rho}(w)$ are not critical points of the Willmore functional W.

REMARK: different behavior from flat case where all the spheres are critical points

Results for $W_{cnf} = \frac{1}{2} \int |A^{\circ}|^2$ in $(\mathbb{R}^3, g_{\epsilon})$

Results for $W_{cnf} = \frac{1}{2} \int |A^{\circ}|^2$ in $(\mathbb{R}^3, g_{\epsilon})$

NOTATION: traceless Ricci tensor of a Riemannian manifold $S_{\mu\nu} := Ric_{\mu\nu} - \frac{1}{3}R g_{\mu\nu}$ in $(\mathbb{R}^3, g_{\epsilon})$ one has $\|S_p\|^2 = \epsilon^2 \tilde{s}_p + o(\epsilon^2)$

Results for $W_{cnf} = \frac{1}{2} \int |A^{\circ}|^2$ in $(\mathbb{R}^3, g_{\epsilon})$

NOTATION: traceless Ricci tensor of a Riemannian manifold $S_{\mu\nu} := Ric_{\mu\nu} - \frac{1}{3}R g_{\mu\nu}$ in $(\mathbb{R}^3, g_{\epsilon})$ one has $\|S_p\|^2 = \epsilon^2 \tilde{s}_p + o(\epsilon^2)$

Theorem (M. (J.G.A. '11))

Let $h_{\mu
u} \in C_0^\infty(\mathbb{R}^3)$ and let c be such that

 $c := \sup\{\|h_{\mu\nu}\|_{H^1(\pi)} : \pi \text{ is an affine plane in } \mathbb{R}^3, \ \mu, \nu = 1, 2, 3\}.$

Then there exists a constant $A_c > 0$ depending on c with the following property: if there exists a point \bar{p} such that

$$\tilde{s}_{\bar{p}} > A_c$$

then, for ϵ small enough, there exists a perturbed standard sphere $S_{P\epsilon}^{\rho_{\epsilon}}(w_{\epsilon})$ which is a critical point of the conformal Willmore functional W_{cnf} converging to a standard sphere as $\epsilon \to 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Since S_p^{ρ} are critical in \mathbb{R}^3 , may expect that small pertubations of small geodesic spheres $S_{p,\rho}$ are critical in manifolds, but

・ロト・日本・モン・モン・ ヨー うへぐ

Since S_p^{ρ} are critical in \mathbb{R}^3 , may expect that small pertubations of small geodesic spheres $S_{p,\rho}$ are critical in manifolds, but

Theorem (M. (J.G.A. '11))

Let (M, g) be a Riemannian manifold. Assume that the traceless Ricci tensor of M at the point \overline{p} is not null:

$$\|S_{\bar{p}}\|\neq 0.$$

Then there exist $\rho_0 > 0$ and r > 0 such that for radius $\rho < \rho_0$ and perturbation $w \in C^{4,\alpha}(S^2)$ with $||w||_{C^{4,\alpha}(\mathbb{S}^2)} < r$, the surfaces $S_{\overline{p},\rho}(w)$ are not critical points of W_{cnf} .

Since S_p^{ρ} are critical in \mathbb{R}^3 , may expect that small pertubations of small geodesic spheres $S_{p,\rho}$ are critical in manifolds, but

Theorem (M. (J.G.A. '11))

Let (M, g) be a Riemannian manifold. Assume that the traceless Ricci tensor of M at the point \overline{p} is not null:

$$\|S_{\bar{p}}\|\neq 0.$$

Then there exist $\rho_0 > 0$ and r > 0 such that for radius $\rho < \rho_0$ and perturbation $w \in C^{4,\alpha}(S^2)$ with $||w||_{C^{4,\alpha}(\mathbb{S}^2)} < r$, the surfaces $S_{\overline{p},\rho}(w)$ are not critical points of W_{cnf} .

Remark:- The condition $||S_p|| \neq 0$ is generic.

Since S_p^{ρ} are critical in \mathbb{R}^3 , may expect that small pertubations of small geodesic spheres $S_{p,\rho}$ are critical in manifolds, but

Theorem (M. (J.G.A. '11))

Let (M, g) be a Riemannian manifold. Assume that the traceless Ricci tensor of M at the point \overline{p} is not null:

$$\|S_{\bar{p}}\|\neq 0.$$

Then there exist $\rho_0 > 0$ and r > 0 such that for radius $\rho < \rho_0$ and perturbation $w \in C^{4,\alpha}(S^2)$ with $||w||_{C^{4,\alpha}(\mathbb{S}^2)} < r$, the surfaces $S_{\overline{p},\rho}(w)$ are not critical points of W_{cnf} .

Remark:- The condition $||S_p|| \neq 0$ is generic.

- If (M, g) has not constant sectional curvature then there exists at least one point \bar{p} such that $||S_{\bar{p}}|| \neq 0$.

Minimization of $E = \frac{1}{2} \int |A|^2$ in compact manifolds: global setting

(ロ)、

Minimization of $E = \frac{1}{2} \int |A|^2$ in compact manifolds: global setting

Theorem (Kuwert- M.- Schygulla '11)

Let (M, g) be a compact 3-dimensional Riemannian manifold with strictly positive sectional curvature $\bar{K} > 0$.

Then there exists a smooth immersion $f : \mathbb{S}^2 \hookrightarrow M$ such that

 $E(f) = \inf\{E(h)|h: \mathbb{S}^2 \hookrightarrow (M,g) \text{ is a } C^{\infty} \text{ immersion in } (M,g)\}.$

・ロト・日本・モン・モン・ ヨー うへぐ

Minimization of $E = \frac{1}{2} \int |A|^2$ in compact manifolds: global setting

Theorem (Kuwert- M.- Schygulla '11)

Let (M, g) be a compact 3-dimensional Riemannian manifold with strictly positive sectional curvature $\bar{K} > 0$.

Then there exists a smooth immersion $f : \mathbb{S}^2 \hookrightarrow M$ such that

$$E(f) = \inf\{E(h)|h: \mathbb{S}^2 \hookrightarrow (M,g) \text{ is a } C^{\infty} \text{ immersion in } (M,g)\}.$$

REMARK- By compactness there exists a $\lambda > 0$ such that

$$\bar{K} \ge \lambda > 0.$$
 (1)

- the theorem is non trivial in the sense that there are examples of compact 3-manifolds with $\overline{K} > 0$ which do not contain totally geodesic immersions; for instance Berger Spheres [Souam-Toubiana (Comm. Math. Helv. '09)]

Sketch of proof-1:Framework

TECHNIQUE: direct methods in the calculus of variations

 enlarge the space for proving compactness of the minimizing sequence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 enlarge the space for proving compactness of the minimizing sequence

prove that the minimizing sequence does not degenerate

 enlarge the space for proving compactness of the minimizing sequence

- prove that the minimizing sequence does not degenerate
- prove lower semicontinuity of the functional under weak convergence

 enlarge the space for proving compactness of the minimizing sequence

- prove that the minimizing sequence does not degenerate
- prove lower semicontinuity of the functional under weak convergence
- prove regularity of the weak limit object

- enlarge the space for proving compactness of the minimizing sequence
- prove that the minimizing sequence does not degenerate
- prove lower semicontinuity of the functional under weak convergence
- prove regularity of the weak limit object

Enlarged space: take a minimizing sequence of immersions $f_k : \mathbb{S}^2 \hookrightarrow M$

- enlarge the space for proving compactness of the minimizing sequence
- prove that the minimizing sequence does not degenerate
- prove lower semicontinuity of the functional under weak convergence
- prove regularity of the weak limit object

Enlarged space: take a minimizing sequence of immersions $f_k : \mathbb{S}^2 \hookrightarrow M$ associate the Radon measures $\mu_k : \mu_k(B) := Area_{(f_k^*g)}(f_k^{-1}(B))'' = Area(B \cap f_k(\mathbb{S}^2))''$ for every $B \subset M$ Borel set

Sketch of proof-2: Compacteness

By Banach Alaoglu, for having compactness of the measures we need a uniform area bound on f_k

Sketch of proof-2: Compacteness

By Banach Alaoglu, for having compactness of the measures we need a uniform area bound on f_k

Lemma Let (M, g) be a closed 3-dimensional manifold with positive sectional curvature \overline{K} : $\exists \lambda$ such that $\overline{K} > \lambda^2 > 0$. Then, for every smooth immersion $f : \mathbb{S}^2 \hookrightarrow (M, g)$, the following area estimate holds:

$$|f(\mathbb{S}^2)|_g \le \frac{1}{\lambda^2} \Big(4\pi + E(f) \Big) \tag{2}$$

where $|f(\mathbb{S}^2)|_g := \int_{\mathbb{S}^2} d\mu_g$ is the area of \mathbb{S}^2 equipped with the pull back metric f^*g given by the immersion.

Sketch of proof-2: Compacteness

By Banach Alaoglu, for having compactness of the measures we need a uniform area bound on f_k

Lemma Let (M, g) be a closed 3-dimensional manifold with positive sectional curvature \overline{K} : $\exists \lambda$ such that $\overline{K} > \lambda^2 > 0$. Then, for every smooth immersion $f : \mathbb{S}^2 \hookrightarrow (M, g)$, the following area estimate holds:

$$|f(\mathbb{S}^2)|_g \le \frac{1}{\lambda^2} \Big(4\pi + E(f) \Big) \tag{2}$$

where $|f(\mathbb{S}^2)|_g := \int_{\mathbb{S}^2} d\mu_g$ is the area of \mathbb{S}^2 equipped with the pull back metric f^*g given by the immersion.

Idea of Proof: play with the Gauss equation

$$\bar{K}(T_x f) = K_G - k_1 k_2 = K_G - \frac{1}{4}H^2 + \frac{1}{2}|A^\circ|^2$$

Sketch of the proof-3: nondegeneracy

 \Rightarrow there exists a Radon measure μ on M such that $\mu_k \rightarrow \mu$ up to subsequences

Sketch of the proof-3: nondegeneracy

 \Rightarrow there exists a Radon measure μ on M such that $\mu_k \rightarrow \mu$ up to subsequences

Problem. The sequence may degenerate: f_k may shrink to a point or μ may be 0

Sketch of the proof-3: nondegeneracy

 \Rightarrow there exists a Radon measure μ on M such that $\mu_k \rightarrow \mu$ up to subsequences

Problem. The sequence may degenerate: f_k may shrink to a point or μ may be 0

Lemma Let (M, g) be a closed Riemannian 3-manifold whose scalar curvature is strictly positive at a point:

 $\exists \bar{p} \in M : R_g(\bar{p}) > 0.$

Then for a minimizing sequence f_k of E

 $\liminf_k(\operatorname{diam}_g f_k(\mathbb{S}^2)) > 0$

where diam_g $f_k(\mathbb{S}^2)$ is the diameter of $f_k(\mathbb{S}^2)$ in the Riemannian manifold (M, g).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

► IDEA: Perform a blow up procedure.

- ► IDEA: Perform a blow up procedure.
- On small gedesic spheres

$$E(S_{\bar{p},\rho}) = 4\pi - \frac{2\pi}{3}R(\bar{p})\rho^2 + o(\rho^2) < 4\pi$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for small ρ .

- ► IDEA: Perform a blow up procedure.
- On small gedesic spheres

$$E(S_{ar{p},
ho}) = 4\pi - rac{2\pi}{3}R(ar{p})
ho^2 + o(
ho^2) < 4\pi$$

for small ρ .

$$\Rightarrow 4\pi - \delta > \inf_{f:\mathbb{S}^2 \hookrightarrow (M,g)} E(f) = \lim E(f_k).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ► IDEA: Perform a blow up procedure.
- On small gedesic spheres

$$E(S_{ar{p},
ho}) = 4\pi - rac{2\pi}{3}R(ar{p})
ho^2 + o(
ho^2) < 4\pi$$

for small ρ .

$$\Rightarrow 4\pi - \delta > \inf_{f:\mathbb{S}^2 \hookrightarrow (M,g)} E(f) = \lim E(f_k).$$

By Willmore

$$\inf_{f:\mathbb{S}^2\hookrightarrow\mathbb{R}^3}E(f)=4\pi$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- ► IDEA: Perform a blow up procedure.
- On small gedesic spheres

$$E(S_{ar{p},
ho}) = 4\pi - rac{2\pi}{3}R(ar{p})
ho^2 + o(
ho^2) < 4\pi$$

for small ρ .

$$\Rightarrow 4\pi - \delta > \inf_{f:\mathbb{S}^2 \hookrightarrow (M,g)} E(f) = \lim E(f_k).$$

By Willmore

$$\inf_{f:\mathbb{S}^2\hookrightarrow\mathbb{R}^3}E(f)=4\pi$$

▶ ⇒ if f_k shrink then by blow up

 $\liminf E(f_k) \ge 4\pi$

➤ ⇒ using the curvature assumptions on (M, g) we proved that the minimizing sequence is compact and does not degenerate

・ロト・日本・モン・モン・ ヨー うへぐ

- ➤ ⇒ using the curvature assumptions on (M, g) we proved that the minimizing sequence is compact and does not degenerate
- ▶ ⇒ there exists a non null limit measure μ (with a weak notion of second fundamental form, by Hutchinson Theory)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ➤ ⇒ using the curvature assumptions on (M, g) we proved that the minimizing sequence is compact and does not degenerate
- ▶ ⇒ there exists a non null limit measure μ (with a weak notion of second fundamental form, by Hutchinson Theory)
- ► FACT: the functional *E* is lower semicontinuous (with respect to varifold convergence)

$$\Rightarrow E(\mu) \leq \liminf E(f_k) = \inf E$$

・ロト・日本・モン・モン・ ヨー うへぐ

- ➤ ⇒ using the curvature assumptions on (M, g) we proved that the minimizing sequence is compact and does not degenerate
- ▶ ⇒ there exists a non null limit measure μ (with a weak notion of second fundamental form, by Hutchinson Theory)
- ► FACT: the functional *E* is lower semicontinuous (with respect to varifold convergence)

$$\Rightarrow E(\mu) \leq \liminf E(f_k) = \inf E$$

• $\Rightarrow \mu$ is a candidate minimizer and we have to prove regularity i.e. this measure is associated to a smooth immersion of a sphere Take inspiration from [Simon (CAG '93)] and do a partition of sptµ into good and bad points:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Take inspiration from [Simon (CAG '93)] and do a partition of sptµ into good and bad points:
- ▶ fixed a small $\epsilon > 0$ we say that $\xi \in spt\mu$ is a bad point if

$$\lim_{\rho\to 0} \liminf_{k\to\infty} \int_{f_k(\mathbb{S}^2)\cap B(\xi,\rho)} |A|^2 > \epsilon^2;$$

the complementary are the good points

- Take inspiration from [Simon (CAG '93)] and do a partition of sptµ into good and bad points:
- ▶ fixed a small $\epsilon > 0$ we say that $\xi \in spt\mu$ is a bad point if

$$\lim_{\rho\to 0} \liminf_{k\to\infty} \int_{f_k(\mathbb{S}^2)\cap B(\xi,\rho)} |A|^2 > \epsilon^2;$$

the complementary are the good points

► From energy bound ⇒ only finitely many bad points

Adapting Simon setting we get Graphical decomposition in Riemannian manifolds:

IDEA: in a neighboorod of a good point, each surface is overlapping of many sheets. Each one is union of a lipschitz graph (with holes) and small "pimples"

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

IDEA: use Morrey Lemma

IDEA: use Morrey Lemma

Lemma Let (M, g), f_k and μ as before. Let ξ_0 a ε_0 -good point for $\varepsilon > 0$ small enough.

IDEA: use Morrey Lemma

Lemma Let (M, g), f_k and μ as before. Let ξ_0 a ε_0 -good point for $\varepsilon > 0$ small enough.

Then we have for all $\xi \in spt\mu \cap B_{rac{
ho_0}{2}}(\xi_0)$ and all $ho \leq rac{
ho_0}{4}$ that

 $\liminf_{k\to\infty}\int_{B_{\frac{\rho}{8}}(\xi)}|A_k|^2\,d\mu_k\leq c\rho^\alpha\quad\text{where }c=c(\rho_0)\text{ and }\alpha\in(0,1).$

• Work locally in a neighboorod of a good point ξ_0

- Work locally in a neighboorod of a good point ξ_0
- replace the pimples with biharmonic graphs

- Work locally in a neighboorod of a good point ξ_0
- replace the pimples with biharmonic graphs
- ▶ get new graph functions u
 ^l_k on the planes L^l with uniform bound on Lipschitz (then also W^{1,2}) norms

・ロト・日本・モン・モン・ ヨー うへぐ

- Work locally in a neighboorod of a good point ξ_0
- replace the pimples with biharmonic graphs
- ▶ get new graph functions u
 ^l/_k on the planes L^l with uniform bound on Lipschitz (then also W^{1,2}) norms

▶ ⇒ there exist $u' \in W^{1,\infty}$ such that

 $ar{u}_k^{\prime}
ightarrow u^{\prime}$ in C^0 $ar{u}_k^{\prime}
ightarrow u^{\prime}$ in $W^{1,2}$

- Work locally in a neighboorod of a good point ξ_0
- replace the pimples with biharmonic graphs
- ▶ get new graph functions u
 ^l/_k on the planes L^l with uniform bound on Lipschitz (then also W^{1,2}) norms

▶ ⇒ there exist $u^{l} \in W^{1,\infty}$ such that

 $ar{u}_k^{\prime}
ightarrow u^{\prime}$ in C^0 $ar{u}_k^{\prime}
ightarrow u^{\prime}$ in $W^{1,2}$

Lemma: $\mu \llcorner B_{\rho}(\xi_0) = \sum_{l=1}^{M} \mathcal{H}_{g}^2 \llcorner (\text{graph } u^l \cap B_{\rho}(\xi_0))$.

- Work locally in a neighboorod of a good point ξ_0
- replace the pimples with biharmonic graphs
- ▶ get new graph functions \bar{u}'_k on the planes L' with uniform bound on Lipschitz (then also $W^{1,2}$) norms

▶ ⇒ there exist $u^{l} \in W^{1,\infty}$ such that

 $ar{u}_k^{\prime}
ightarrow u^{\prime}$ in C^0 $ar{u}_k^{\prime}
ightarrow u^{\prime}$ in $W^{1,2}$

Lemma:
$$\mu \llcorner B_{\rho}(\xi_0) = \sum_{l=1}^M \mathcal{H}^2_{g `}(\text{graph } u^l \cap B_{\rho}(\xi_0))$$
.

Proof By Radon Nikodym and a modification of Poincaré inequality by Simon

Sketch of the proof-10: $C^{1,\alpha} \cap W^{2,2}$ regularity near the good points

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Sketch of the proof-10: $C^{1,lpha} \cap W^{2,2}$ regularity near the good points

Lemma

The functions u^{l} such that $\mu \llcorner B_{\rho}(\xi_{0}) = \sum_{l=1}^{M} \mathcal{H}_{g}^{2} \llcorner (\text{graph } u^{l} \cap B_{\rho}(\xi_{0}))$ are $C^{1,\alpha} \cap W^{2,2}$ and satisfy the power decay

$$\int_{B_{\sigma}} |D^2 u'|^2 \leq C \sigma^{\alpha}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Sketch of the proof-10: $C^{1,\alpha} \cap W^{2,2}$ regularity near the good points

Lemma

The functions u^l such that $\mu \llcorner B_\rho(\xi_0) = \sum_{l=1}^M \mathcal{H}^2_{g \sqcup}(\text{graph } u^l \cap B_\rho(\xi_0))$ are $C^{1,\alpha} \cap W^{2,2}$ and satisfy the power decay

$$\int_{B_{\sigma}} |D^2 u'|^2 \leq C \sigma^{\alpha}.$$

Proof

▶ μ has weak mean curvature in L^2 and $u^{l} \in W^{1,2}$ are weak solutions of the mean curvature equation $\Rightarrow u^{l} \in W^{2,2}$

Sketch of the proof-10: $C^{1,lpha} \cap W^{2,2}$ regularity near the good points

Lemma

The functions u^l such that $\mu \llcorner B_\rho(\xi_0) = \sum_{l=1}^M \mathcal{H}^2_{g \sqcup}(\text{graph } u^l \cap B_\rho(\xi_0))$ are $C^{1,\alpha} \cap W^{2,2}$ and satisfy the power decay

$$\int_{B_{\sigma}} |D^2 u'|^2 \leq C \sigma^{\alpha}.$$

Proof

- ▶ μ has weak mean curvature in L^2 and $u^{l} \in W^{1,2}$ are weak solutions of the mean curvature equation $\Rightarrow u^{l} \in W^{2,2}$
- Power decay of $\int |A|^2 \Rightarrow \int_{B_{\sigma}} |D^2 u'|^2 \leq C \sigma^{\alpha}$

Sketch of the proof-10: $C^{1,lpha} \cap W^{2,2}$ regularity near the good points

Lemma

The functions u^l such that $\mu \llcorner B_\rho(\xi_0) = \sum_{l=1}^M \mathcal{H}^2_{g \sqcup}(\text{graph } u^l \cap B_\rho(\xi_0))$ are $C^{1,\alpha} \cap W^{2,2}$ and satisfy the power decay

$$\int_{B_{\sigma}} |D^2 u'|^2 \leq C \sigma^{\alpha}.$$

Proof

- ▶ μ has weak mean curvature in L^2 and $u^{l} \in W^{1,2}$ are weak solutions of the mean curvature equation $\Rightarrow u^{l} \in W^{2,2}$
- Power decay of $\int |A|^2 \Rightarrow \int_{B_{\sigma}} |D^2 u'|^2 \leq C \sigma^{\alpha}$
- conclude by Morrey Lemma

Sketch of the proof-11: Non existence of bad points-a

Assume by contradiction there exists a bad point ξ₀ ∈ sptµ, then by definition there exists ε₀ such that

$$\lim_{\rho\to 0} \liminf_{k\to\infty} \int_{f_k(\mathbb{S}^2)\cap B(\xi,\rho)} |A|^2 > \epsilon_0^2.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Sketch of the proof-11: Non existence of bad points-a

Assume by contradiction there exists a bad point ξ₀ ∈ sptµ, then by definition there exists ε₀ such that

$$\lim_{\rho\to 0} \liminf_{k\to\infty} \int_{f_k(\mathbb{S}^2)\cap B(\xi,\rho)} |A|^2 > \epsilon_0^2.$$

 Since the bad points are discrete, in a neighbourhood of ξ₀ there are no other bad points

Assume by contradiction there exists a bad point ξ₀ ∈ sptµ, then by definition there exists ε₀ such that

$$\lim_{\rho\to 0} \liminf_{k\to\infty} \int_{f_k(\mathbb{S}^2)\cap B(\xi,\rho)} |A|^2 > \epsilon_0^2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Since the bad points are discrete, in a neighbourhood of ξ₀ there are no other bad points
- Consider an annulus B_ρ \ B_{ρ/2}(ξ₀) and perform graphical decomposition there

Assume by contradiction there exists a bad point ξ₀ ∈ sptµ, then by definition there exists ε₀ such that

$$\lim_{\rho\to 0} \liminf_{k\to\infty} \int_{f_k(\mathbb{S}^2)\cap B(\xi,\rho)} |A|^2 > \epsilon_0^2.$$

- Since the bad points are discrete, in a neighbourhood of ξ₀ there are no other bad points
- Consider an annulus B_ρ \ B_{ℓ/2}(ξ₀) and perform graphical decomposition there
- ▶ parametrize each "component" of $f_k(\mathbb{S}^2) \cap B_\rho \setminus B_{\frac{\rho}{2}}(\xi_0)$ with graph functions on $[\frac{\rho}{2}, \rho] \times [0, 2\pi\omega_k]$ plus pimples

Assume by contradiction there exists a bad point ξ₀ ∈ sptµ, then by definition there exists ε₀ such that

$$\lim_{\rho\to 0} \liminf_{k\to\infty} \int_{f_k(\mathbb{S}^2)\cap B(\xi,\rho)} |A|^2 > \epsilon_0^2.$$

- Since the bad points are discrete, in a neighbourhood of ξ₀ there are no other bad points
- Consider an annulus B_ρ \ B_{ℓ/2}(ξ₀) and perform graphical decomposition there
- ▶ parametrize each "component" of f_k(S²) ∩ B_ρ \ B_{ρ/2}(ξ₀) with graph functions on [^ρ/₂, ρ] × [0, 2πω_k] plus pimples
- Problem: we can have more windings, i.e $\omega_k > 1$

Assume by contradiction there exists a bad point ξ₀ ∈ sptµ, then by definition there exists ε₀ such that

$$\lim_{\rho\to 0} \liminf_{k\to\infty} \int_{f_k(\mathbb{S}^2)\cap B(\xi,\rho)} |A|^2 > \epsilon_0^2.$$

- Since the bad points are discrete, in a neighbourhood of ξ₀ there are no other bad points
- Consider an annulus B_ρ \ B_{ℓ/2}(ξ₀) and perform graphical decomposition there
- ▶ parametrize each "component" of $f_k(\mathbb{S}^2) \cap B_\rho \setminus B_{\frac{\rho}{2}}(\xi_0)$ with graph functions on $[\frac{\rho}{2}, \rho] \times [0, 2\pi\omega_k]$ plus pimples
- Problem: we can have more windings, i.e ω_k > 1→ branch point in the limit.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof Topological argument using Gauss Bonnet

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof Topological argument using Gauss Bonnet

By curvature conditions we know that $\lim E(f_k) < 4\pi$

Proof Topological argument using Gauss Bonnet

By curvature conditions we know that $\lim E(f_k) < 4\pi$ $\Rightarrow \omega_k = 1$ just one winding

Proof Topological argument using Gauss Bonnet

By curvature conditions we know that $\lim E(f_k) < 4\pi$

 $\Rightarrow \omega_k = 1$ just one winding

 \Rightarrow we can glue inside $B_\rho(\xi)$ biharmonic graphs and repeat the proof of the power decay of $\int |A|^2$

・ロト・日本・モン・モン・ ヨー うへぐ

Proof Topological argument using Gauss Bonnet

By curvature conditions we know that $\lim E(f_k) < 4\pi$ $\Rightarrow \omega_k = 1$ just one winding \Rightarrow we can glue inside $B_{\rho}(\xi)$ biharmonic graphs and repeat the proof of the power decay of $\int |A|^2$ $\Rightarrow \lim \inf_{k\to\infty} \int_{f_k(\mathbb{S}^2)\cap B(\xi_0,\rho)} |A|^2 \leq c\rho^{\alpha}$

Proof Topological argument using Gauss Bonnet

By curvature conditions we know that $\lim E(f_k) < 4\pi$

 $\Rightarrow \omega_k = 1$ just one winding

⇒ we can glue inside $B_{\rho}(\xi)$ biharmonic graphs and repeat the proof of the power decay of $\int |A|^2$

$$\Rightarrow \liminf_{k \to \infty} \int_{f_k(\mathbb{S}^2) \cap B(\xi_0, \rho)} |A|^2 \le c \rho^{\alpha}$$

 \Rightarrow contradiction with definition of bad point

Proof Topological argument using Gauss Bonnet

By curvature conditions we know that $\lim E(f_k) < 4\pi$

 $\Rightarrow \omega_k = 1$ just one winding

⇒ we can glue inside $B_{\rho}(\xi)$ biharmonic graphs and repeat the proof of the power decay of $\int |A|^2$

$$\Rightarrow \liminf_{k \to \infty} \int_{f_k(\mathbb{S}^2) \cap B(\xi_0, \rho)} |A|^2 \le c \rho^{\alpha}$$

 \Rightarrow contradiction with definition of bad point

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

GLOBALLY? How do the graphs match toghether?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

GLOBALLY? How do the graphs match toghether?

Simple: there exists an abstract smooth surface Σ parametrizing μ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

GLOBALLY? How do the graphs match toghether?

Simple: there exists an abstract smooth surface Σ parametrizing μ Difficoult: is $\Sigma = \mathbb{S}^2$?

・ロト・日本・モン・モン・ ヨー うへぐ

GLOBALLY? How do the graphs match toghether?

Simple: there exists an abstract smooth surface Σ parametrizing μ Difficoult: is $\Sigma = \mathbb{S}^2$? YES! by a compactess theorem of Breuning (2011) generalizing the compacteness of Langer

GLOBALLY? How do the graphs match toghether?

Simple: there exists an abstract smooth surface Σ parametrizing μ Difficoult: is $\Sigma = \mathbb{S}^2$? YES! by a compactess theorem of Breuning (2011) generalizing the compacteness of Langer

 $\Rightarrow \mu$ is ${\cal C}^{1,\alpha} \cap {\cal W}^{2,2}$ parametrized on \mathbb{S}^2 and is extremal for ${\cal E}$

GLOBALLY? How do the graphs match toghether?

Simple: there exists an abstract smooth surface Σ parametrizing μ Difficoult: is $\Sigma = \mathbb{S}^2$? YES! by a compactess theorem of Breuning (2011) generalizing the compacteness of Langer

 $\Rightarrow \mu \text{ is } C^{1,\alpha} \cap W^{2,2}$ parametrized on \mathbb{S}^2 and is extremal for E \Rightarrow equation+bootstrap gives the smoothness of the immersion

Minimization of $W_1 = \int \left(\frac{|H|^2}{4} + 1\right)$ in compact manifolds

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Minimization of $W_1 = \int \left(rac{|\mathcal{H}|^2}{4} + 1 ight)$ in compact manifolds

Theorem (Kuwert- M.- Schygulla '11)

Let (M, g) be a compact Riemannian 3-manifold with sectional curvature $K^M \leq 2$ and scalar curvature $R^M(\overline{x}) > 6$ for some point $\overline{x} \in M$.

・ロト・日本・モン・モン・ ヨー うへぐ

Minimization of $W_1 = \int \left(rac{|\mathcal{H}|^2}{4} + 1 ight)$ in compact manifolds

Theorem (Kuwert- M.- Schygulla '11)

Let (M, g) be a compact Riemannian 3-manifold with sectional curvature $K^M \leq 2$ and scalar curvature $R^M(\overline{x}) > 6$ for some point $\overline{x} \in M$.

Then there exists a smooth immersion $f : \mathbb{S}^2 \hookrightarrow M$ such that

 $W_1(f) = \inf\{W_1(h)|h: \mathbb{S}^2 \hookrightarrow (M,g) \text{ is a } C^{\infty} \text{ immersion in } (M,g)\}.$

・ロト・日本・モン・モン・ ヨー うへぐ

Minimization of $\mathcal{W}_1 = \int \left(rac{|\mathcal{H}|^2}{4} + 1 ight)$ in compact manifolds

Theorem (Kuwert- M.- Schygulla '11)

Let (M, g) be a compact Riemannian 3-manifold with sectional curvature $K^M \leq 2$ and scalar curvature $R^M(\overline{x}) > 6$ for some point $\overline{x} \in M$.

Then there exists a smooth immersion $f : \mathbb{S}^2 \hookrightarrow M$ such that

$$W_1(f) = \inf\{W_1(h)|h: \mathbb{S}^2 \hookrightarrow (M,g) \text{ is a } C^{\infty} \text{ immersion in } (M,g)\}.$$

REMARK- the curvature conditions can be fulfilled, for instance they hold for a round sphere $\mathbb{S}^3(R)$ if $\frac{1}{\sqrt{2}} \le R < 1$,

Minimization of $W_1 = \int \left(rac{|\mathcal{H}|^2}{4} + 1 ight)$ in compact manifolds

Theorem (Kuwert- M.- Schygulla '11)

Let (M, g) be a compact Riemannian 3-manifold with sectional curvature $K^M \leq 2$ and scalar curvature $R^M(\overline{x}) > 6$ for some point $\overline{x} \in M$.

Then there exists a smooth immersion $f:\mathbb{S}^2\hookrightarrow M$ such that

$$W_1(f) = \inf\{W_1(h)|h: \mathbb{S}^2 \hookrightarrow (M,g) \text{ is a } C^{\infty} \text{ immersion in } (M,g)\}.$$

REMARK- the curvature conditions can be fulfilled, for instance they hold for a round sphere $\mathbb{S}^3(R)$ if $\frac{1}{\sqrt{2}} \leq R < 1$, -the condition on the scalar curvature implies that inf $W_1 < 4\pi$ so the minimizing sequence does not shrink to a point,

Minimization of $W_1 = \int \left(rac{|\mathcal{H}|^2}{4} + 1 ight)$ in compact manifolds

Theorem (Kuwert- M.- Schygulla '11)

Let (M, g) be a compact Riemannian 3-manifold with sectional curvature $K^M \leq 2$ and scalar curvature $R^M(\overline{x}) > 6$ for some point $\overline{x} \in M$.

Then there exists a smooth immersion $f : \mathbb{S}^2 \hookrightarrow M$ such that

$$W_1(f) = \inf\{W_1(h)|h: \mathbb{S}^2 \hookrightarrow (M,g) \text{ is a } C^{\infty} \text{ immersion in } (M,g)\}.$$

REMARK- the curvature conditions can be fulfilled, for instance they hold for a round sphere $\mathbb{S}^3(R)$ if $\frac{1}{\sqrt{2}} \leq R < 1$, -the condition on the scalar curvature implies that inf $W_1 < 4\pi$ so the minimizing sequence does not shrink to a point, -the condition on the sectional curvature implies by Gauss equations that $\frac{1}{2} \int |A|^2 < 4\pi$ on the minimizing sequence, so it prevents branch points in the limit

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

PROBLEMS: the minimizing sequences

a) may become larger and larger in area and diameter

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

b) may escape to infinity

PROBLEMS: the minimizing sequences

a) may become larger and larger in area and diameter

b) may escape to infinity

FUNCTIONALS of Willmore type : $E_1 := \int \left(\frac{|A|^2}{2} + 1\right)$ and $W_1 := \int \left(\frac{|H|^2}{4} + 1\right)$

PROBLEMS: the minimizing sequences

a) may become larger and larger in area and diameter

b) may escape to infinity

FUNCTIONALS of Willmore type : $E_1 := \int \left(\frac{|A|^2}{2} + 1\right)$ and $W_1 := \int \left(\frac{|H|^2}{4} + 1\right)$

 $+1 \rightarrow$ Area bound on the minimizing sequences \rightarrow also diameter bound (by the monotonicity formula) \rightarrow a) is solved by the choice of the functionals

PROBLEMS: the minimizing sequences

a) may become larger and larger in area and diameter

b) may escape to infinity

FUNCTIONALS of Willmore type : $E_1 := \int \left(\frac{|A|^2}{2} + 1\right)$ and $W_1 := \int \left(\frac{|H|^2}{4} + 1\right)$

 $+1 \rightarrow$ Area bound on the minimizing sequences \rightarrow also diameter bound (by the monotonicity formula) \rightarrow a) is solved by the choice of the functionals

b) is solved by the choice of the manifold: positive curvature in some point at finite + asymptotically euclidean or hyperbolic

1) (M,g) is said asymptotically euclidean if there exist compact subsets $\Omega_1 \subset \subset M$ and $\Omega_2 \subset \subset \mathbb{R}^3$ such that

 $(M \setminus \Omega_1)$ is isometric to $(\mathbb{R}^3 \setminus \Omega_2, eucl + o_1(1))$,

1) (M,g) is said asymptotically euclidean if there exist compact subsets $\Omega_1 \subset \subset M$ and $\Omega_2 \subset \subset \mathbb{R}^3$ such that

$$(M \setminus \Omega_1)$$
 is isometric to $(\mathbb{R}^3 \setminus \Omega_2, eucl + o_1(1)),$ (3)

where $o_1(1)$ denotes a symmetric bilinear form which goes to 0 with its first derivatives at infinity,

$$\lim_{|x|\to\infty} (|o_1(1)(x)| + |\nabla o_1(1)(x)|) = 0.$$

1) (M, g) is said asymptotically euclidean if there exist compact subsets $\Omega_1 \subset \subset M$ and $\Omega_2 \subset \subset \mathbb{R}^3$ such that

$$(M \setminus \Omega_1)$$
 is isometric to $(\mathbb{R}^3 \setminus \Omega_2, eucl + o_1(1)),$ (3)

where $o_1(1)$ denotes a symmetric bilinear form which goes to 0 with its first derivatives at infinity,

$$\lim_{|x|\to\infty} (|o_1(1)(x)| + |\nabla o_1(1)(x)|) = 0.$$

2) (M, g) is said hyperbolic outside a compact subset if there exists $\Omega \subset \subset M$ such that the sectional curvature $K^M \leq 0$ on $M \setminus \Omega$.

Theorem (M.-Schygulla '11)

Let (M, g) be a 3-dimensional non compact Riemannian manifold with bounded geometry such that:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (M.-Schygulla '11)

Let (M, g) be a 3-dimensional non compact Riemannian manifold with bounded geometry such that:

i) (M,g) is asymptotically euclidean or hyperbolic outside a compact subset

Theorem (M.-Schygulla '11)

Let (M, g) be a 3-dimensional non compact Riemannian manifold with bounded geometry such that:

i) (M,g) is asymptotically euclidean or hyperbolic outside a compact subset

ii) there exists a point \bar{p} where the scalar curvature is $R(\bar{p}) > 6$,

Theorem (M.-Schygulla '11)

Let (M, g) be a 3-dimensional non compact Riemannian manifold with bounded geometry such that:

i) (M,g) is asymptotically euclidean or hyperbolic outside a compact subset

ii) there exists a point \bar{p} where the scalar curvature is $R(\bar{p}) > 6$,

iii) the sectional curvature \bar{K} of (M,g) is $\bar{K} \leq 2$.

Theorem (M.-Schygulla '11)

Let (M, g) be a 3-dimensional non compact Riemannian manifold with bounded geometry such that:

i) (M,g) is asymptotically euclidean or hyperbolic outside a compact subset

ii) there exists a point \bar{p} where the scalar curvature is $R(\bar{p}) > 6$,

iii) the sectional curvature \overline{K} of (M,g) is $\overline{K} \leq 2$. Then there exists a smooth immersion $f : \mathbb{S}^2 \hookrightarrow M$ such that

$$W_1(f) = \inf\{W_1(h)|h: \mathbb{S}^2 \hookrightarrow (M,g) \text{ is a } C^{\infty} \text{ immersion in } (M,g)\}.$$

Minimization of E_1

Theorem (M.-Schygulla '11)

Let (M, g) be a 3-dimensional non compact Riemannian manifold with bounded geometry such that:

i) (M,g) is asymptotically euclidean or hyperbolic outside a compact subset

ii) there exists a point \bar{p} where the scalar curvature is strictly greater than 6, $R(\bar{p}) > 6$.

Theorem (M.-Schygulla '11)

Let (M, g) be a 3-dimensional non compact Riemannian manifold with bounded geometry such that:

i) (M,g) is asymptotically euclidean or hyperbolic outside a compact subset

ii) there exists a point \bar{p} where the scalar curvature is strictly greater than 6, $R(\bar{p}) > 6$. Then there exists a smooth immersion $f : \mathbb{S}^2 \hookrightarrow M$ such that

$$E_1(f) = \inf\{E_1(h)|h: \mathbb{S}^2 \hookrightarrow (M,g) \text{ is a } C^\infty \text{ immersion in } (M,g)\}.$$

Remarks on asymptotic conditions

2) asymptotically spatial Schwarzschild 3-manifolds with mass or the metric of the positive mass theorem of Schoen-Yau fit in our asymptotically euclidean assumption

2) asymptotically spatial Schwarzschild 3-manifolds with mass or the metric of the positive mass theorem of Schoen-Yau fit in our asymptotically euclidean assumption \leftarrow spacelike timeslices of solutions to the Einstein vacuum equation, null cosmological constant

2) asymptotically spatial Schwarzschild 3-manifolds with mass or the metric of the positive mass theorem of Schoen-Yau fit in our asymptotically euclidean assumption \leftarrow spacelike timeslices of solutions to the Einstein vacuum equation, null cosmological constant

3) asymptotic Anti-de Sitter-Schwarzschild metrics with mass (considered for instannce by Neves and Tian) are hyperbolic outside a compact subset

2) asymptotically spatial Schwarzschild 3-manifolds with mass or the metric of the positive mass theorem of Schoen-Yau fit in our asymptotically euclidean assumption \leftarrow spacelike timeslices of solutions to the Einstein vacuum equation, null cosmological constant

 asymptotic Anti-de Sitter-Schwarzschild metrics with mass (considered for instannce by Neves and Tian) are hyperbolic outside a compact subset ← spacelike timeslices of solutions to the Einstein vacuum equation, negative cosmological constant

Minimization of $\int |H|^p$ and $\int |A|^p$, p > 2

PROBLEM: given (M, g) a 3-d Riemannian manifold, do exist surfaces minimizing $\int |H|^p$ or $\int |A|^p$, p > 2?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

PROBLEM: given (M, g) a 3-d Riemannian manifold, do exist surfaces minimizing $\int |H|^p$ or $\int |A|^p$, p > 2? TECHNIQUE: Geometric measure theory (varifolds: "generalized surfaces")

・ロト・日本・モン・モン・ ヨー うへぐ

PROBLEM: given (M, g) a 3-d Riemannian manifold, do exist surfaces minimizing $\int |H|^p$ or $\int |A|^p$, p > 2? TECHNIQUE: Geometric measure theory (varifolds: "generalized surfaces")

RESULT[M. (ArXiv'10)]: if (M, g) is compact + other technical conditions (ex: M = closure of a bounded open in \mathbb{R}^3) then there exists a "generalized surface" minimizing $\int |H|^p$ (or $\int |A|^p$), p > 2.

PROBLEM: given (M, g) a 3-d Riemannian manifold, do exist surfaces minimizing $\int |H|^p$ or $\int |A|^p$, p > 2? TECHNIQUE: Geometric measure theory (varifolds: "generalized surfaces")

RESULT[M. (ArXiv'10)]: if (M, g) is compact + other technical conditions (ex: M = closure of a bounded open in \mathbb{R}^3) then there exists a "generalized surface" minimizing $\int |H|^p$ (or $\int |A|^p$), p > 2.

REMARK: proved in any dimension and codimension.

Fix p > 2. NEW TOOLS

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Fix p > 2. NEW TOOLS:1) isoperimetric inequalities. If (M, g) is compact and does not contain "generalized minimal surfaces" (resp. "generalized totally geodesic surfaces") then $\exists C > 0$ such that for every generalized surface $\Sigma \subset M$

$$Area(\Sigma) \leq C \int |H|^p \ (ext{resp.} \leq C \int |A|^p)$$

・ロト・日本・モート モー うへぐ

Fix p > 2. NEW TOOLS:1) isoperimetric inequalities. If (M, g) is compact and does not contain "generalized minimal surfaces" (resp. "generalized totally geodesic surfaces") then $\exists C > 0$ such that for every generalized surface $\Sigma \subset M$

$$Area(\Sigma) \leq C \int |H|^p \text{ (resp. } \leq C \int |A|^p \text{)}$$

2) Monotonicity formula. Let $\Sigma \subset \mathbb{R}^n$ be a generalized surface. Fixed a point $x_0 \in \Sigma$ and $0 < \sigma < \rho < \infty$

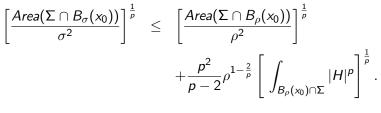
$$\begin{bmatrix} \frac{Area(\Sigma \cap B_{\sigma}(x_0))}{\sigma^2} \end{bmatrix}^{\frac{1}{p}} \leq \left[\frac{Area(\Sigma \cap B_{\rho}(x_0))}{\rho^2} \right]^{\frac{1}{p}} \\ + \frac{p^2}{p-2} \rho^{1-\frac{2}{p}} \left[\int_{B_{\rho}(x_0) \cap \Sigma} |H|^p \right]^{\frac{1}{p}}$$

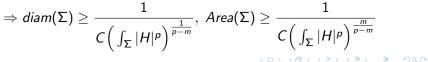
・ロト・日本・モン・モン・ ヨー うへぐ

Fix p > 2. NEW TOOLS:1) isoperimetric inequalities. If (M, g) is compact and does not contain "generalized minimal surfaces" (resp. "generalized totally geodesic surfaces") then $\exists C > 0$ such that for every generalized surface $\Sigma \subset M$

$$Area(\Sigma) \leq C \int |H|^p \text{ (resp. } \leq C \int |A|^p \text{)}$$

2) Monotonicity formula. Let $\Sigma \subset \mathbb{R}^n$ be a generalized surface. Fixed a point $x_0 \in \Sigma$ and $0 < \sigma < \rho < \infty$





The articles

- A. Mondino, Some results about the existence of critical points for the Willmore functional, Math. Zeit., Vol. 266, Num. 3, (2010), 583-622.
- ► A. Mondino, *The conformal Willmore Functional: a perturbative approach*, to appear in JGA (2011).
- A. Mondino, Existence of Integral m-Varifolds minimizing ∫ |A|^p and ∫ |H|^p in Riemannian Manifolds, arXiv:1010.4514, submitted, (2010).
- E. Kuwert, A. Mondino, J. Schygulla Existence of immersed spheres minimizing curvature functionals in compact 3-manifolds, ArXiv: 1111.4893, submitted (2011).
- A. Mondino, J. Schygulla Existence of immersed spheres minimizing curvature functionals in noncompact 3-manifolds, submitted (2012)

IITHANK YOU FOR THE ATTENTION!!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで