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Introduction

NOTATION:

I (M, g) 3-d Riemannian manifold

I Σ closed (compact, ∂Σ = ∅) 2-d surface

I f : Σ ↪→ M immersion, g̊ induced metric on Σ

I Aij = − < ∇∂
xi

N, ∂x j > II fundamental form of f (Σ)

I H = Aij g̊
ij = k1 + k2= mean curvature

I A◦ij = Aij − 1
2 Hg̊ij= traceless II fundamental form

Question

Which are the best immersions f ?
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Classical special immersions

I H ≡ 0⇒ MINIMAL immersion ( critical point of Area)

I A ≡ 0⇒ TOTALLY GEODESIC immersion

I A◦ ≡ 0⇒ k1 = k2 TOTALLY UMBILIC immersion

FACT: in general they may not exist (ex. minimal in R3 or totally
umbilical in Berger Spheres)

Question

How it is possible to relax the definitions in order to get existence?
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−→ Look for minimizers (or critical points) of

∫
f (Σ)
|H|p, p > 1 ”generalized minimal”

∫
f (Σ)
|A|p, p > 1 ”generalized totally geodesic”

∫
f (Σ)
|A◦|p, p > 1 ”generalized totally umbilic”

Remark

(M, g) and Σ are fixed at the beginning, minimize in the
immersion f
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p = 2 Willmore functionals

Definition

In case p = 2,

W (f ) :=
1

4

∫
f (Σ)
|H|2 Willmore functional

Wcnf (f ) :=
1

2

∫
f (Σ)
|A◦|2 Conformal Willmore functional

E (f ) :=
1

2

∫
f (Σ)
|A|2 Energy functional

Remark: if (M, g) = (R3, eucl) then by Gauss Bonnet Theorem

W (f ) = Wcnf (f ) + 2πχE (Σ) =
1

2
E (f ) + πχE (Σ)
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Conformal invariance

Theorem (Wiener)

Wcnf = 1
2

∫
|A◦|2 is conformally invariant, i.e.

∀u ∈ C∞(M) called g [u] := e2ug ⇒Wcnf (f )[u] = Wcnf (f )

where Wcnf (f )[u] is the conformal Willmore functional evaluated
on f (Σ) immersed in (M, g [u]).

Remark

W is conformal invariant in R3 but not in a general manifold ⇒
Wcnf is the ”correct” Willmore functional from a conformal point
of view.
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Applications

I General Relativity: Hawking mass

Mass(Σ) :=

√
Area(Σ)

16π
(1− 1

16π

∫
Σ
|H|2)

I String Theory: Polyakov extrinsic action

I Biology: Hellfrich Energy

I Reilly Theorem: if Σ ↪→ (R3, eucl)

λ1(Σ) ≤ 2

Area(Σ)

∫
Σ
|H|2

I Nonlinear elasticity theory, as Γ-limit of energy functionals
(Friesecke-James-Müller)
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Our problem

GOAL: Minimize or more generally find critical points of W ,
Wcnf , E and related functionals

→ prove existence of ”generalized special immersions”.
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Some literature about existence of minimizers or critical
points

Willmore functional W = 1
4

∫
H2 In Euclidean Space, i.e.

(M, g) = (R3, eucl):

I Strict global minimum on standard spheres Sρp (Willmore ’60):

∀Σ,∀f : Σ ↪→ R3 ⇒W (f ) ≥ 4π and W (f ) = 4π ⇔ f (Σ) = Sρp

I For each genus the infimum (> 4π) is reached: Simon (1993)
and Bauer-Kuwert (2003), different proof by Rivière (2010)

I Multiplicity results in genus 1 by Pinkall
I Recent works by Rivière, Kuwert, Schätzle, Topping, Bernard,

Schygulla etc.

In manifolds?Just in space forms: Bang-Yen Chen, Guo, Li-Yau,
Montiel, Ritoré, Ros, Urbano, Wiener, etc.
TODAY: give results, i.e. existence or non-existence of minimizers
or critical points, in non constantly curved manifolds
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Perturbative setting

Ambient manifold: (M, g) = (R3, gε) where (gε)µν := δµν + εhµν ,
hµν is symmetric (2, 0) tensor field.

IDEA: for ε = 0 the ambient manifold is R3 ⇒ the round spheres
form a 4-d manifold of critical points→ use a perturbative method
lying on a Lyapunov-Schmidt reduction.
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Existence for W in (R3, gε)

NOTATION: if (M, g) = (R3, gε := eucl + εh), write
R = εR1 + o(ε)

Theorem [M.(Math. Zeit. ’10)]
Assume
- ∃p̄ ∈ R3 such that R1(p̄) 6= 0,
- Said ‖h(p)‖ := sup|v |=1 |hp(v , v)|

i) lim|p|→∞ ‖h(p)‖ = 0.

ii) ∃C > 0 and α > 2 s.t. |Dλhµν(p)| < C
|p|α ∀λ, µ, ν = 1 . . . 3.

Then, for ε small enough, there exists a perturbed standard sphere
Sρεpε (wε(pε, ρε)) (where wε(pε, ρε) ∈ C 4,α(S2)) which is a Willmore
immersion of S2 in (R3, gε)

Lemma[M. (Math. Zeit. ’10)]:Let (M, g) be a general ambient
manifold with scalar curvature R, then the following expansion of
W on small geodesic spheres hold:

W (Sp,ρ) = 4π − 2π

3
R(p)ρ2 + Op(ρ3)



Existence for W in (R3, gε)

NOTATION: if (M, g) = (R3, gε := eucl + εh), write
R = εR1 + o(ε)

Theorem [M.(Math. Zeit. ’10)]
Assume
- ∃p̄ ∈ R3 such that R1(p̄) 6= 0,
- Said ‖h(p)‖ := sup|v |=1 |hp(v , v)|

i) lim|p|→∞ ‖h(p)‖ = 0.

ii) ∃C > 0 and α > 2 s.t. |Dλhµν(p)| < C
|p|α ∀λ, µ, ν = 1 . . . 3.

Then, for ε small enough, there exists a perturbed standard sphere
Sρεpε (wε(pε, ρε)) (where wε(pε, ρε) ∈ C 4,α(S2)) which is a Willmore
immersion of S2 in (R3, gε)

Lemma[M. (Math. Zeit. ’10)]:Let (M, g) be a general ambient
manifold with scalar curvature R, then the following expansion of
W on small geodesic spheres hold:

W (Sp,ρ) = 4π − 2π

3
R(p)ρ2 + Op(ρ3)



Existence for W in (R3, gε)

NOTATION: if (M, g) = (R3, gε := eucl + εh), write
R = εR1 + o(ε)

Theorem [M.(Math. Zeit. ’10)]
Assume
- ∃p̄ ∈ R3 such that R1(p̄) 6= 0,
- Said ‖h(p)‖ := sup|v |=1 |hp(v , v)|

i) lim|p|→∞ ‖h(p)‖ = 0.

ii) ∃C > 0 and α > 2 s.t. |Dλhµν(p)| < C
|p|α ∀λ, µ, ν = 1 . . . 3.

Then, for ε small enough, there exists a perturbed standard sphere
Sρεpε (wε(pε, ρε)) (where wε(pε, ρε) ∈ C 4,α(S2)) which is a Willmore
immersion of S2 in (R3, gε)

Lemma[M. (Math. Zeit. ’10)]:Let (M, g) be a general ambient
manifold with scalar curvature R, then the following expansion of
W on small geodesic spheres hold:

W (Sp,ρ) = 4π − 2π

3
R(p)ρ2 + Op(ρ3)



Existence for W in (R3, gε)

NOTATION: if (M, g) = (R3, gε := eucl + εh), write
R = εR1 + o(ε)

Theorem [M.(Math. Zeit. ’10)]
Assume
- ∃p̄ ∈ R3 such that R1(p̄) 6= 0,
- Said ‖h(p)‖ := sup|v |=1 |hp(v , v)|

i) lim|p|→∞ ‖h(p)‖ = 0.

ii) ∃C > 0 and α > 2 s.t. |Dλhµν(p)| < C
|p|α ∀λ, µ, ν = 1 . . . 3.

Then, for ε small enough, there exists a perturbed standard sphere
Sρεpε (wε(pε, ρε)) (where wε(pε, ρε) ∈ C 4,α(S2)) which is a Willmore
immersion of S2 in (R3, gε)

Lemma[M. (Math. Zeit. ’10)]:Let (M, g) be a general ambient
manifold with scalar curvature R,

then the following expansion of
W on small geodesic spheres hold:

W (Sp,ρ) = 4π − 2π

3
R(p)ρ2 + Op(ρ3)



Existence for W in (R3, gε)

NOTATION: if (M, g) = (R3, gε := eucl + εh), write
R = εR1 + o(ε)

Theorem [M.(Math. Zeit. ’10)]
Assume
- ∃p̄ ∈ R3 such that R1(p̄) 6= 0,
- Said ‖h(p)‖ := sup|v |=1 |hp(v , v)|

i) lim|p|→∞ ‖h(p)‖ = 0.

ii) ∃C > 0 and α > 2 s.t. |Dλhµν(p)| < C
|p|α ∀λ, µ, ν = 1 . . . 3.

Then, for ε small enough, there exists a perturbed standard sphere
Sρεpε (wε(pε, ρε)) (where wε(pε, ρε) ∈ C 4,α(S2)) which is a Willmore
immersion of S2 in (R3, gε)

Lemma[M. (Math. Zeit. ’10)]:Let (M, g) be a general ambient
manifold with scalar curvature R, then the following expansion of
W on small geodesic spheres hold:

W (Sp,ρ) = 4π − 2π

3
R(p)ρ2 + Op(ρ3)



Remark + non Existence for W

REMARK: gε is close and asymptotical to euclidean but NOT
CONSTANT CURVATURE

Theorem (M.(Math. Zeit. ’10))

Let (M, g) be a 3-d Riemannian manifold and assume that at the
point p̄ ∈ M the scalar curvature is non null:

R(p̄) 6= 0.

Then, for radius ρ and perturbation w ∈ C 4,α(S2) small enough,
the perturbed geodesic spheres Sp̄,ρ(w) are not critical points of
the Willmore functional W .

REMARK: different behavior from flat case where all the spheres
are critical points
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Results for Wcnf = 1
2

∫
|A◦|2 in (R3, gε)

NOTATION: traceless Ricci tensor of a Riemannian manifold
Sµν := Ricµν − 1

3 R gµν
in (R3, gε) one has ‖Sp‖2 = ε2s̃p + o(ε2)

Theorem (M. (J.G.A. ’11))

Let hµν ∈ C∞0 (R3) and let c be such that

c := sup{‖hµν‖H1(π) : π is an affine plane in R3, µ, ν = 1, 2, 3}.

Then there exists a constant Ac > 0 depending on c with the
following property: if there exists a point p̄ such that

s̃p̄ > Ac

then, for ε small enough, there exists a perturbed standard sphere
Sρεpε (wε) which is a critical point of the conformal Willmore
functional Wcnf converging to a standard sphere as ε→ 0.
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Non existence for Wcnf = 1
2

∫
|A◦|2 in General 3-Manifolds

Since Sρp are critical in R3, may expect that small pertubations of
small geodesic spheres Sp,ρ are critical in manifolds, but

Theorem (M. (J.G.A. ’11))

Let (M, g) be a Riemannian manifold. Assume that the traceless
Ricci tensor of M at the point p̄ is not null:

‖Sp̄‖ 6= 0.

Then there exist ρ0 > 0 and r > 0 such that for radius ρ < ρ0 and
perturbation w ∈ C 4,α(S2) with ‖w‖C4,α(S2) < r , the surfaces
Sp̄,ρ(w) are not critical points of Wcnf .

Remark:- The condition ‖Sp‖ 6= 0 is generic.
- If (M, g) has not constant sectional curvature then there exists at
least one point p̄ such that ‖Sp̄‖ 6= 0.
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Minimization of E = 1
2

∫
|A|2 in compact manifolds: global

setting

Theorem (Kuwert- M.- Schygulla ’11)

Let (M, g) be a compact 3-dimensional Riemannian manifold with
strictly positive sectional curvature K̄ > 0.

Then there exists a smooth immersion f : S2 ↪→ M such that

E (f ) = inf{E (h)|h : S2 ↪→ (M, g) is a C∞ immersion in (M, g)}.

REMARK- By compactness there exists a λ > 0 such that

K̄ ≥ λ > 0. (1)

- the theorem is non trivial in the sense that there are examples of
compact 3-manifolds with K̄ > 0 which do not contain totally
geodesic immersions; for instance Berger Spheres
[Souam-Toubiana (Comm. Math. Helv. ’09)]
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Sketch of proof-1:Framework

TECHNIQUE: direct methods in the calculus of variations

I enlarge the space for proving compactness of the minimizing
sequence

I prove that the minimizing sequence does not degenerate

I prove lower semicontinuity of the functional under weak
convergence

I prove regularity of the weak limit object

Enlarged space: take a minimizing sequence of immersions
fk : S2 ↪→ M
associate the Radon measures
µk : µk(B) := Area(f ∗k g)(f −1

k (B))′′ = Area(B ∩ fk(S2))′′ for every
B ⊂ M Borel set



Sketch of proof-1:Framework

TECHNIQUE: direct methods in the calculus of variations

I enlarge the space for proving compactness of the minimizing
sequence

I prove that the minimizing sequence does not degenerate

I prove lower semicontinuity of the functional under weak
convergence

I prove regularity of the weak limit object

Enlarged space: take a minimizing sequence of immersions
fk : S2 ↪→ M
associate the Radon measures
µk : µk(B) := Area(f ∗k g)(f −1

k (B))′′ = Area(B ∩ fk(S2))′′ for every
B ⊂ M Borel set



Sketch of proof-1:Framework

TECHNIQUE: direct methods in the calculus of variations

I enlarge the space for proving compactness of the minimizing
sequence

I prove that the minimizing sequence does not degenerate

I prove lower semicontinuity of the functional under weak
convergence

I prove regularity of the weak limit object

Enlarged space: take a minimizing sequence of immersions
fk : S2 ↪→ M
associate the Radon measures
µk : µk(B) := Area(f ∗k g)(f −1

k (B))′′ = Area(B ∩ fk(S2))′′ for every
B ⊂ M Borel set



Sketch of proof-1:Framework

TECHNIQUE: direct methods in the calculus of variations

I enlarge the space for proving compactness of the minimizing
sequence

I prove that the minimizing sequence does not degenerate

I prove lower semicontinuity of the functional under weak
convergence

I prove regularity of the weak limit object

Enlarged space: take a minimizing sequence of immersions
fk : S2 ↪→ M
associate the Radon measures
µk : µk(B) := Area(f ∗k g)(f −1

k (B))′′ = Area(B ∩ fk(S2))′′ for every
B ⊂ M Borel set



Sketch of proof-1:Framework

TECHNIQUE: direct methods in the calculus of variations

I enlarge the space for proving compactness of the minimizing
sequence

I prove that the minimizing sequence does not degenerate

I prove lower semicontinuity of the functional under weak
convergence

I prove regularity of the weak limit object

Enlarged space: take a minimizing sequence of immersions
fk : S2 ↪→ M
associate the Radon measures
µk : µk(B) := Area(f ∗k g)(f −1

k (B))′′ = Area(B ∩ fk(S2))′′ for every
B ⊂ M Borel set



Sketch of proof-1:Framework

TECHNIQUE: direct methods in the calculus of variations

I enlarge the space for proving compactness of the minimizing
sequence

I prove that the minimizing sequence does not degenerate

I prove lower semicontinuity of the functional under weak
convergence

I prove regularity of the weak limit object

Enlarged space: take a minimizing sequence of immersions
fk : S2 ↪→ M

associate the Radon measures
µk : µk(B) := Area(f ∗k g)(f −1

k (B))′′ = Area(B ∩ fk(S2))′′ for every
B ⊂ M Borel set



Sketch of proof-1:Framework

TECHNIQUE: direct methods in the calculus of variations

I enlarge the space for proving compactness of the minimizing
sequence

I prove that the minimizing sequence does not degenerate

I prove lower semicontinuity of the functional under weak
convergence

I prove regularity of the weak limit object

Enlarged space: take a minimizing sequence of immersions
fk : S2 ↪→ M
associate the Radon measures
µk : µk(B) := Area(f ∗k g)(f −1

k (B))′′ = Area(B ∩ fk(S2))′′ for every
B ⊂ M Borel set



Sketch of proof-2: Compacteness

I By Banach Alaoglu, for having compactness of the measures
we need a uniform area bound on fk

Lemma Let (M, g) be a closed 3-dimensional manifold with
positive sectional curvature K̄ : ∃λ such that K̄ > λ2 > 0. Then,
for every smooth immersion f : S2 ↪→ (M, g), the following area
estimate holds:

|f (S2)|g ≤
1

λ2

(
4π + E (f )

)
(2)

where |f (S2)|g :=
∫
S2 dµg is the area of S2 equipped with the pull

back metric f ∗g given by the immersion.

Idea of Proof: play with the Gauss equation

K̄ (Tx f ) = KG − k1k2 = KG −
1

4
H2 +

1

2
|A◦|2
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Sketch of the proof-3: nondegeneracy

⇒ there exists a Radon measure µ on M such that µk → µ up to
subsequences

Problem. The sequence may degenerate: fk may shrink to a point
or µ may be 0

Lemma Let (M, g) be a closed Riemannian 3-manifold whose
scalar curvature is strictly positive at a point:

∃p̄ ∈ M : Rg (p̄) > 0.

Then for a minimizing sequence fk of E

lim inf
k

(diamg fk(S2)) > 0

where diamg fk(S2) is the diameter of fk(S2) in the Riemannian
manifold (M, g).
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Sketch of the proof-4: Proof of nondegeneracy

I IDEA: Perform a blow up procedure.

I On small gedesic spheres

E (Sp̄,ρ) = 4π − 2π

3
R(p̄)ρ2 + o(ρ2) < 4π

for small ρ.

⇒ 4π − δ > inf
f :S2↪→(M,g)

E (f ) = lim E (fk).

I By Willmore
inf

f :S2↪→R3
E (f ) = 4π

I ⇒ if fk shrink then by blow up

lim inf E (fk) ≥ 4π
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Sketch of proof-5: Existence of candidate minimizer

I ⇒ using the curvature assumptions on (M, g) we proved that
the minimizing sequence is compact and does not degenerate

I ⇒ there exists a non null limit measure µ (with a weak notion
of second fundamental form, by Hutchinson Theory)

I FACT: the functional E is lower semicontinuous (with respect
to varifold convergence)

⇒ E (µ) ≤ lim inf E (fk) = inf E

I ⇒ µ is a candidate minimizer and we have to prove regularity
i.e. this measure is associated to a smooth immersion of a
sphere
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Sketch of proof-6: Regularity

I Take inspiration from [Simon (CAG ’93)] and do a partition of
sptµ into good and bad points:

I fixed a small ε > 0 we say that ξ ∈ sptµ is a bad point if

lim
ρ→0

lim inf
k→∞

∫
fk (S2)∩B(ξ,ρ)

|A|2 > ε2;

the complementary are the good points

I From energy bound ⇒ only finitely many bad points
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Sketch of proof-7: Graphical Decomposition Lemma

Adapting Simon setting we get Graphical decomposition in
Riemannian manifolds:

IDEA: in a neighboorod of a good point, each surface is
overlapping of many sheets. Each one is union of a lipschitz graph
(with holes) and small ”pimples”



Sketch of proof-8:Towards C 1,α regularity

GOAL: prove C 1,α regularity near good points

IDEA: use Morrey Lemma

Lemma Let (M, g), fk and µ as before. Let ξ0 a ε0-good point for
ε > 0 small enough.
Then we have for all ξ ∈ sptµ ∩ B ρ0

2
(ξ0) and all ρ ≤ ρ0

4 that

lim inf
k→∞

∫
B ρ

8
(ξ)
|Ak |2 dµk ≤ cρα where c = c(ρ0) and α ∈ (0, 1).
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Sketch of the proof-9: construction of the limit graphs

I Work locally in a neighboorod of a good point ξ0

I replace the pimples with biharmonic graphs

I get new graph functions ūl
k on the planes Ll with uniform

bound on Lipschitz (then also W 1,2) norms

I ⇒ there exist ul ∈W 1,∞ such that

ūl
k → ul in C 0

ūl
k ⇀ ul in W 1,2

Lemma: µxBρ(ξ0) =
∑M

l=1H2
gx
(
graph ul ∩ Bρ(ξ0)

)
.

Proof By Radon Nikodym and a modification of Poincaré
inequality by Simon
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inequality by Simon



Sketch of the proof-9: construction of the limit graphs

I Work locally in a neighboorod of a good point ξ0

I replace the pimples with biharmonic graphs

I get new graph functions ūl
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Sketch of the proof-10: C 1,α ∩W 2,2 regularity near the
good points

Lemma
The functions ul such that
µxBρ(ξ0) =

∑M
l=1H2

gx
(
graph ul ∩ Bρ(ξ0)

)
are C 1,α ∩W 2,2 and

satisfy the power decay∫
Bσ

|D2ul |2 ≤ Cσα.

Proof

I µ has weak mean curvature in L2 and ul ∈W 1,2 are weak
solutions of the mean curvature equation ⇒ ul ∈W 2,2

I Power decay of
∫
|A|2 ⇒

∫
Bσ
|D2ul |2 ≤ Cσα

I conclude by Morrey Lemma
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Sketch of the proof-11: Non existence of bad points-a

I Assume by contradiction there exists a bad point ξ0 ∈ sptµ,
then by definition there exists ε0 such that

lim
ρ→0

lim inf
k→∞

∫
fk (S2)∩B(ξ,ρ)

|A|2 > ε2
0.

I Since the bad points are discrete, in a neighbourhood of ξ0

there are no other bad points

I Consider an annulus Bρ \ B ρ
2
(ξ0) and perform graphical

decomposition there

I parametrize each ”component” of fk(S2) ∩ Bρ \ B ρ
2
(ξ0) with

graph functions on [ρ2 , ρ]× [0, 2πωk ] plus pimples

I Problem: we can have more windings, i.e ωk > 1→ branch
point in the limit.
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Sketch of the proof-11: Non existence of bad points-b

Lemma If there exists δ > 0 such that 1
2

∫
fk
|Ak |2 ≤ 4π − δ then

the number of windings ωk = 1

Proof Topological argument using Gauss Bonnet

By curvature conditions we know that lim E (fk) < 4π
⇒ ωk = 1 just one winding
⇒ we can glue inside Bρ(ξ) biharmonic graphs and repeat the
proof of the power decay of

∫
|A|2

⇒ lim infk→∞
∫
fk (S2)∩B(ξ0,ρ) |A|

2 ≤ cρα

⇒ contradiction with definition of bad point
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Sketch of the proof-12:smoothness

⇒ local C 1,α ∩W 2,2 regularity everywhere

GLOBALLY? How do the graphs match toghether?

Simple: there exists an abstract smooth surface Σ parametrizing µ
Difficoult: is Σ = S2?
YES! by a compactess theorem of Breuning (2011) generalizing
the compacteness of Langer

⇒ µ is C 1,α ∩W 2,2 parametrized on S2 and is extremal for E
⇒ equation+bootstrap gives the smoothness of the immersion
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Minimization of W1 =
∫ ( |H|2

4 + 1
)

in compact manifolds

Theorem (Kuwert- M.- Schygulla ’11)

Let (M, g) be a compact Riemannian 3-manifold with sectional
curvature KM ≤ 2 and scalar curvature RM(x) > 6 for some point
x ∈ M.

Then there exists a smooth immersion f : S2 ↪→ M such that

W1(f ) = inf{W1(h)|h : S2 ↪→ (M, g) is a C∞ immersion in (M, g)}.

REMARK- the curvature conditions can be fulfilled, for instance
they hold for a round sphere S3(R) if 1√

2
≤ R < 1,

-the condition on the scalar curvature implies that inf W1 < 4π so
the minimizing sequence does not shrink to a point,
-the condition on the sectional curvature implies by Gauss
equations that 1

2

∫
|A|2 < 4π on the minimizing sequence, so it

prevents branch points in the limit
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Minimization of Willmore type functionals in
NONCOMPACT manifolds

PROBLEMS: the minimizing sequences
a) may become larger and larger in area and diameter
b) may escape to infinity

FUNCTIONALS of Willmore type : E1 :=
∫ ( |A|2

2 +1
)

and

W1 :=
∫ ( |H|2

4 +1
)

+1 → Area bound on the minimizing sequences → also diameter
bound (by the monotonicity formula) → a) is solved by the choice
of the functionals
b) is solved by the choice of the manifold: positive curvature in
some point at finite + asymptotically euclidean or hyperbolic
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Asymptotic conditions

1) (M, g) is said asymptotically euclidean if there exist compact
subsets Ω1 ⊂⊂ M and Ω2 ⊂⊂ R3 such that

(M\Ω1) is isometric to (R3\Ω2, eucl + o1(1)),

(3)

where o1(1) denotes a symmetric bilinear form which goes to 0
with its first derivatives at infinity,

lim
|x |→∞

(|o1(1)(x)|+ |∇o1(1)(x)|) = 0.

2) (M, g) is said hyperbolic outside a compact subset if there exists
Ω ⊂⊂ M such that the sectional curvature KM ≤ 0 on M \ Ω.
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Minimization of W1

Theorem (M.-Schygulla ’11)

Let (M, g) be a 3-dimensional non compact Riemannian manifold
with bounded geometry such that:

i) (M, g) is asymptotically euclidean or hyperbolic outside a
compact subset

ii) there exists a point p̄ where the scalar curvature is R(p̄) > 6,

iii) the sectional curvature K̄ of (M, g) is K̄ ≤ 2.
Then there exists a smooth immersion f : S2 ↪→ M such that

W1(f ) = inf{W1(h)|h : S2 ↪→ (M, g) is a C∞ immersion in (M, g)}.
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Minimization of E1

Theorem (M.-Schygulla ’11)

Let (M, g) be a 3-dimensional non compact Riemannian manifold
with bounded geometry such that:

i) (M, g) is asymptotically euclidean or hyperbolic outside a
compact subset

ii) there exists a point p̄ where the scalar curvature is strictly
greater than 6, R(p̄) > 6.
Then there exists a smooth immersion f : S2 ↪→ M such that

E1(f ) = inf{E1(h)|h : S2 ↪→ (M, g) is a C∞ immersion in (M, g)}.
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Remarks on asymptotic conditions

1) the asymptotically euclidean condition is very mild: just C 1

closeness to euclidean metric, so the curvature may not vanish at
infinity
2) asymptotically spatial Schwarzschild 3-manifolds with mass or
the metric of the positive mass theorem of Schoen-Yau fit in our
asymptotically euclidean assumption ← spacelike timeslices of
solutions to the Einstein vacuum equation, null cosmological
constant
3) asymptotic Anti-de Sitter-Schwarzschild metrics with mass
(considered for instannce by Neves and Tian) are hyperbolic
outside a compact subset ← spacelike timeslices of solutions to the
Einstein vacuum equation, negative cosmological constant
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Minimization of
∫
|H |p and

∫
|A|p, p > 2

PROBLEM: given (M, g) a 3-d Riemannian manifold, do exist
surfaces minimizing

∫
|H|p or

∫
|A|p, p > 2?

TECHNIQUE: Geometric measure theory (varifolds: ”generalized
surfaces”)

RESULT[M. (ArXiv’10)]: if (M, g) is compact + other technical
conditions (ex: M = closure of a bounded open in R3) then there
exists a ”generalized surface” minimizing

∫
|H|p (or

∫
|A|p), p > 2.

REMARK: proved in any dimension and codimension.
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Fix p > 2. NEW TOOLS

:1) isoperimetric inequalities. If (M, g) is
compact and does not contain ”generalized minimal surfaces”
(resp. ”generalized totally geodesic surfaces”) then ∃C > 0 such
that for every generalized surface Σ ⊂ M

Area(Σ) ≤ C

∫
|H|p (resp. ≤ C

∫
|A|p)

2) Monotonicity formula. Let Σ ⊂ Rn be a generalized surface.
Fixed a point x0 ∈ Σ and 0 < σ < ρ <∞[

Area(Σ ∩ Bσ(x0))

σ2

] 1
p

≤
[

Area(Σ ∩ Bρ(x0))

ρ2

] 1
p

+
p2

p − 2
ρ

1− 2
p

[ ∫
Bρ(x0)∩Σ

|H|p
] 1

p

.

⇒ diam(Σ) ≥ 1

C
( ∫

Σ |H|p
) 1

p−m

, Area(Σ) ≥ 1

C
( ∫

Σ |H|p
) m

p−m
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