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Introduction

NOTATION:

I (M, g) 3-d Riemannian manifold (later also dim(M)≥ 3)

I Σ closed (compact, ∂Σ = ∅) 2-d surface

I f : Σ ↪→ M immersion, g̊ induced metric on Σ

I Aij= II fundamental form of f (Σ)

I H = 1
2 Aij g̊

ij = k1+k2
2 = mean curvature

I A◦ij = Aij − Hg̊ij= traceless II fundamental form

Question

Which are the best immersions f ?
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Classical special immersions

I H ≡ 0⇒ MINIMAL immersion ( critical point of Area)

I A ≡ 0⇒ TOTALLY GEODESIC immersion

I A◦ ≡ 0⇒ k1 = k2 TOTALLY UMBILIC immersion

FACT: in general they may not exist.
Examples: minimal in R3 (by max. principle) or totally umbilical in
Berger Spheres [Souam-Toubiana (Comm. Math. Helv. ’09)] and
more general in a generic homogeneous spaces [Manzano-Souam
(Preprint ’13)].

Question

How it is possible to relax the definitions in order to get existence?
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−→ Look for minimizers (or critical points) of

W (f ) :=

∫
f (Σ)
|H|2 = Willmore functional ”generalized minimal”

E (f ) :=

∫
f (Σ)
|A|2 = Energy functional ”generalized totally geodesic”

Wcnf (f ) :=

∫
f (Σ)
|A◦|2 = Conf. Willmore funct. ”gen. tot. umbilic”

Remark

1-(M, g) and Σ are fixed at the beginning, minimize in the
immersion f
2-if (M, g) = (R3, eucl) then by Gauss Bonnet Theorem

W (f ) = Wcnf (f ) + 2πχE (Σ) =
1

2
E (f ) + πχE (Σ)
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Conformal invariance

Theorem (Weiner ’78)

Wcnf is conformally invariant, i.e.

∀u ∈ C∞(M) called g [u] := e2ug ⇒Wcnf (f )[u] = Wcnf (f )

where Wcnf (f )[u] is the conformal Willmore functional evaluated
on f (Σ) immersed in (M, g [u]).

Remark

W is conformal invariant in R3 but not in a general manifold ⇒
Wcnf is the ”correct” Willmore functional from a conformal point
of view.
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Some literature about existence of minimizers or critical
points

Willmore functional W =
∫

H2 In Euclidean Space, i.e.
(M, g) = (R3, eucl):

I Strict global minimum on standard spheres Sρp (Willmore ’60):

∀Σ,∀f : Σ ↪→ R3 ⇒W (f ) ≥ 4π and W (f ) = 4π ⇔ f (Σ) = Sρp

I For each genus the infimum (> 4π) is reached: Simon
(1993)-Kusner (1996)-Bauer-Kuwert (2003)-Rivière (2010)

I Recent proof of the Willmore Conjecture by Marques-Neves:
in genus 1 the minimizer is the Clifford Torus

I Works by Bernard, Bryant, Hélein, Heller, Kilian, Mazzeo,
Montiel, Pedit, Pinkall, Ritoré, Ros, Rosenberg, Schätzle,
Schmidt, Schygulla, Topping, Urbano etc.
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I Works by Bernard, Bryant, Hélein, Heller, Kilian, Mazzeo,
Montiel, Pedit, Pinkall, Ritoré, Ros, Rosenberg, Schätzle,
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Schmidt, Schygulla, Topping, Urbano etc.



Some literature about existence of minimizers or critical
points

Willmore functional W =
∫

H2 In Euclidean Space, i.e.
(M, g) = (R3, eucl):

I Strict global minimum on standard spheres Sρp (Willmore ’60):

∀Σ, ∀f : Σ ↪→ R3 ⇒W (f ) ≥ 4π and W (f ) = 4π ⇔ f (Σ) = Sρp

I For each genus the infimum (> 4π) is reached: Simon
(1993)-Kusner (1996)-Bauer-Kuwert (2003)-Rivière (2010)

I Recent proof of the Willmore Conjecture by Marques-Neves:
in genus 1 the minimizer is the Clifford Torus

I Works by Bernard, Bryant, Hélein, Heller, Kilian, Mazzeo,
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In manifolds?

I Up to 2010, results just in space forms: Bang-Yen Chen, Guo,
Li-Yau, Mazzeo, Montiel, Ritoré, Ros, Urbano, Weiner, etc.

I TODAY: prove existence of minimizers or of critical points, in
non constantly curved manifolds

Employed techniques:

I Perturbative setting → techique of classical non-linear
analysis: Lyapunov-Schmidt reduction

I Global setting → Simon’s ambient approach (involving GMT:
weak objects as varifolds..)

→ Rivière’s parametric approach (involving
more PDE and functional analysis arguments)
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Perturbative setting

Ambient manifold: (M, g) = (R3, gε) where (gε)µν := δµν + εhµν ,
hµν is symmetric (2, 0) tensor field.

IDEA: for ε = 0 the ambient manifold is R3 ⇒ the round spheres
form a 4-d manifold of critical points→ use a perturbative method
lying on a Lyapunov-Schmidt reduction.
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Existence for W in (R3, gε)

NOTATION: if (M, g) = (R3, gε := eucl + εh), write
R = εR1 + o(ε)

Theorem [M.(Math. Zeit. ’10)]
Assume
- ∃p̄ ∈ R3 such that R1(p̄) 6= 0,
- Said ‖h(p)‖ := sup|v |=1 |hp(v , v)|

i) lim|p|→∞ ‖h(p)‖ = 0.

ii) ∃C > 0 and α > 2 s.t. |Dλhµν(p)| < C
|p|α ∀λ, µ, ν = 1 . . . 3.

Then, for ε small enough, there exists a perturbed standard sphere
Sρεpε (wε(pε, ρε)) (where wε(pε, ρε) ∈ C 4,α(S2)) which is a Willmore
embedding of S2 in (R3, gε)
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A useful lemma+Remark

I Lemma[M. (Math. Z. ’10)]:Let (M, g) be a general ambient
manifold with scalar curvature R,

then the following
expansion of W on small geodesic spheres holds:

W (Sp,ρ) = 4π − 2π

3
R(p)ρ2 + Op(ρ3)

REMARK:

I gε is close and asymptotic to euclidean but NOT CONSTANT
CURVATURE

I Related perturbative results, under area constraint, by
Lamm-Metzger-Schulze and Lamm-Metzger
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Wcnf = 1
2

∫
|A◦|2 in (S3, gε): introduction

I By Souam-Toubiana and Manzano-Souam: in Berger spheres
(and more generally in non round left invariant metrics on S3)
there are NO totally umbilical immersions (i.e. A◦ ≡ 0)

I Question: Do there exist generalized totally umbilical
surfaces? (i.e. critical points of Wconf := 1

2

∫
|A◦|2dvol .)

I Fact: On ANY Riemannian manifold (M, g) by direct
computation on shrinking geodesic spheres (M. 2011-JGA)

inf
f :S2↪→M

Wconf (f ) = 0.

I ⇒ In Berger spheres: a minimizing sequence either converges
to a totally umbilical surface (but this does not exist by S-T)
or it shrinks to a point ⇒ minimization cannot be performed
→ Perturbative approach, saddle type critical points.
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Existence of generalized totally umbilic spheres

Notation (S3, g0) = 3-sphere with round metric.

Theorem(Carlotto-M.’13) Let gε = g0 + εh be a Riemannian
metric on S3 for some analytic, symmetric (0, 2)-tensor h. There
exists ε ∈ R>0 such that if ε ∈ (−ε, ε) then there exist embedded
critical points for the conformal Willmore functional
Wconf =

∫
|A◦|2 in metric gε.

More precisely, every Willmore surface we construct is a normal
graph over a totally umbilic sphere in (S3, g0) via a smooth
function wε converging to 0 in C 4,α norm as ε→ 0.

Remark. The critical points we construct are saddle points for
Wconf . Moreover, a standard bumpy-metric argument shows that
(in case (S3, gε) does not have constant sectional curvature) these
are generically non-degenerate of index exactly 4.
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The Lie group case

Corollary(Carlotto-M.’13) Let gε = g0 + εh be a left-invariant
metric on SU(2) ∼= S3. There exists ε ∈ R>0 such that if
ε ∈ (−ε, ε) then for every p ∈ S3 there exists an embedded critical
2-sphere for the conformal Willmore functional (in metric gε)
passing through p. As a result, under these assumptions the
conformal Willmore functional Wconf has uncountably many
distinct critical points.

Remark By Souam-Toubiana and Manzano-Souam we know that
on (non round) left invariant metrics on S3 there exist NO totally
umbilical surface, on the other hand we produce uncountably many
GENERALIZED totally umbilical surfaces.
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Minimization of E = 1
2

∫
|A|2 in compact manifolds:

Introduction

I Birkhoff (1917): in any closed Riemannian manifold there
exist a closed geodesic.

I Question: What about the existence of ”higher dimensional
geodesic objects”? i.e. in general, do there exist totally
geodesic surfaces in a closed Riemannian manifold?

I Folklore: generically they do not exist (proof??)

I What is proved. Souam-Toubiana and Manzano-Souam: on
(not round) left invariant metrics on S3 do not exist totally
geodesic spheres. Notice also that for appropriate (actually
quite large) values of the parameters these spaces have strictly
positive sectional curvature.

I Question: can we find at least generalized totally geodesic
immersions (i.e. minimizers of E := 1

2

∫
|A|2)?
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Minimization of E = 1
2

∫
|A|2 among immersed spheres

Theorem[Kuwert- M.- Schygulla ’11] Let (M, g) be a compact
3-dimensional Riemannian manifold and assume:
a) there exists f : S2 ↪→ M smooth immersion with E (f ) < 4π

b) there exists a minimizing sequence for E of smooth immersions
fk : S2 ↪→ M with supk Area(fk) <∞.

Then there exists a smooth immersion f : S2 ↪→ M such that

E (f ) = inf{E (h)|h : S2 ↪→ (M, g) is a C∞ immersion in (M, g)}.

Remark: Conditions a) and b) above are satisfied if (M, g) has
strictly positive sectional curvature.

Corollary. If (M, g) is a compact 3-dimensional Riemannian
manifold with strictly positive sectional curvature, then there exists
a smooth minimizer of E = 1

2

∫
|A|2 among smooth immersed

spheres; i.e. there exists a generalized totally geodesic immersion.
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REMARKS

I Condition a) is to prevent the minimizing sequence to shrink
to a point (by contradiction via a blow up argument using the
Willmore lower bound E ≥ 4π in R3).

I Condition a) is ensured assuming that there exists p0 ∈ M
such that ScalM(p0) > 0 by direct computation on small
geodesic spheres.

I If K̄M < 0⇒ E (f ) > 4π by integrating the Gauss equations
and using Gauss-Bonnet→ some positivity of the curvature is
necessary.

I Condition b) is fundamental for proving compactness of the
minimizing sequence.

I Analogous existence result for the minimization of
W1 :=

∫
|H|2 + 1

I The case (M, g) non compact is studied by M.-Schygulla ’12.
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Sketch of proof-1:Framework

TECHNIQUE: direct methods in the calculus of variations

I take a minimizing sequence of immersions fk : S2 ↪→ M

I associate the measures µk : µk(B) := Area(B ∩ fk(S2)) for
every B ⊂ M Borel set

I for having compactness of the measures we need the uniform
area bound on fk provided by condition b).

I ⇒ there exists a Radon measure µ on M such that µk → µ
up to subsequences

I the sequence may degenerate: fk may shrink to a point or µ
may be 0; excluded by a blow up procedure using assumption
a).



Sketch of proof-1:Framework

TECHNIQUE: direct methods in the calculus of variations

I take a minimizing sequence of immersions fk : S2 ↪→ M

I associate the measures µk : µk(B) := Area(B ∩ fk(S2)) for
every B ⊂ M Borel set

I for having compactness of the measures we need the uniform
area bound on fk provided by condition b).

I ⇒ there exists a Radon measure µ on M such that µk → µ
up to subsequences

I the sequence may degenerate: fk may shrink to a point or µ
may be 0; excluded by a blow up procedure using assumption
a).



Sketch of proof-1:Framework

TECHNIQUE: direct methods in the calculus of variations

I take a minimizing sequence of immersions fk : S2 ↪→ M

I associate the measures µk : µk(B) := Area(B ∩ fk(S2)) for
every B ⊂ M Borel set

I for having compactness of the measures we need the uniform
area bound on fk provided by condition b).

I ⇒ there exists a Radon measure µ on M such that µk → µ
up to subsequences

I the sequence may degenerate: fk may shrink to a point or µ
may be 0; excluded by a blow up procedure using assumption
a).



Sketch of proof-1:Framework

TECHNIQUE: direct methods in the calculus of variations

I take a minimizing sequence of immersions fk : S2 ↪→ M

I associate the measures µk : µk(B) := Area(B ∩ fk(S2)) for
every B ⊂ M Borel set

I for having compactness of the measures we need the uniform
area bound on fk provided by condition b).

I ⇒ there exists a Radon measure µ on M such that µk → µ
up to subsequences

I the sequence may degenerate: fk may shrink to a point or µ
may be 0; excluded by a blow up procedure using assumption
a).



Sketch of proof-1:Framework

TECHNIQUE: direct methods in the calculus of variations

I take a minimizing sequence of immersions fk : S2 ↪→ M

I associate the measures µk : µk(B) := Area(B ∩ fk(S2)) for
every B ⊂ M Borel set

I for having compactness of the measures we need the uniform
area bound on fk provided by condition b).

I ⇒ there exists a Radon measure µ on M such that µk → µ
up to subsequences

I the sequence may degenerate: fk may shrink to a point or µ
may be 0; excluded by a blow up procedure using assumption
a).



Sketch of proof-1:Framework

TECHNIQUE: direct methods in the calculus of variations

I take a minimizing sequence of immersions fk : S2 ↪→ M

I associate the measures µk : µk(B) := Area(B ∩ fk(S2)) for
every B ⊂ M Borel set

I for having compactness of the measures we need the uniform
area bound on fk provided by condition b).

I ⇒ there exists a Radon measure µ on M such that µk → µ
up to subsequences

I the sequence may degenerate: fk may shrink to a point or µ
may be 0; excluded by a blow up procedure using assumption
a).



Sketch of proof-2: Existence of candidate minimizer

I ⇒ using assumptions a) and b) we proved that the
minimizing sequence is compact and does not degenerate

I ⇒ there exists a non null limit measure µ (with a weak notion
of second fundamental form)

I FACT: the functional E is lower semicontinuous (with respect
to varifold convergence)

⇒ E (µ) ≤ lim inf E (fk) = inf E

I ⇒ µ is a candidate minimizer and we have to prove regularity
i.e. this measure is associated to a smooth immersion of a
sphere
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Sketch of proof-3: Regularity

I Take inspiration from [Simon (CAG ’93)] and do a partition of
sptµ into good and bad points:

I fixed a small ε > 0 we say that ξ ∈ sptµ is an bad point if

lim
ρ→0

lim inf
k→∞

∫
fk (S2)∩B(ξ,ρ)

|A|2 > ε2;

the complementary are the good points

I Adapting Simon we proved that near the good points µ is
union of C 1,α ∩W 2,2 graphs

I Using a topological argument involving Gauss-Bonnet
theorem+ inf E < 4π we excluded the bad points

I → C 1,α ∩W 2,2 regularity everywhere: locally µ is union of
C 1,α ∩W 2,2 graphs.Globally?

I By a compactness theorem of Breuning µ is a C 1,α ∩W 2,2

immersion of a sphere

I Use the equation+bootstrap ⇒ smoothness of the immersion.
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Some comments on the approach

Good news

I manage to exclude branch points by a topological argument
and low energy framework

I prove existence-regularity theorems above

Bad news

I In order to exclude branch points we use a topological
argument heavily depending on the codimension one
assumption,

I The regularity heavily relies on the minimizing property rather
then the criticality ( i.e. the Willmore PDE is satisfied) → not
suitable for min-max problems.

→ parametric approach
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Parametric approach 1: possibly branched lipschitz
immersions

By Nash, assume that Mm ⊂ Rn;

for any k ∈ N and 1 ≤ p ≤ ∞

W k,p(S2,Mm) :=
{

u ∈W k,p(S2,Rn) s.t. u(x) ∈ Mm for a.e. x ∈ S2
}

.

A map ~Φ ∈W 1,∞(S2,Mm) is a possibly branched lipschitz
immersion if

i) there exists C > 1 such that

∀x ∈ S2 C−1|d~Φ|2(x) ≤ |d~Φ ∧ d~Φ|(x) ≤ |d~Φ|2(x) (1)

ii) There exists at most finitely many points {a1 · · · aN} such
that for any compact K ⊂ S2 \ {a1 · · · aN}

ess inf
x∈K
|d~Φ|(x) > 0. (2)
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Parametric approach 2: weak, possibly branched,
immersions

For any possibly branched lipschitz immersion we can define almost
everywhere the Gauss map

~n~Φ := ?h
∂x1

~Φ ∧ ∂x2
~Φ

|∂x1
~Φ ∧ ∂x2

~Φ|
∈ ∧m−2T~Φ(x)

Mm

Definition:[M., Rivière ’11] A possibly branched lipschitz immersion
~Φ ∈W 1,∞(S2,Mm) is called ”weak, possibly branched,
immersion” if the Gauss map satisfies∫

S2

|D~n~Φ|
2 dvolg < +∞. (3)

The space of ”weak, possibly branched, immersions” of S2 into
Mm is denoted FS2 .
→ right functional space where defining W ,Wconf ,E , . . ..
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Parametric approach 3: The issue of conformality

Proposition:[Toro,Müller-Sverak- Hélein,Rivière]
Let ~Φ ∈ FS2 then ∃Ψ : S2 → S2 bilipschitz homeomorphism such
that ~Φ ◦Ψ is weakly conformal : almost everywhere on S2

|∂x1(~Φ ◦Ψ)|2h = |∂x2(~Φ ◦Ψ)|2h

h(∂x1(~Φ ◦Ψ), ∂x2(~Φ ◦Ψ)) = 0

where (x1, x2) are local arbitrary conformal coordinates in S2 for
the standard metric. Moreover ~Φ ◦Ψ is in W 2,2 ∩W 1,∞(S2,Mm).

Remark: We don’t ask conformality from the beginning for
variational reasons
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Parametric approach 4: Relative compactness in FS2

Theorem[M., Rivière ’11] Let ~Φk ∈ FS2 be conformal such that

lim sup
k→+∞

∫
S2

[
1 + |D~n~Φk

|2h
]

dvolgk < +∞ lim inf
k→+∞

diam(~Φk(S2)) > 0.

(4)

Then, up to subsequences in k , ∃Ψk : S2 → S2 bilipschitz
homeomorphism,

~Φk ◦Ψk −→ ~f∞ ∈W 1,∞(S2,Mm) strongly in C 0(S2,Mm). (5)

Moreover ∃(f i
k )i=1···N ⊂M+(S2), for every 1 ≤ i ≤ N

∃bi ,1 · · · bi ,N i
such that

~Φk ◦ f i
k ⇀

~ξi∞ weakly in W 2,2
loc (S2 \ {bi ,1 · · · bi ,N i}),

where ~ξj∞ ∈ FS2 is conformal.In addition we have

~f∞(S2) =
N⋃
i=1

~ξi∞(S2), A(~Φk)→ A(~f∞), (~f∞)∗[S2] =
N∑
i=1

(~ξi∞)∗[S2].

Remark: related compactness, independently, by Chen-Li (2011)
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Parametric approach 5: Regularity

Proposition[M., Rivière ’12] Let ~Φ ∈ FS2 , then W is Fréchet
differentiable for normal W 1,∞ ∩W 2,2 pertubations supported
away from the branched points: spt(~w) ⊂ S2 \ ∪Ni=1bi .

Theorem[M., Rivière ’12] dW~Φ
= 0 if and only if

1

2
D
∗g
g

[
Dg

~H − 3π~n(Dg
~H) + ?h

(
(∗gDg~n) ∧M ~H

)]
= R̃(~H)−R⊥~Φ (T ~Φ)

where R̃(~X ) := −π~n
[∑2

i=1 Riemh(~X ,~ei )~ei

]
and

R⊥~Φ
(T ~Φ) :=

(
πT

[
Riemh(~e1,~e2)~H

])⊥
.

Theorem[M., Rivière ’12] ∀~Φ ∈ FS2 if d~ΦW = 0 then ~Φ is C∞

outside the finitely many branched points.

Remark: Regularity for all critical points → suitable for saddle
points
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Application: Willmore spheres in homotopy classes

Theorem[M., Rivière ’12] Fix 0 6= γ ∈ π2(Mm)

. Then there exist
finitely many branched conformal immersions ~Φ1, . . . , ~ΦN ∈ FS2

and a Lipschitz map ~f ∈W 1,∞(S2,Mm) with [~f ] = γ satisfying

~f (S2) =
N⋃
i=1

~Φi (S2), ~f∗[S2] =
N∑
i=1

~Φi
∗[S2].

Moreover for every i , the map ~Φi is a conformal branched
area-constrained Willmore immersion which is smooth outside the
finitely many branched points b1, . . . , bNi .

Remark: the Theorem completes the result of Sacks-Uhlembeck
about area minimizing branched spheres in homotopy groups;they
prove that, if π1(Mm) = 0 then there exists area minimizing (in
their π0(C 0(S2,M)) class) branched immersions generating
π2(Mm), but since bubbling can occur, it is not clear which are the
2-homotopy classes having an area minimizing representant.
→ minimize Area + W .
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Application 2: Willmore spheres under area constraint

Theorem[M., Rivière ’12]
Let (Mm, h) be a compact Riemannian manifold and fix any A > 0.

Then there exist finitely many branched conformal immersions
~Φ1, . . . , ~ΦN ∈ FS2 and a Lipschitz map ~f ∈W 1,∞(S2,Mm) with

N∑
i=1

A(~Φi ) = A, ~f (S2) =
N⋃
i=1

~Φi (S2), ~f∗[S2] =
N∑
i=1

~Φi
∗[S2],

such that for every i , the map ~Φi is a conformal branched
area-constraint Willmore immersion which is smooth outside the
finitely many branched points b1, . . . , bNi .

Remark: the theorem extends to arbitary area the analogous
perturbative result of Lamm-Metzger proved for infinitesimal area
constraint (for small area there is just one sphere)



Application 2: Willmore spheres under area constraint

Theorem[M., Rivière ’12]
Let (Mm, h) be a compact Riemannian manifold and fix any A > 0.
Then there exist finitely many branched conformal immersions
~Φ1, . . . , ~ΦN ∈ FS2 and a Lipschitz map ~f ∈W 1,∞(S2,Mm) with

N∑
i=1

A(~Φi ) = A, ~f (S2) =
N⋃
i=1

~Φi (S2), ~f∗[S2] =
N∑
i=1

~Φi
∗[S2],

such that for every i , the map ~Φi is a conformal branched
area-constraint Willmore immersion which is smooth outside the
finitely many branched points b1, . . . , bNi .

Remark: the theorem extends to arbitary area the analogous
perturbative result of Lamm-Metzger proved for infinitesimal area
constraint (for small area there is just one sphere)



Application 2: Willmore spheres under area constraint

Theorem[M., Rivière ’12]
Let (Mm, h) be a compact Riemannian manifold and fix any A > 0.
Then there exist finitely many branched conformal immersions
~Φ1, . . . , ~ΦN ∈ FS2 and a Lipschitz map ~f ∈W 1,∞(S2,Mm) with

N∑
i=1

A(~Φi ) = A, ~f (S2) =
N⋃
i=1

~Φi (S2), ~f∗[S2] =
N∑
i=1

~Φi
∗[S2],

such that for every i , the map ~Φi is a conformal branched
area-constraint Willmore immersion which is smooth outside the
finitely many branched points b1, . . . , bNi .

Remark: the theorem extends to arbitary area the analogous
perturbative result of Lamm-Metzger proved for infinitesimal area
constraint (for small area there is just one sphere)



Application 2: Willmore spheres under area constraint

Theorem[M., Rivière ’12]
Let (Mm, h) be a compact Riemannian manifold and fix any A > 0.
Then there exist finitely many branched conformal immersions
~Φ1, . . . , ~ΦN ∈ FS2 and a Lipschitz map ~f ∈W 1,∞(S2,Mm) with

N∑
i=1

A(~Φi ) = A, ~f (S2) =
N⋃
i=1

~Φi (S2), ~f∗[S2] =
N∑
i=1

~Φi
∗[S2],

such that for every i , the map ~Φi is a conformal branched
area-constraint Willmore immersion which is smooth outside the
finitely many branched points b1, . . . , bNi .

Remark: the theorem extends to arbitary area the analogous
perturbative result of Lamm-Metzger proved for infinitesimal area
constraint (for small area there is just one sphere)



Some questions

I Let (M3, g) be a Berger sphere with positive sectional
curvature (or more generally a left invariant metric on S3 with
positive sectional curvature) and let Σ be minimizer of

∫
|A|2

among smooth immersed 2-spheres.

a) Has Σ some symmetry (e.g. rotational in Berger)?
b) Is the minimizer unique (up to isometries)?
b) Who is Σ?

I In the minimization of
∫

1 + |A|2 or
∫

1 + H2 in arbitrary
codimension is it really convenient that the minimizer splits in
a chain of spheres rather then having just one sphere?
-Under which conditions (e.g. curvature bounds in the
ambient manifold) just one sphere is better?
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