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Definitions

• (Mn+1,g) closed (n + 1)-Riemannian manifold with n ≤ 6;

• Zn(M) = {all oriented hypersurfaces in M};

• Zn(M;Z2) = {all hypersurfaces in M};

• A : Zn(M)→ [0,+∞], A(Σ) = vol(Σ);

• Critical points for A are called minimal hypersurfaces.

Question
Do minimal hypersurfaces exist?



Definitions

• (Mn+1,g) closed (n + 1)-Riemannian manifold with n ≤ 6;

• Zn(M) = {all oriented hypersurfaces in M};

• Zn(M;Z2) = {all hypersurfaces in M};

• A : Zn(M)→ [0,+∞], A(Σ) = vol(Σ);

• Critical points for A are called minimal hypersurfaces.

Question
Do minimal hypersurfaces exist?



Definitions

• (Mn+1,g) closed (n + 1)-Riemannian manifold with n ≤ 6;

• Zn(M) = {all oriented hypersurfaces in M};

• Zn(M;Z2) = {all hypersurfaces in M};

• A : Zn(M)→ [0,+∞], A(Σ) = vol(Σ);

• Critical points for A are called minimal hypersurfaces.

Question
Do minimal hypersurfaces exist?



Min-max Theory

• X k a topological space with dimension k ;

• Φ : X k → Zn(M) continuous in flat topology;

• [Φ] = {all Ψ homotopic to Φ fixing Φ|∂X k};

• L[Φ] = infΨ∈[Φ] supx∈X k vol(Ψ(x)).

Theorem (Pitts, ’81 2 ≤ n ≤ 5, Schoen-Simon, ’81 n = 6)
Assume L[Φ] > supx∈∂X k vol(Φ(x)).

There is smooth embedded minimal n-hypersurface Σ (with multiplicities) so
that

L[Φ] = vol(Σ).
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One dimensional cycles (k = 1)

• f : M → [0,1] Morse function;

• Φ1 : [0,1]→ Zn(M), Φ1(t) = ∂{f < t}.

Theorem (Almgren, ’62)
We have L[Φ1] > 0.

Application 1 (Pitts ’81, Schoen-Simon ’81)
Every (Mn+1,g) with 2 ≤ n ≤ 6 admits a smooth embedded minimal
hypersurface.

Application 2 (Simon-Smith ’82)
Every (S3,g) admits an embedded minimal sphere.
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One dimensional cycles (k = 1)

Application 3 (Colding-Minicozzi, ’06)
Assume (M3,g) has π3(M) = Z (e.g, if M is simply connected).

Ricci flow starting at g will have a finite time singularity.

Application 4 (Marques-M., ’11)
Assume (M3,g) has Ric(g) > 0 and scalar curvature R ≥ 6.

Then
L[Φ1] ≤ 4π

with equality only for (S3,g0).

Application 5 (X. Zhou., ’12)
Assume (Mn+1,g) has Ric(g) > 0 and 2 ≤ n ≤ 6.

Then L[Φ1] is attained by either an index one minimal embedded hypersurface
or a stable non-orientable embedded hypersurface with multiplicity two.
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One, two, and three dimensional cycles (k = 1,2,3)
Consider

Φ1 :RP1 → Z1(S2,Z2), [a0,a1] 7→ ∂{a0 + a1x1 < 0} ∩ S2

Φ2 :RP2 → Z1(S2,Z2), [a0,a1,a2] 7→ ∂{a0 + a1x1 + a2x2 < 0} ∩ S2

Φ3 :RP3 → Z1(S2,Z2), [a0,a1,a2,a3] 7→ ∂{a0 + a1x1 + a2x2 + a3x3 < 0} ∩ S2

Theorem (Lusternik–Schnirelmann, ’47)
[Φ1], [Φ2], [Φ3] are all homotopically distinct in Z1(S2,Z2)

Application 1 (Lusternik–Schnirelmann, ’47, Grayson, ’89)
Every (S2,g) admits three distinct simple closed geodesics.

Application 2 (Jost, ’89)
Every (S3,g) admits four distinct embedded minimal spheres.
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Five dimensional cycles (k = 5)
• B4 = unit 4-ball = Conf+(S3)/SO(4);
• Σ embedded smooth surface of S3;
• Φ5 : B4 × [−π, π]→ Z2(S3), Φ5(v , t) = ∂{signed dist(x ,Fv (Σ)) < t}.

Theorem (Marques-N., ’12)
If Σ has positive genus then L[Φ5] > 4π.

Application (Marques-N., ’12)
If Σ̃ ⊂ R3 compact and embedded has positive genus then∫

Σ̃

|H|2dµ ≥ 2π2.
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Five dimensional cycles (k = 5)
• Given v ∈ B4 set Fv (x) = x−v

|x−v |2 ∈ Conf (R4);

• Fv ({|x | < 1}) = {|x − c(v)| < 1
1−|v |2 }, where c(v) = v

1−|v |2 ;

• given (γ1, γ2) ⊂ R4 non-intersecting curves consider

G : S1 × S1 → S4, G(s, t) =
γ1(t)− γ2(s)

|γ1(t)− γ2(t)|
,

and set G(γ1, γ2) = G(S1 × S1) ∈ Z2(S3);

• with (γ1, γ2) ⊂ S3 consider Φ5 : B4 × [0,+∞]→ Z2(S3)

Φ5(v , λ) = G(Fv (γ1), λ(Fv (γ2)− c(v)) + c(v)).

Theorem (Agol-Marques-N., ’12)
If (γ1, γ2) has |lk(γ1, γ2)| = 1, then L[Φ5] > 4π.

Application (Agol-Marques-N., ’12)
If (γ1, γ2) has |lk(γ1, γ2)| = 1, then Mobius cross energy of (γ1, γ2) ≥ 2π2.



Five dimensional cycles (k = 5)
• Given v ∈ B4 set Fv (x) = x−v

|x−v |2 ∈ Conf (R4);

• Fv ({|x | < 1}) = {|x − c(v)| < 1
1−|v |2 }, where c(v) = v

1−|v |2 ;

• given (γ1, γ2) ⊂ R4 non-intersecting curves consider

G : S1 × S1 → S4, G(s, t) =
γ1(t)− γ2(s)

|γ1(t)− γ2(t)|
,

and set G(γ1, γ2) = G(S1 × S1) ∈ Z2(S3);

• with (γ1, γ2) ⊂ S3 consider Φ5 : B4 × [0,+∞]→ Z2(S3)

Φ5(v , λ) = G(Fv (γ1), λ(Fv (γ2)− c(v)) + c(v)).

Theorem (Agol-Marques-N., ’12)
If (γ1, γ2) has |lk(γ1, γ2)| = 1, then L[Φ5] > 4π.

Application (Agol-Marques-N., ’12)
If (γ1, γ2) has |lk(γ1, γ2)| = 1, then Mobius cross energy of (γ1, γ2) ≥ 2π2.



Five dimensional cycles (k = 5)
• Given v ∈ B4 set Fv (x) = x−v

|x−v |2 ∈ Conf (R4);

• Fv ({|x | < 1}) = {|x − c(v)| < 1
1−|v |2 }, where c(v) = v

1−|v |2 ;

• given (γ1, γ2) ⊂ R4 non-intersecting curves consider

G : S1 × S1 → S4, G(s, t) =
γ1(t)− γ2(s)

|γ1(t)− γ2(t)|
,

and set G(γ1, γ2) = G(S1 × S1) ∈ Z2(S3);

• with (γ1, γ2) ⊂ S3 consider Φ5 : B4 × [0,+∞]→ Z2(S3)

Φ5(v , λ) = G(Fv (γ1), λ(Fv (γ2)− c(v)) + c(v)).

Theorem (Agol-Marques-N., ’12)
If (γ1, γ2) has |lk(γ1, γ2)| = 1, then L[Φ5] > 4π.

Application (Agol-Marques-N., ’12)
If (γ1, γ2) has |lk(γ1, γ2)| = 1, then Mobius cross energy of (γ1, γ2) ≥ 2π2.



Five dimensional cycles (k = 5)
• Given v ∈ B4 set Fv (x) = x−v

|x−v |2 ∈ Conf (R4);

• Fv ({|x | < 1}) = {|x − c(v)| < 1
1−|v |2 }, where c(v) = v

1−|v |2 ;

• given (γ1, γ2) ⊂ R4 non-intersecting curves consider

G : S1 × S1 → S4, G(s, t) =
γ1(t)− γ2(s)

|γ1(t)− γ2(t)|
,

and set G(γ1, γ2) = G(S1 × S1) ∈ Z2(S3);

• with (γ1, γ2) ⊂ S3 consider Φ5 : B4 × [0,+∞]→ Z2(S3)

Φ5(v , λ) = G(Fv (γ1), λ(Fv (γ2)− c(v)) + c(v)).

Theorem (Agol-Marques-N., ’12)
If (γ1, γ2) has |lk(γ1, γ2)| = 1, then L[Φ5] > 4π.

Application (Agol-Marques-N., ’12)
If (γ1, γ2) has |lk(γ1, γ2)| = 1, then Mobius cross energy of (γ1, γ2) ≥ 2π2.



Five dimensional cycles (k = 5)
• Given v ∈ B4 set Fv (x) = x−v

|x−v |2 ∈ Conf (R4);

• Fv ({|x | < 1}) = {|x − c(v)| < 1
1−|v |2 }, where c(v) = v

1−|v |2 ;

• given (γ1, γ2) ⊂ R4 non-intersecting curves consider

G : S1 × S1 → S4, G(s, t) =
γ1(t)− γ2(s)

|γ1(t)− γ2(t)|
,

and set G(γ1, γ2) = G(S1 × S1) ∈ Z2(S3);

• with (γ1, γ2) ⊂ S3 consider Φ5 : B4 × [0,+∞]→ Z2(S3)

Φ5(v , λ) = G(Fv (γ1), λ(Fv (γ2)− c(v)) + c(v)).

Theorem (Agol-Marques-N., ’12)
If (γ1, γ2) has |lk(γ1, γ2)| = 1, then L[Φ5] > 4π.

Application (Agol-Marques-N., ’12)
If (γ1, γ2) has |lk(γ1, γ2)| = 1, then Mobius cross energy of (γ1, γ2) ≥ 2π2.



k-dimensional cycles (k ∈ N)
We say Φ : RPk → Zn(M;Z2) is a k -sweepout if for every curve γ

0 6= [γ] ∈ π1(RPk ) =⇒ Φ ◦ γ : S1 → Zn(M;Z2) is a sweepout.

Example 1
With f : M → R Morse function set

Φ : RPk → Zn(M;Z2), Φ([a0,a1,a2 . . . ,ak ]) = ∂{a0+a1f +a2f 2+. . .+ak f k < 0}

Φ is a k -sweepout.

Example 2 (Conjectural)
With φ0, . . . , φk linearly independent eigenfunctions of Laplacian consider

Φ : RPk → Zn(M;Z2), Φ([a0,a1,a2 . . . ,ak ]) = ∂{a0φ0+a1φ1+. . .+akφk < 0}

Φ is a k -sweepout.
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k-dimensional cycles (k ∈ N)
Consider for every k ∈ N

ωk (M) := inf
{Φ is a k -sweepout}

sup
x∈RPk

vol(Φ(x)).

Theorem (Gromov, ’87 – Guth, ’07)
For every (Mn+1,g) there is C so that for all k ∈ N

C−1k
1

n+1 ≤ ωk (M) ≤ Ck
1

n+1 .

Application (Marques-N., ’13)
Let (Mn+1,g) with 2 ≤ n ≤ 6 and Ric(g) > 0.

There are infinitely many distinct embedded smooth minimal hypersurfaces.

• (Franks, ’92, Bangert ’93) (S2,g) admits infinitely closed geodesics

• (Yau’s Conjecture, ’82) (M3,g) admits infinitely many distinct smooth
minimal surfaces.
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Skecth of proof

Theorem
Let (Mn+1,g) with 2 ≤ n ≤ 6 and Ric(g) > 0.

There are infinitely many distinct embedded smooth minimal hypersurfaces.

Sketch of proof:

1: ωk (M) = ωk+1(M) =⇒ existence of infinitely many minimal hypersurfaces.

2: Assume {ωk (M)}k∈N is strictly increasing.

3: Ric(g) > 0 =⇒ ωk (M) = nk vol(Σk ) where Σk is connected minimal
hypersurface.

4: finitely many minimal hypersurfaces + 2 + 3 =⇒ ωk (M) grows linearly.

Contradiction with Gromov-Guth Theorem!
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