Min-max Theory in Geometry

André Neves

(Joint with Fernando Marques)

Imperial College

 London
Definitions

- $\left(M^{n+1}, g\right)$ closed $(n+1)$-Riemannian manifold with $n \leq 6$;
- $\mathcal{Z}_{n}(M)=\{$ all oriented hypersurfaces in $M\} ;$
- $\mathcal{Z}_{n}\left(M ; \mathbb{Z}_{2}\right)=\{$ all hypersurfaces in $M\} ;$

Definitions

- $\left(M^{n+1}, g\right)$ closed $(n+1)$-Riemannian manifold with $n \leq 6$;
- $\mathcal{Z}_{n}(M)=\{$ all oriented hypersurfaces in $M\} ;$
- $\mathcal{Z}_{n}\left(M ; \mathbb{Z}_{2}\right)=\{$ all hypersurfaces in $M\} ;$
- $\mathcal{A}: Z_{n}(M) \rightarrow[0,+\infty], \quad \mathcal{A}(\Sigma)=\operatorname{vol}(\Sigma) ;$
- Critical points for \mathcal{A} are called minimal hypersurfaces.

Definitions

- $\left(M^{n+1}, g\right)$ closed $(n+1)$-Riemannian manifold with $n \leq 6$;
- $\mathcal{Z}_{n}(M)=\{$ all oriented hypersurfaces in $M\} ;$
- $\mathcal{Z}_{n}\left(M ; \mathbb{Z}_{2}\right)=\{$ all hypersurfaces in $M\} ;$
- $\mathcal{A}: Z_{n}(M) \rightarrow[0,+\infty], \quad \mathcal{A}(\Sigma)=\operatorname{vol}(\Sigma)$;
- Critical points for \mathcal{A} are called minimal hypersurfaces.

Question

Do minimal hypersurfaces exist?

Min-max Theory

- X^{k} a topological space with dimension k;
- $\Phi: X^{k} \rightarrow Z_{n}(M)$ continuous in flat topology;

Min-max Theory

- X^{k} a topological space with dimension k;
- $\Phi: X^{k} \rightarrow Z_{n}(M)$ continuous in flat topology;
- $[\Phi]=\left\{\right.$ all Ψ homotopic to Φ fixing $\left.\Phi_{\mid \partial X^{k}}\right\}$;

Min-max Theory

- X^{k} a topological space with dimension k;
- $\Phi: X^{k} \rightarrow Z_{n}(M)$ continuous in flat topology;
- $[\Phi]=\left\{\right.$ all Ψ homotopic to Φ fixing $\left.\Phi_{\mid \partial X^{k}}\right\}$;
- $\mathrm{L}[\Phi]=\inf _{\Psi \in[\Phi]} \sup _{x \in X^{k}} \operatorname{vol}(\Psi(x))$.

Min-max Theory

- X^{k} a topological space with dimension k;
- $\Phi: X^{k} \rightarrow Z_{n}(M)$ continuous in flat topology;
- $[\Phi]=\left\{\right.$ all Ψ homotopic to Φ fixing $\left.\Phi_{\mid \partial X^{k}}\right\}$;
- $\mathrm{L}[\Phi]=\inf _{\Psi \in[\Phi]} \sup _{x \in X^{k}} \operatorname{vol}(\Psi(x))$.

Theorem (Pitts, '81 $2 \leq n \leq 5$, Schoen-Simon, '81 $n=6$)

Assume $\mathrm{L}[\Phi]>\sup _{x \in \partial X^{k}} \operatorname{vol}(\Phi(x))$.
There is smooth embedded minimal n-hypersurface Σ (with multiplicities) so that

$$
\mathrm{L}[\Phi]=\operatorname{vol}(\Sigma) .
$$

One dimensional cycles $(k=1)$

- $f: M \rightarrow[0,1]$ Morse function;
- $\Phi_{1}:[0,1] \rightarrow Z_{n}(M), \quad \Phi_{1}(t)=\partial\{f<t\}$.

One dimensional cycles $(k=1)$

- $f: M \rightarrow[0,1]$ Morse function;
- $\Phi_{1}:[0,1] \rightarrow Z_{n}(M), \quad \Phi_{1}(t)=\partial\{f<t\}$.

Theorem (Almgren, '62)
We have $\mathrm{L}\left[\Phi_{1}\right]>0$.

One dimensional cycles $(k=1)$

- $f: M \rightarrow[0,1]$ Morse function;
- $\Phi_{1}:[0,1] \rightarrow Z_{n}(M), \quad \Phi_{1}(t)=\partial\{f<t\}$.

Theorem (Almgren, '62)

We have $\mathrm{L}\left[\Phi_{1}\right]>0$.

Application 1 (Pitts '81, Schoen-Simon '81)

Every $\left(M^{n+1}, g\right)$ with $2 \leq n \leq 6$ admits a smooth embedded minimal hypersurface.

One dimensional cycles $(k=1)$

- $f: M \rightarrow[0,1]$ Morse function;
- $\Phi_{1}:[0,1] \rightarrow Z_{n}(M), \quad \Phi_{1}(t)=\partial\{f<t\}$.

Theorem (Almgren, '62)

We have $\mathrm{L}\left[\Phi_{1}\right]>0$.

Application 1 (Pitts '81, Schoen-Simon '81)

Every $\left(M^{n+1}, g\right)$ with $2 \leq n \leq 6$ admits a smooth embedded minimal hypersurface.

Application 2 (Simon-Smith '82)
Every $\left(S^{3}, g\right)$ admits an embedded minimal sphere.

One dimensional cycles $(k=1)$

Application 3 (Colding-Minicozzi, '06)

Assume (M^{3}, g) has $\pi_{3}(M)=\mathbb{Z}$ (e.g, if M is simply connected).
Ricci flow starting at g will have a finite time singularity.

One dimensional cycles $(k=1)$

Application 3 (Colding-Minicozzi, '06)

Assume $\left(M^{3}, g\right)$ has $\pi_{3}(M)=\mathbb{Z}$ (e.g, if M is simply connected).
Ricci flow starting at g will have a finite time singularity.
Application 4 (Marques-M., '11)
Assume $\left(M^{3}, g\right)$ has $\operatorname{Ric}(g)>0$ and scalar curvature $R \geq 6$.
Then

$$
\mathrm{L}\left[\phi_{1}\right] \leq 4 \pi
$$

with equality only for $\left(S^{3}, g_{0}\right)$.

One dimensional cycles $(k=1)$

Application 3 (Colding-Minicozzi, '06)

Assume $\left(M^{3}, g\right)$ has $\pi_{3}(M)=\mathbb{Z}$ (e.g, if M is simply connected).
Ricci flow starting at g will have a finite time singularity.
Application 4 (Marques-M., '11)
Assume $\left(M^{3}, g\right)$ has $\operatorname{Ric}(g)>0$ and scalar curvature $R \geq 6$.
Then

$$
\mathrm{L}\left[\phi_{1}\right] \leq 4 \pi
$$

with equality only for $\left(S^{3}, g_{0}\right)$.
Application 5 (X. Zhou., '12)
Assume $\left(M^{n+1}, g\right)$ has $\operatorname{Ric}(g)>0$ and $2 \leq n \leq 6$.
Then $\mathrm{L}\left[\Phi_{1}\right]$ is attained by either an index one minimal embedded hypersurface or a stable non-orientable embedded hypersurface with multiplicity two.

One, two, and three dimensional cycles $(k=1,2,3)$

Consider

$$
\begin{array}{ll}
\Phi_{1}: \mathbb{R P}^{1} \rightarrow \mathcal{Z}_{1}\left(S^{2}, \mathbb{Z}_{2}\right), & {\left[a_{0}, a_{1}\right] \mapsto \partial\left\{a_{0}+a_{1} x_{1}<0\right\} \cap S^{2}} \\
\Phi_{2}: \mathbb{R} \mathbb{P}^{2} \rightarrow \mathcal{Z}_{1}\left(S^{2}, \mathbb{Z}_{2}\right), & {\left[a_{0}, a_{1}, a_{2}\right] \mapsto \partial\left\{a_{0}+a_{1} x_{1}+a_{2} x_{2}<0\right\} \cap S^{2}} \\
\Phi_{3}: \mathbb{R} \mathbb{P}^{3} \rightarrow \mathcal{Z}_{1}\left(S^{2}, \mathbb{Z}_{2}\right), & {\left[a_{0}, a_{1}, a_{2}, a_{3}\right] \mapsto \partial\left\{a_{0}+a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}<0\right\} \cap S^{2}}
\end{array}
$$

One, two, and three dimensional cycles $(k=1,2,3)$ Consider
$\Phi_{1}: \mathbb{R} \mathbb{P}^{1} \rightarrow \mathcal{Z}_{1}\left(S^{2}, \mathbb{Z}_{2}\right), \quad\left[a_{0}, a_{1}\right] \mapsto \partial\left\{a_{0}+a_{1} x_{1}<0\right\} \cap S^{2}$
$\Phi_{2}: \mathbb{R P}^{2} \rightarrow \mathcal{Z}_{1}\left(S^{2}, \mathbb{Z}_{2}\right), \quad\left[a_{0}, a_{1}, a_{2}\right] \mapsto \partial\left\{a_{0}+a_{1} x_{1}+a_{2} x_{2}<0\right\} \cap S^{2}$
$\Phi_{3}: \mathbb{R} \mathbb{P}^{3} \rightarrow \mathcal{Z}_{1}\left(S^{2}, \mathbb{Z}_{2}\right), \quad\left[a_{0}, a_{1}, a_{2}, a_{3}\right] \mapsto \partial\left\{a_{0}+a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}<0\right\} \cap S^{2}$

Theorem (Lusternik-Schnirelmann, '47)
[$\left.\Phi_{1}\right],\left[\Phi_{2}\right],\left[\Phi_{3}\right]$ are all homotopically distinct in $Z_{1}\left(S^{2}, \mathbb{Z}_{2}\right)$

Application 1 (Lusternik-Schnirelmann, '47, Grayson, '89)
Every $\left(S^{2}, g\right)$ admits three distinct simple closed geodesics.

One, two, and three dimensional cycles $(k=1,2,3)$ Consider
$\Phi_{1}: \mathbb{R} \mathbb{P}^{1} \rightarrow \mathcal{Z}_{1}\left(S^{2}, \mathbb{Z}_{2}\right), \quad\left[a_{0}, a_{1}\right] \mapsto \partial\left\{a_{0}+a_{1} x_{1}<0\right\} \cap S^{2}$
$\Phi_{2}: \mathbb{R P}^{2} \rightarrow \mathcal{Z}_{1}\left(S^{2}, \mathbb{Z}_{2}\right), \quad\left[a_{0}, a_{1}, a_{2}\right] \mapsto \partial\left\{a_{0}+a_{1} x_{1}+a_{2} x_{2}<0\right\} \cap S^{2}$
$\Phi_{3}: \mathbb{R} \mathbb{P}^{3} \rightarrow \mathcal{Z}_{1}\left(S^{2}, \mathbb{Z}_{2}\right), \quad\left[a_{0}, a_{1}, a_{2}, a_{3}\right] \mapsto \partial\left\{a_{0}+a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}<0\right\} \cap S^{2}$

Theorem (Lusternik-Schnirelmann, '47)
$\left[\Phi_{1}\right],\left[\Phi_{2}\right],\left[\Phi_{3}\right]$ are all homotopically distinct in $Z_{1}\left(S^{2}, \mathbb{Z}_{2}\right)$

Application 1 (Lusternik-Schnirelmann, '47, Grayson, '89)
Every $\left(S^{2}, g\right)$ admits three distinct simple closed geodesics.
Application 2 (Jost, '89)
Every $\left(S^{3}, g\right)$ admits four distinct embedded minimal spheres.

Five dimensional cycles $(k=5)$

- $B^{4}=$ unit 4 -ball $=\operatorname{Conf}_{+}\left(S^{3}\right) / S O(4)$;
- Σ embedded smooth surface of S^{3};
- $\Phi_{5}: B^{4} \times[-\pi, \pi] \rightarrow \mathcal{Z}_{2}\left(S^{3}\right), \quad \Phi_{5}(v, t)=\partial\left\{\right.$ signed $\left.\operatorname{dist}\left(x, F_{v}(\Sigma)\right)<t\right\}$.

Five dimensional cycles $(k=5)$

- $B^{4}=$ unit 4 -ball $=\operatorname{Conf}_{+}\left(S^{3}\right) / S O(4)$;
- Σ embedded smooth surface of S^{3};
- $\Phi_{5}: B^{4} \times[-\pi, \pi] \rightarrow \mathcal{Z}_{2}\left(S^{3}\right), \quad \Phi_{5}(v, t)=\partial\left\{\right.$ signed $\left.\operatorname{dist}\left(x, F_{v}(\Sigma)\right)<t\right\}$.

Theorem (Marques-N., '12)

If Σ has positive genus then $\mathrm{L}\left[\Phi_{5}\right]>4 \pi$.

Five dimensional cycles $(k=5)$

- $B^{4}=$ unit 4 -ball $=\operatorname{Conf}_{+}\left(S^{3}\right) / S O(4)$;
- Σ embedded smooth surface of S^{3};
- $\Phi_{5}: B^{4} \times[-\pi, \pi] \rightarrow \mathcal{Z}_{2}\left(S^{3}\right), \quad \Phi_{5}(v, t)=\partial\left\{\right.$ signed $\left.\operatorname{dist}\left(x, F_{v}(\Sigma)\right)<t\right\}$.

Theorem (Marques-N., '12)

If Σ has positive genus then $\mathrm{L}\left[\Phi_{5}\right]>4 \pi$.

Application (Marques-N., '12)

If $\tilde{\Sigma} \subset \mathbb{R}^{3}$ compact and embedded has positive genus then

$$
\int_{\tilde{\Sigma}}|H|^{2} d \mu \geq 2 \pi^{2}
$$

Five dimensional cycles $(k=5)$

- Given $v \in B^{4}$ set $F_{v}(x)=\frac{x-v}{|x-v|^{2}} \in \operatorname{Conf}\left(\mathbb{R}^{4}\right)$;
- $F_{v}(\{|x|<1\})=\left\{|x-c(v)|<\frac{1}{1-|v|^{2}}\right\}$, where $c(v)=\frac{v}{1-|v|^{2}}$;

Five dimensional cycles $(k=5)$

- Given $v \in B^{4}$ set $F_{v}(x)=\frac{x-v}{|x-v|^{2}} \in \operatorname{Conf}\left(\mathbb{R}^{4}\right)$;
- $F_{v}(\{|x|<1\})=\left\{|x-c(v)|<\frac{1}{1-|v|^{2}}\right\}$, where $c(v)=\frac{v}{1-|v|^{2}}$;
- given $\left(\gamma_{1}, \gamma_{2}\right) \subset \mathbb{R}^{4}$ non-intersecting curves consider

$$
G: S^{1} \times S^{1} \rightarrow S^{4}, \quad G(s, t)=\frac{\gamma_{1}(t)-\gamma_{2}(s)}{\left|\gamma_{1}(t)-\gamma_{2}(t)\right|},
$$

and set $G\left(\gamma_{1}, \gamma_{2}\right)=G\left(S^{1} \times S^{1}\right) \in \mathcal{Z}_{2}\left(S^{3}\right)$;

Five dimensional cycles $(k=5)$

- Given $v \in B^{4}$ set $F_{v}(x)=\frac{x-v}{|x-v|^{2}} \in \operatorname{Conf}\left(\mathbb{R}^{4}\right)$;
- $F_{v}(\{|x|<1\})=\left\{|x-c(v)|<\frac{1}{1-|v|^{2}}\right\}$, where $c(v)=\frac{v}{1-|v|^{2}}$;
- given $\left(\gamma_{1}, \gamma_{2}\right) \subset \mathbb{R}^{4}$ non-intersecting curves consider

$$
G: S^{1} \times S^{1} \rightarrow S^{4}, \quad G(s, t)=\frac{\gamma_{1}(t)-\gamma_{2}(s)}{\left|\gamma_{1}(t)-\gamma_{2}(t)\right|},
$$

and set $G\left(\gamma_{1}, \gamma_{2}\right)=G\left(S^{1} \times S^{1}\right) \in \mathcal{Z}_{2}\left(S^{3}\right)$;

- with $\left(\gamma_{1}, \gamma_{2}\right) \subset S^{3}$ consider $\Phi_{5}: B^{4} \times[0,+\infty] \rightarrow \mathcal{Z}_{2}\left(S^{3}\right)$

$$
\Phi_{5}(v, \lambda)=G\left(F_{v}\left(\gamma_{1}\right), \lambda\left(F_{v}\left(\gamma_{2}\right)-c(v)\right)+c(v)\right) .
$$

Five dimensional cycles $(k=5)$

- Given $v \in B^{4}$ set $F_{v}(x)=\frac{x-v}{|x-v|^{2}} \in \operatorname{Conf}\left(\mathbb{R}^{4}\right)$;
- $F_{v}(\{|x|<1\})=\left\{|x-c(v)|<\frac{1}{1-|v|^{2}}\right\}$, where $c(v)=\frac{v}{1-|v|^{2}}$;
- given $\left(\gamma_{1}, \gamma_{2}\right) \subset \mathbb{R}^{4}$ non-intersecting curves consider

$$
G: S^{1} \times S^{1} \rightarrow S^{4}, \quad G(s, t)=\frac{\gamma_{1}(t)-\gamma_{2}(s)}{\left|\gamma_{1}(t)-\gamma_{2}(t)\right|},
$$

and set $G\left(\gamma_{1}, \gamma_{2}\right)=G\left(S^{1} \times S^{1}\right) \in \mathcal{Z}_{2}\left(S^{3}\right)$;

- with $\left(\gamma_{1}, \gamma_{2}\right) \subset S^{3}$ consider $\Phi_{5}: B^{4} \times[0,+\infty] \rightarrow \mathcal{Z}_{2}\left(S^{3}\right)$

$$
\Phi_{5}(v, \lambda)=G\left(F_{v}\left(\gamma_{1}\right), \lambda\left(F_{v}\left(\gamma_{2}\right)-c(v)\right)+c(v)\right) .
$$

Theorem (Agol-Marques-N., '12)

If $\left(\gamma_{1}, \gamma_{2}\right)$ has $\left|k\left(\gamma_{1}, \gamma_{2}\right)\right|=1$, then $\mathbf{L}\left[\Phi_{5}\right]>4 \pi$.

Five dimensional cycles $(k=5)$

- Given $v \in B^{4}$ set $F_{v}(x)=\frac{x-v}{|x-v|^{2}} \in \operatorname{Conf}\left(\mathbb{R}^{4}\right)$;
- $F_{v}(\{|x|<1\})=\left\{|x-c(v)|<\frac{1}{1-|v|^{2}}\right\}$, where $c(v)=\frac{v}{1-|v|^{2}}$;
- given $\left(\gamma_{1}, \gamma_{2}\right) \subset \mathbb{R}^{4}$ non-intersecting curves consider

$$
G: S^{1} \times S^{1} \rightarrow S^{4}, \quad G(s, t)=\frac{\gamma_{1}(t)-\gamma_{2}(s)}{\left|\gamma_{1}(t)-\gamma_{2}(t)\right|},
$$

and set $G\left(\gamma_{1}, \gamma_{2}\right)=G\left(S^{1} \times S^{1}\right) \in \mathcal{Z}_{2}\left(S^{3}\right)$;

- with $\left(\gamma_{1}, \gamma_{2}\right) \subset S^{3}$ consider $\Phi_{5}: B^{4} \times[0,+\infty] \rightarrow \mathcal{Z}_{2}\left(S^{3}\right)$

$$
\Phi_{5}(v, \lambda)=G\left(F_{v}\left(\gamma_{1}\right), \lambda\left(F_{v}\left(\gamma_{2}\right)-c(v)\right)+c(v)\right) .
$$

Theorem (Agol-Marques-N., '12)

If $\left(\gamma_{1}, \gamma_{2}\right)$ has $\left|k\left(\gamma_{1}, \gamma_{2}\right)\right|=1$, then $\mathbf{L}\left[\Phi_{5}\right]>4 \pi$.

Application (Agol-Marques-N., '12)

 If $\left(\gamma_{1}, \gamma_{2}\right)$ has $\left|\mathbb{I k}\left(\gamma_{1}, \gamma_{2}\right)\right|=1$, then Mobius cross energy of $\left(\gamma_{1}, \gamma_{2}\right) \geq 2 \pi^{2}$.
k-dimensional cycles $(k \in \mathbb{N})$

We say $\Phi: \mathbb{R}^{k} \rightarrow \mathcal{Z}_{n}\left(M ; \mathbb{Z}_{2}\right)$ is a k-sweepout if for every curve γ

$$
0 \neq[\gamma] \in \pi_{1}\left(\mathbb{R P}^{k}\right) \Longrightarrow \Phi \circ \gamma: S^{1} \rightarrow \mathcal{Z}_{n}\left(M ; \mathbb{Z}_{2}\right) \text { is a sweepout. }
$$

Example 1

With $f: M \rightarrow \mathbb{R}$ Morse function set
$\Phi: \mathbb{R} \mathbb{P}^{k} \rightarrow \mathcal{Z}_{n}\left(M ; \mathbb{Z}_{2}\right), \Phi\left(\left[a_{0}, a_{1}, a_{2} \ldots, a_{k}\right]\right)=\partial\left\{a_{0}+a_{1} f+a_{2} f^{2}+\ldots+a_{k} f^{k}<0\right\}$
ϕ is a k-sweepout.

k-dimensional cycles $(k \in \mathbb{N})$

We say $\Phi: \mathbb{R}^{k} \rightarrow \mathcal{Z}_{n}\left(M ; \mathbb{Z}_{2}\right)$ is a k-sweepout if for every curve γ

$$
0 \neq[\gamma] \in \pi_{1}\left(\mathbb{R P}^{k}\right) \Longrightarrow \Phi \circ \gamma: S^{1} \rightarrow \mathcal{Z}_{n}\left(M ; \mathbb{Z}_{2}\right) \text { is a sweepout. }
$$

Example 1

With $f: M \rightarrow \mathbb{R}$ Morse function set
$\Phi: \mathbb{R} \mathbb{P}^{k} \rightarrow \mathcal{Z}_{n}\left(M ; \mathbb{Z}_{2}\right), \Phi\left(\left[a_{0}, a_{1}, a_{2} \ldots, a_{k}\right]\right)=\partial\left\{a_{0}+a_{1} f+a_{2} f^{2}+\ldots+a_{k} f^{k}<0\right\}$
Φ is a k-sweepout.

Example 2 (Conjectural)

With $\phi_{0}, \ldots, \phi_{k}$ linearly independent eigenfunctions of Laplacian consider
$\Phi: \mathbb{R P}^{k} \rightarrow \mathcal{Z}_{n}\left(M ; \mathbb{Z}_{2}\right), \quad \Phi\left(\left[a_{0}, a_{1}, a_{2} \ldots, a_{k}\right]\right)=\partial\left\{a_{0} \phi_{0}+a_{1} \phi_{1}+\ldots+a_{k} \phi_{k}<0\right\}$
Φ is a k-sweepout.

k-dimensional cycles $(k \in \mathbb{N})$

Consider for every $k \in \mathbb{N}$

$$
\omega_{k}(M):=\inf _{\{\Phi \text { is a } k \text {-sweepout }\}} \sup _{x \in \mathbb{R}^{k}} \operatorname{vol}(\Phi(x))
$$

Theorem (Gromov, '87 - Guth, '07)
For every $\left(M^{n+1}, g\right)$ there is C so that for all $k \in \mathbb{N}$

$$
C^{-1} k^{\frac{1}{n+1}} \leq \omega_{k}(M) \leq C k^{\frac{1}{n+1}} .
$$

k-dimensional cycles $(k \in \mathbb{N})$

Consider for every $k \in \mathbb{N}$

$$
\omega_{k}(M):=\inf _{\{\Phi \text { is a } k \text {-sweepout }\}} \sup _{x \in \mathbb{R} \mathbb{P}^{k}} \operatorname{vol}(\Phi(x)) .
$$

Theorem (Gromov, '87 - Guth, '07)

For every $\left(M^{n+1}, g\right)$ there is C so that for all $k \in \mathbb{N}$

$$
C^{-1} k^{\frac{1}{n+1}} \leq \omega_{k}(M) \leq C k^{\frac{1}{n+1}} .
$$

Application (Marques-N., '13)
Let $\left(M^{n+1}, g\right)$ with $2 \leq n \leq 6$ and $\operatorname{Ric}(g)>0$.
There are infinitely many distinct embedded smooth minimal hypersurfaces.

k-dimensional cycles $(k \in \mathbb{N})$

Consider for every $k \in \mathbb{N}$

$$
\omega_{k}(M):=\inf _{\{\Phi \text { is a } k \text {-sweepout }\}} \sup _{x \in \mathbb{R} \mathbb{P}^{k}} \operatorname{vol}(\Phi(x)) .
$$

Theorem (Gromov, '87-Guth, '07)

For every $\left(M^{n+1}, g\right)$ there is C so that for all $k \in \mathbb{N}$

$$
C^{-1} k^{\frac{1}{n+1}} \leq \omega_{k}(M) \leq C k^{\frac{1}{n+1}} .
$$

Application (Marques-N., '13)
Let $\left(M^{n+1}, g\right)$ with $2 \leq n \leq 6$ and $\operatorname{Ric}(g)>0$.
There are infinitely many distinct embedded smooth minimal hypersurfaces.

- (Franks, '92, Bangert '93) $\left(S^{2}, g\right)$ admits infinitely closed geodesics
- (Yau's Conjecture, '82) (M^{3}, g) admits infinitely many distinct smooth minimal surfaces.

Skecth of proof

Theorem

Let $\left(M^{n+1}, g\right)$ with $2 \leq n \leq 6$ and $\operatorname{Ric}(g)>0$.
There are infinitely many distinct embedded smooth minimal hypersurfaces.
Sketch of proof:

Skecth of proof

Theorem
 Let $\left(M^{n+1}, g\right)$ with $2 \leq n \leq 6$ and $\operatorname{Ric}(g)>0$.

There are infinitely many distinct embedded smooth minimal hypersurfaces.
Sketch of proof:
1: $\omega_{k}(M)=\omega_{k+1}(M) \Longrightarrow$ existence of infinitely many minimal hypersurfaces.

Skecth of proof

Theorem
 Let $\left(M^{n+1}, g\right)$ with $2 \leq n \leq 6$ and $\operatorname{Ric}(g)>0$.

There are infinitely many distinct embedded smooth minimal hypersurfaces.
Sketch of proof:
1: $\omega_{k}(M)=\omega_{k+1}(M) \Longrightarrow$ existence of infinitely many minimal hypersurfaces.
2: Assume $\left\{\omega_{k}(M)\right\}_{k \in \mathbb{N}}$ is strictly increasing.

Skecth of proof

Theorem
 Let $\left(M^{n+1}, g\right)$ with $2 \leq n \leq 6$ and $\operatorname{Ric}(g)>0$.

There are infinitely many distinct embedded smooth minimal hypersurfaces.
Sketch of proof:
1: $\omega_{k}(M)=\omega_{k+1}(M) \Longrightarrow$ existence of infinitely many minimal hypersurfaces.
2: Assume $\left\{\omega_{k}(M)\right\}_{k \in \mathbb{N}}$ is strictly increasing.
3: $\operatorname{Ric}(g)>0 \Longrightarrow \omega_{k}(M)=n_{k} \operatorname{vol}\left(\Sigma_{k}\right)$ where Σ_{k} is connected minimal hypersurface.

Skecth of proof

Theorem
 Let $\left(M^{n+1}, g\right)$ with $2 \leq n \leq 6$ and $\operatorname{Ric}(g)>0$.

There are infinitely many distinct embedded smooth minimal hypersurfaces.
Sketch of proof:
1: $\omega_{k}(M)=\omega_{k+1}(M) \Longrightarrow$ existence of infinitely many minimal hypersurfaces.
2: Assume $\left\{\omega_{k}(M)\right\}_{k \in \mathbb{N}}$ is strictly increasing.
3: $\operatorname{Ric}(g)>0 \Longrightarrow \omega_{k}(M)=n_{k} \operatorname{vol}\left(\Sigma_{k}\right)$ where Σ_{k} is connected minimal hypersurface.
4: finitely many minimal hypersurfaces $+\mathbf{2}+\mathbf{3} \Longrightarrow \omega_{k}(M)$ grows linearly.
Contradiction with Gromov-Guth Theorem!

