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Definitions

e (M™1 g) closed (n+ 1)-Riemannian manifold with n < 6;
o Z,(M) = {all oriented hypersurfaces in M};

o Z,(M;Zy) = {all hypersurfaces in M};

A Zy(M) = [0, +00],  A(T) = vol(X);

e Critical points for A are called minimal hypersurfaces.

Question
Do minimal hypersurfaces exist?
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Min-max Theory

X* a topological space with dimension k;

¢ : XK — Z,(M) continuous in flat topology;

[¢] = {all ¥ homotopic to  fixing ® 5« };

L[®] = infyc[o] SUPyexx VOI(W(X)).

Theorem (Pitts, '81 2 < n < 5, Schoen-Simon, ’81 n = 6)
Assume L[®] > sup,cyx« vOI(P(xX)).

There is smooth embedded minimal n-hypersurface - (with multiplicities) so
that
L[®] = vol(X).
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e f: M — [0, 1] Morse function;
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One dimensional cycles (k = 1)

e f: M — [0, 1] Morse function;
o &y :[0,1] = Zy(M), &4(t) =0{f < t}.

Theorem (Almgren, '62)
We have L[®4] > 0.

Application 1 (Pitts '81, Schoen-Simon '81)

Every (M1, g) with 2 < n < 6 admits a smooth embedded minimal
hypersurface.

Application 2 (Simon-Smith ’82)

Every (S%, g) admits an embedded minimal sphere.
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One dimensional cycles (k = 1)

Application 3 (Colding-Minicozzi, ’06)
Assume (M3, g) has m3(M) = Z (e.g, if M is simply connected).

Ricci flow starting at g will have a finite time singularity.

Application 4 (Marques-M., '11)
Assume (M3, g) has Ric(g) > 0 and scalar curvature R > 6.

Then
L{®¢] < 4n

with equality only for (S3, go).

Application 5 (X. Zhou., '12)
Assume (M™' g) has Ric(g) >0and2 < n< 6.

Then L[®4] is attained by either an index one minimal embedded hypersurface
or a stable non-orientable embedded hypersurface with multiplicity two.



One, two, and three dimensional cycles (k = 1,2, 3)
Consider

P4 RP' — 21(32,22), [ao, a1] = 8{80 +aix1 < 0} ns?
®p RP? — 24(S2,Zs),

[@0, a1, @] — d{ag + a1 X1 + axxe < 0} N S2
®3 RP® — 24(S?,Zy),

[a(), ais, a, 33] — 8{a0 + a1 Xy + axo + asxg < 0} N S?



One, two, and three dimensional cycles (k = 1,2, 3)
Consider

P4 RP' — 21(32,22), [ao, a1] = 8{80 +aix1 < 0} ns?

ds :RHDZ — Z1(82,Zg), [a(), a1,a2] — 8{30 + ai Xy + axo < 0} n 82

Ps RP® — Z1(327Z2), [a(), a, a, 33] — 8{ao + a1 X1 + aXo + azxz < O} ns?

Theorem (Lusternik—Schnirelmann, '47)
[®4], [2], [®3] are all homotopically distinct in Z;(S?, Zy)

Application 1 (Lusternik—Schnirelmann, ‘47, Grayson, '89)
Every (82, g) admits three distinct simple closed geodesics.



One, two, and three dimensional cycles (k = 1,2, 3)
Consider

P4 RP' — 21(32,22), [ao, 81] = 3{30 +aix1 < 0} ns?
ds :RPZ — Z1(82,Zg), [a(), a1,a2] — 8{30 + ai Xy + axo < 0} n 82
Ps RP® — Z1(327Z2), [a(), a, a, 33] — 8{30 + a1 X1 + aXo + azxz < O} ns?

Theorem (Lusternik—Schnirelmann, ’'47)
[®1], [®2], [®3] are all homotopically distinct in Z; (S?, Z,)

Application 1 (Lusternik—Schnirelmann, ‘47, Grayson, '89)
Every (82, g) admits three distinct simple closed geodesics.

Application 2 (Jost, '89)

Every (S8, g) admits four distinct embedded minimal spheres.



Five dimensional cycles (k = 5)
e B* = unit 4-ball = Conf(S®)/SO(4);
e ¥ embedded smooth surface of S®;
o &5 B* x [—m, 7] = 2Z2(S®%), &s(v,t) = 0{signed dist(x, F,(X)) < t}.
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Five dimensional cycles (k = 5)
e B* = unit 4-ball = Conf(S®)/SO(4);
e ¥ embedded smooth surface of S®;
o &5 : B x [-m, 7] = 22(S%), ®s(v,t) = d{signed dist(x, F,(X)) < t}.
F, () t=0 vl
—3 —3

t>0
I=0A

Theorem (Marques-N., '12)
If © has positive genus then L[®s] > 4.

Application (Marques-N., ’12)

If £ c R3 compact and embedded has positive genus then

/ |H[2dp > 272,
b
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e given (v1,72) C R* non-intersecting curves consider

and set G(v1,72) = G(S' x S") € 2,(S®);
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Five dimensional cycles (k = 5)
o Given v € B* set F,(x) = 2=%, € Conf(R*);

[x=Vv[?

o F({lx| <1}) = {Ix — c(v)| < 7=}, where c(v) = :={i;
e given (v1,72) C R* non-intersecting curves consider

t) —12(s)

G:S' xS =8 Gst)—= WS

(0= 100 el
and set G(v1,72) = G(S' x S") € 2,(S®);

e with (v1,72) C S consider &5 : B* x [0, +-00] — 22(S®)

®5(v, A) = G(Fv(71), A(Fv(72) — €(v)) + ¢(v)).

Theorem (Agol-Marques-N., '12)
If (v1,72) has |lk(v1,72)| = 1, then L[®5] > 4.



Five dimensional cycles (k = 5)
* Given v € B* set Fy(x) = 357 € Conf(R*);

o F({lx| <1}) = {Ix — c(v)| < 3=}, where c(v) =
e given (v1,72) C R* non-intersecting curves consider

- \VI2

and set G(v1,72) = G(S' x S") € 2,(S®);
e with (v1,72) C S consider &5 : B* x [0, +-00] — 22(S®)

®5(v, A) = G(Fv(71), A(Fv(72) — €(v)) + ¢(v)).

Theorem (Agol-Marques-N., '12)
If (v1,72) has |lk(v1,72)| = 1, then L[®5] > 4.

Application (Agol-Marques-N., 12)
If (71,72) has |/k(y1,72)| = 1, then Mobius cross energy of (vi,72) > 272.



k-dimensional cycles (k € N)
We say ¢ : RP¥ — Z,(M; Z5) is a k-sweepout if for every curve ~
04[] € m(RPX) = donr: 8" — Z,(M;Zy) is a sweepout.
Example 1
With f: M — R Morse function set
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k-dimensional cycles (k € N)
We say ¢ : RP¥ — Z,(M; Z5) is a k-sweepout if for every curve ~

04[] € m(RPX) = donr: 8" — Z,(M;Zy) is a sweepout.

Example 1
With f : M — R Morse function set

& : RPK = Z,(M; Z2), ®([ao, a1, 8z...,ak]) = 0{ao+aif+afP+.. +axfk <0}

® is a k-sweepout.

Example 2 (Conjectural)
With ¢q, . . ., ¢« linearly independent eigenfunctions of Laplacian consider

¢ : RP¥ — Zn(M; Zg), <1>([ao7 ai, a ..., ak]) = 8{30(250-1-31 P14 . . Fakpx < 0}

® is a k-sweepout.



k-dimensional cycles (k € N)
Consider for every k € N

wk(M) = inf sup vol(®(x)).

- {®is a k-sweepout} , -ppk

Theorem (Gromoyv, ‘87 — Guth, ’07)
For every (M™1, g) there is C so that for all k € N

C kT < wi(M) < CK.
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k-dimensional cycles (k € N)
Consider for every k € N

wk(M) = inf sup vol(®(x)).

- {®is a k-sweepout} , -ppk

Theorem (Gromoyv, ‘87 — Guth, ’07)
For every (M™1, g) there is C so that for all k € N

C kT < wi(M) < CK.

Application (Marques-N., '13)
Let (M™1 g) with 2 < n < 6 and Ric(g) > 0.

There are infinitely many distinct embedded smooth minimal hypersurfaces.

o (Franks, '92, Bangert '93) (S2?, g) admits infinitely closed geodesics

e (Yau's Conjecture, '82) (M®, g) admits infinitely many distinct smooth
minimal surfaces.
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Skecth of proof

Theorem
Let (M, g) with 2 < n < 6 and Ric(g) > 0.
There are infinitely many distinct embedded smooth minimal hypersurfaces.

Sketch of proof:
1: wix(M) = w1 (M) = existence of infinitely many minimal hypersurfaces.

2: Assume {wy(M)}ken is strictly increasing.

3: Ric(g) > 0 = wi(M) = nxvol(Xx) where X is connected minimal
hypersurface.

4: finitely many minimal hypersurfaces + 2 + 3 = wx(M) grows linearly.

Contradiction with Gromov-Guth Theorem!



