Surfaces making constant angle with certain vector fields in 3-spaces

Ana-Irina Nistor

KATHOLIEKE UNIVERSITEIT
 LEUVEN

Universidad de Granada - May 30, 2012

Outline

(1) Introduction

2 Constant angle with \mathbb{R} direction in Product Spaces

- CAS in $\mathbb{M}^{2} \times \mathbb{R}$
- CPD in $\mathbb{M}^{2} \times \mathbb{R}$
- CAS\&CPD in Lorentzian Product spaces $\mathbb{M}^{2} \times \mathbb{R}_{1}$
(3) Constant angle with the position vector
- Constant slope surfaces in \mathbb{E}^{3}

4 Constant angle with a Killing vector field in \mathbb{E}^{3}
(5) CAS in Heisenberg group
(6) CAS in Solvable Lie groups

Constant Angle Surfaces

A constant angle surface (CAS in short) is an oriented surface for which its normal makes a constant angle with a fixed direction, which is chosen in each case as a preferred direction in the ambient space:
(1) \mathbb{R} direction in $\mathbb{M}^{2} \times \mathbb{R}, \mathbb{M}^{2} \times \mathbb{R}_{1}$
(2) position vector in \mathbb{E}^{3} and \mathbb{E}_{1}^{3}
(3) Killing vector field in \mathbb{E}^{3}
(9) Killing vector field $e_{3}=\partial_{z}$ in Nil_{3}
(5) left invariant vector field in $G\left(\mu_{1}, \mu_{2}\right)$, in particular in $\mathrm{Sol}_{3}=G(-1,1)$

Constant Angle Surfaces and Principal Directions

A property of CAS:

When the ambient is of the form $\mathbb{M}^{2} \times \mathbb{R}$, a favored direction is \mathbb{R}. It is known that for a constant angle surface in $\mathbb{E}^{3}, \mathbb{S}^{2} \times \mathbb{R}$ or in $\mathbb{H}^{2} \times \mathbb{R}$, the projection of $\frac{\partial}{\partial t}$ (where t is the global parameter on \mathbb{R}) onto the tangent plane of the immersed surface, denoted by T, is a principal direction ${ }^{1}$ with the corresponding principal curvature ${ }^{2}$ identically zero.

Study surfaces endowed with a principal direction T which will be called a canonical principal direction (CPD in short).

[^0]
Results - CAS in $\mathbb{M}^{2} \times \mathbb{R}$

围 F. Dillen, J. Fastenakels, J. Van der Veken, L. Vrancken, Constant angle suraces in $\mathbb{S}^{2} \times \mathbb{R}$, Monatsh. Math. 152 (2)(2007), 89-96.

固 F. Dillen, M.I. Munteanu, Constant Angle Surfaces in $\mathbb{H}^{2} \times \mathbb{R}$, Bull. Braz. Math. Soc. 40 (1) (2009) 1, 85-97.

R M.I. Munteanu, N., A new approach on constant angle surfaces in \mathbb{E}^{3}, Turkish J. Math. 33 (2) (2009), 169-178.

Results - CPD in $\mathbb{M}^{2} \times \mathbb{R}$

围 F. Dillen, J. Fastenakels, J. Van der Veken, Surfaces in $\mathbb{S}^{2} \times \mathbb{R}$ with a canonical principal direction, Ann. Glob. Anal. Geom., 35(2009) 4, 381-396.
F. Dillen, M.I. Munteanu, N., Surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ with a canonical principal direction, Taiwanese J. Math., 15 (2011) 5, 2265-2289.

围 M.I. Munteanu, N., Complete classification of surfaces with a canonical principal direction in the Euclidean space \mathbb{E}^{3}, Cent. Eur. J. Math., 9(2011)2, 378-389.

CAS\&CPD in $\mathbb{M}^{2} \times \mathbb{R}_{1}$ - Preliminaries

- $\mathbb{M}^{2} \times \mathbb{R}_{1}$ the product of $\mathbb{M}^{2}(c)$ - a 2-dimensional space form of constant sectional curvature c and \mathbb{R}_{1}
$\bullet\langle\rangle=,\langle,\rangle_{\mathbb{M}^{2}}-d t^{2}$ - the Lorentzian metric
- the surface M is given by $L: M \rightarrow \mathbb{M}^{2} \times \mathbb{R}_{1}$
- ξ is a δ-unit normal vector field to $M,\langle\xi, \xi\rangle=\delta \in\{-1,1\}$.
- $\delta=-1, \xi$ is timelike iff M is spacelike
- $\delta=1, \xi$ is spacelike iff M is timelike
- $\partial_{t}:=(\partial / \partial t), t \in \mathbb{R}_{1}$ is a unitary timelike vector field on $\mathbb{M}^{2} \times \mathbb{R}_{1}$,

$$
\partial_{t}=T+\Theta \xi
$$

$\Theta=\cosh \theta$ (M is spacelike) or $\Theta=\sinh \theta$ (M is timelike).

- for every tangent vector field X on M :

$$
\begin{align*}
& \nabla_{X} T=\Theta S X \tag{1}\\
& X(\Theta)=-\delta\langle S X, T\rangle \tag{2}
\end{align*}
$$

Preliminaries - more about angles

Recall that ∂_{t} is timelike in $\left(\mathbb{M}^{2} \times \mathbb{R}_{1},\langle\rangle,\right)$.
If M is a spacelike surface, then ξ is timelike, and we will consider it with the same time-orientation as ∂_{t}, i.e. future-directed, $\left\langle\partial_{t}, \xi\right\rangle<0$.

- The angle θ between two unitary timelike vectors was defined for the first time in 1984, as:

$$
\cosh \theta=-\left\langle\partial_{t}, \xi\right\rangle
$$

If M is a timelike surface, then ξ is spacelike.

- The angle θ between a timelike and a spacelike unitary vectors was defined for the first time in 2005, as:

$$
\sinh \theta=\left\langle\partial_{t}, \xi\right\rangle
$$

© G. Birman, K. Nomizu, Trigonometry in Lorentzian geometry, Amer. Math. Monthly, 91(1984)9, 543-549.
圆 E. Nešović, M.Petrović - Torgas̆ev, L. Verstraelen, Curves in Lorentzian spaces, Boll. Unione Mat. Ital., serie 8, 8-B(2005)3, 685-696.

Spacelike surfaces in $\mathbb{S}^{2} \times \mathbb{R}_{1}$ and $\mathbb{H}^{2} \times \mathbb{R}_{1}$

- constant angle spacelike surfaces in Minkowski 3-space (when $c=0$) have been classified in
R. López, M.I. Munteanu, Constant angle surfaces in Minkowski space, Bull. Belg. Math. Soc. - Simon Stevin , 18 (2011) 2, 271-286.
- we extend this study to constant angle spacelike surfaces in $\mathbb{S}^{2} \times \mathbb{R}_{1}$ $(c=1)$ and $\mathbb{H}^{2} \times \mathbb{R}_{1}(c=-1)$.
- we study canonical principal directions for spacelike surfaces in the ambient space $\mathbb{M}^{2} \times \mathbb{R}_{1}$.

Spacelike surfaces in $\mathbb{S}^{2} \times \mathbb{R}_{1}$ and $\mathbb{H}^{2} \times \mathbb{R}_{1}$

Theorem (Fu, N.)

Let M be a spacelike surface immersed into Lorentzian product space $\mathbb{M}^{2}(c) \times \mathbb{R}_{1}$, with $c=-1,1$. Then, M is a constant angle spacelike surface if and only if the immersion L is locally given by:
(a) If $c=1$, then $L: M \rightarrow \mathbb{S}^{2} \times \mathbb{R}_{1} \hookrightarrow \mathbb{R}_{1}^{4}$,
$L(u, v)=\left(\cos (u \cosh \theta) f(v)+\sin (u \cosh \theta) f(v) \times f^{\prime}(v),-u \sinh \theta\right)$, where f is a unit speed curve in \mathbb{S}^{2}.
(b) If $c=-1$, then $L: M \rightarrow \mathbb{H}^{2} \times \mathbb{R}_{1} \hookrightarrow \mathbb{R}_{2}^{4}$,
$L(u, v)=\left(\cosh (u \cosh \theta) f(v)+\sinh (u \cosh \theta) f(v) \boxtimes f^{\prime}(v),-u \sinh \theta\right)$, where f is a unit speed curve in \mathbb{H}^{2}.

In both cases $\theta \neq 0$ denotes the constant hyperbolic angle.
If $\theta=0$, then ∂_{t} is a normal vector field and M is an open part of the spacelike surface: $\bullet \mathbb{S}^{2} \times\left\{t_{0}\right\}$ for $c=1$

- $\mathbb{H}^{2} \times\left\{t_{0}\right\}$ for $c=-1$.

Spacelike surfaces in $\mathbb{S}^{2} \times \mathbb{R}_{1}$ and $\mathbb{H}^{2} \times \mathbb{R}_{1}$

Theorem (Fu, N.)

Let $L: M \rightarrow \mathbb{M}^{2}(c) \times \mathbb{R}_{1}, c=-1,1$ be a spacelike surface and let θ be the hyperbolic angle function. Then, T is a canonical principal direction for M if and only if M is parameterized as:
(a) If $c=1$, then $L: M \rightarrow \mathbb{S}^{2} \times \mathbb{R}_{1} \hookrightarrow \mathbb{R}_{1}^{4}$,
$L(u, v)=\left(\cos \phi(u) f(v)+\sin \phi(u) N_{f}(v), \chi(u)\right)$, where f is a
regular curve on \mathbb{S}^{2} and $N_{f}(v)=\frac{f(v) \times f^{\prime}(v)}{\sqrt{\left\langle f^{\prime}(v), f^{\prime}(v)\right\rangle}}$ is the normal of f.
(b) If $c=-1$, then $L: M \rightarrow \mathbb{H}^{2} \times \mathbb{R}_{1} \hookrightarrow \mathbb{R}_{2}^{4}$,
$L(u, v)=\left(\cosh \phi(u) f(v)+\sinh \phi(u) N_{f}(v), \chi(u)\right)$, where f is a
regular curve on \mathbb{H}^{2} and $N_{f}(v)=\frac{f(v) \boxtimes f^{\prime}(v)}{\sqrt{\left\langle f^{\prime}(v), f^{\prime}(v)\right\rangle}}$ is the normal of f.
Moreover, $\phi(u)=\int^{u} \cosh \theta(\tau) d \tau$ and $\chi(u)=-\int^{u} \sinh \theta(\tau) d \tau$.

CPD for spacelike surfaces in \mathbb{E}_{1}^{3}

Theorem (N.)

Let $L: M \rightarrow \mathbb{E}_{1}^{3}$ be a spacelike surface isometrically immersed in \mathbb{E}_{1}^{3} and let $\theta(p) \neq 0$ be the hyperbolic angle function. Then, M has a canonical principal direction if and only if M is parametrized by:
(c.1) $L(u, v)=$

$$
(\cos v, \sin v, 0) \int^{u} \cosh \theta(\tau) d \tau-(0,0,1) \int^{u} \sinh \theta(\tau) d \tau+\gamma(v)
$$

where

$$
\gamma(v)=\left(\int \psi(v) \sin v d v,-\int \psi(v) \cos v d v, 0\right), \psi \in C^{\infty}(M)
$$

(c.2) $L(u, v)=$
$\left(\cos v_{0}, \sin v_{0}, 0\right) \int^{u} \cosh \theta(\tau) d \tau-(0,0,1) \int^{u} \sinh \theta(\tau) d \tau+v \gamma_{0}$, where $\gamma_{0}=\left(-\sin v_{0}, \cos v_{0}, 0\right)$, and v_{0} is a real constant.

CPD for spacelike surfaces in \mathbb{E}_{1}^{3} with $H=0$

Theorem (N.)

The only maximal spacelike surfaces in \mathbb{E}_{1}^{3} with a canonical principal direction are the catenoids of 1 st kind, $L: M \rightarrow \mathbb{E}_{1}^{3}$,

$$
L(u, v)=\left(\sqrt{u^{2}-m^{2}} \cos v, \sqrt{u^{2}-m^{2}} \sin v, m \ln \left(u+\sqrt{u^{2}-m^{2}}\right)\right)
$$

$$
m \in \mathbb{R}^{*} .
$$

Remark

Under the assumption of flatness, we obtain the generalized cylinders from case (c.2) of the classification theorem.

The catenoid of 1st kind

The catenoid of 1st kind may be obtained rotating the curve
$\left(m \sinh \left(\frac{t}{m}-\ln m\right), 0, t\right)$ around the Oz axis.

Figure: $m=1, t \in[-3,3], v \in[0,2 \pi]$

Timelike surfaces in $\mathbb{S}^{2} \times \mathbb{R}_{1}$ and $\mathbb{H}^{2} \times \mathbb{R}_{1}$

- constant angle timelike surfaces in Minkowski 3-space (when $c=0$) have been classified in
固 F. Güler, G. Șaffak, E. Kasap, Timelike constant angle surfaces in Minkowski space \mathbb{R}_{1}^{3}, Int. J. Contemp. Math. Sci., 6(2011)44, 2189-2200.
- we study constant angle timelike surfaces in $\mathbb{S}^{2} \times \mathbb{R}_{1}(c=1)$ and $\mathbb{H}^{2} \times \mathbb{R}_{1}(c=-1)$.
- we study canonical principal directions for timelike surfaces in the ambient space $\mathbb{M}^{2} \times \mathbb{R}_{1}$.

Timelike CAS $\mathbb{S}^{2} \times \mathbb{R}_{1}$ and $\mathbb{H}^{2} \times \mathbb{R}_{1}$

Theorem (Fu, N.)

Let $L: M \rightarrow \mathbb{M}^{2}(c) \times \mathbb{R}_{1}$ be a timelike surface immersed into Lorentzian product space $\mathbb{M}^{2}(c) \times \mathbb{R}_{1}$. Then M is a constant angle timelike surface if and only if the immersion L is locally given by:
(a) If $c=1$, then $L: M \rightarrow \mathbb{S}^{2} \times \mathbb{R}_{1}$,
$L(u, v)=\left(\cos (u \sinh \theta) f(v)+\sin (u \sinh \theta) f(v) \times f^{\prime}(v), u \cosh \theta\right)$, where f is a unit speed curve in \mathbb{S}^{2},
(b) If $c=-1$, then $L: M \rightarrow \mathbb{H}^{2} \times \mathbb{R}_{1}$,
$L(u, v)=\left(\cosh (u \sinh \theta) f(v)+\sinh (u \sinh \theta) f(v) \boxtimes f^{\prime}(v), u \cosh \theta\right)$, where f is a unit speed curve in \mathbb{H}^{2}.

In both cases $\theta \neq 0$ denotes the constant hyperbolic angle.
If $\theta=0$, then ∂_{t} is a tangent vector field, has no normal component, and M is an open part of $\gamma \times \mathbb{R}_{1}$, where $\gamma \in \mathbb{M}^{2}(c), c \in\{-1,1\}$.

CPD for timelike surfaces in $\mathbb{M}^{2} \times \mathbb{R}_{1}$

Theorem (Fu, N.)

Let $L: M \rightarrow \mathbb{M}^{2}(c) \times \mathbb{R}_{1}$ be a timelike surface and let θ be the hyperbolic angle function. Then, T is a canonical principal direction for M if and only if M is parametrized as:
(a) If $c=1$, then $L: M \rightarrow \mathbb{S}^{2} \times \mathbb{R}_{1}$,
$L(u, v)=\left(\cos \chi(u) f(v)+\sin \chi(u) N_{f}(v), \phi(u)\right)$, where f is a regular curve on \mathbb{S}^{2} and $N_{f}(v)=\frac{f(v) \times f^{\prime}(v)}{\sqrt{\left\langle f^{\prime}(v), f^{\prime}(v)\right\rangle}}$ is the normal of f.
(b) If $c=-1$, then $L: M \rightarrow \mathbb{H}^{2} \times \mathbb{R}_{1}$,
$L(u, v)=\left(\cosh \chi(u) f(v)+\sinh \chi(u) N_{f}(v), \phi(u)\right)$, where f is a
regular curve on \mathbb{H}^{2} and $N_{f}(v)=\frac{f(v) \boxtimes f^{\prime}(v)}{\sqrt{\left\langle f^{\prime}(v), f^{\prime}(v)\right\rangle}}$ is the normal of f.
Moreover, $\phi(u)=\int^{u} \cosh \theta(\tau) d \tau$ and $\chi(u)=\int^{u} \sinh \theta(\tau) d \tau$.

CPD for timelike surfaces in $\mathbb{M}^{2} \times \mathbb{R}_{1}$

Theorem (Fu, N.)

Let $L: M \rightarrow \mathbb{M}^{2}(c) \times \mathbb{R}_{1}$ be a timelike surface and let θ be the hyperbolic angle function. Then, T is a canonical principal direction for M if and only if M is parametrized as:
(c) If $c=0$, then $L: M \rightarrow \mathbb{E}_{1}^{3}$,
(c.1) $L(u, v)=(\chi(u) \cos v, \chi(u) \sin v, \phi(u))+\gamma(v)$,
where $\gamma(v)=\left(-\int \psi(v) \sin v d v, \int \psi(v) \cos v d v, 0\right)$,
and ψ is a smooth function,
(c.2) $L(u, v)=\left(\chi(u) \cos v_{0}, \chi(u) \sin v_{0}, \phi(u)\right)+\gamma_{0} v$, where $\gamma_{0}=\left(-\sin v_{0}, \cos v_{0}, 0\right)$, and v_{0} is a real constant.
Moreover, $\phi(u)=\int^{u} \cosh \theta(\tau) d \tau$ and $\chi(u)=\int^{u} \sinh \theta(\tau) d \tau$.

CPD for timelike surfaces in \mathbb{E}_{1}^{3} - minimality

Corollary (Fu, N.)

The only flat timelike surfaces M immersed in \mathbb{E}_{1}^{3} endowed with a canonical principal direction are given by the cylindrical surfaces parametrized in case (c.2) of previous Theorem.

Theorem (Fu, N.)

The only minimal timelike surfaces M immersed in \mathbb{E}_{1}^{3} endowed with a canonical principal direction are given by the catenoids of 3rd kind parametrized as:

$$
L(t, v)=\left(m \cos \frac{t}{m} \cos v, m \cos \frac{t}{m} \sin v, t\right), m \in \mathbb{R}^{*}
$$

The catenoid of 3rd kind

... may be obtained rotating the curve:

$$
\left(m \cos \frac{t}{m}, 0, t\right), m \in \mathbb{R}^{*}
$$

around the $O z$ axis.

Figure: $m=1, t \in[0,2 \pi], v \in[0,2 \pi]$

Preprints

The problems of

- CAS for spacelike and timelike surfaces in $\mathbb{S}^{2} \times \mathbb{R}_{1}$ and $\mathbb{H}^{2} \times \mathbb{R}_{1}$
- CPD for spacelike and timelike surfaces in $\mathbb{M}^{2} \times \mathbb{R}_{1}$ are studied in :
© Y. Fu, N. Constant angle property and canonical principal directions for surfaces in $\mathbb{M}^{2}(c) \times \mathbb{R}_{1}$, preprint 2012.
- CPD for spacelike surfaces in \mathbb{E}_{1}^{3} :
N., A note on spacelike surfaces in Minkowski 3-space, preprint 2011.

Constant angle with the position vector

Logarithmic spirals \Longrightarrow constant slope surfaces
Logarithmic spiral: planar curve having the property that the angle θ between its tangent and the radial direction at every point is constant.

Constant angle with the position vector

In other words, the logarithmic spiral is the curve whose tangent makes a constant angle θ with the position vector in every point.

Question - surfaces:
Passing from curves to surfaces, find all surfaces in the Euclidean 3 -space making a constant angle with the position vector.

Constant angle with the position vector

Answer: constant slope surfaces

Theorem (Munteanu)

Let $r: M \longrightarrow \mathbb{E}^{3}$ be an isometric immersion. Then M is of constant slope if and only if either it is an open part of the Euclidean 2-sphere centered in the origin, or it can be parameterized by

$$
r(u, v)=u \sin \theta\left(\cos \varphi(u) f(v)+\sin \varphi(u) f(v) \times f^{\prime}(v)\right)
$$

where θ is a constant (angle) different from $0, \varphi(u)=\cot \theta \log u$ and f is a unit speed curve on the Euclidean sphere \mathbb{S}^{2}.

- $\theta=0$: the position vector is normal to the surface, M is an open part of the Euclidean 2-sphere;
- $\theta=\frac{\pi}{2}: M$ is a cone with the vertex in origin, or a plane passing through origin.

Examples

$$
\begin{gathered}
\theta=\frac{\pi}{5} \\
f(v)=(\cos v, \sin v, 0)
\end{gathered}
$$

$$
\begin{gathered}
\theta=\frac{\pi}{15} \\
f(v)=\left(\cos ^{2} v, \cos v \sin v, \sin v\right)
\end{gathered}
$$

parametric lines: blue: logarithmic spiral black: the spherical curve f.

Constant slope surfaces

图 M．I．Munteanu，From Golden Spirals to Constant Slope Surfaces，J． Math．Phys．， 51 （2010）7，073507：1－9．

目 Y．Fu，D．Yang，On constant slope spacelike surfaces in 3－dimensional Minkowski space，J．Math．Analysis Appl．， 385 （2012）1，208－220．

目 Y．Fu，X．Wang，Classification of Timelike Constant Slope Surfaces in 3－Dimensional Minkowski Space，Res．Math． 2012.

Constant angle with a Killing vector field Preliminaries

- $\mathbb{E}^{3}=\left(\mathbb{R}^{3},\langle\rangle,\right)$,
- $\stackrel{\circ}{\nabla}$ - Levi-Civita connection corresponding to \langle,$\rangle in \mathbb{E}^{3}$,
- V is Killing iff it satisfies the Killing equation:

$$
\langle\stackrel{\circ}{\nabla} x V, Y\rangle+\langle\stackrel{\circ}{\nabla} Y V, X\rangle=0
$$

for any vector fields X, Y in \mathbb{R}^{3}.

- The set

$$
\left\{\partial_{x}, \partial_{y}, \partial_{z},-y \partial_{x}+x \partial_{y}, z \partial_{y}-y \partial_{z}, z \partial_{x}-x \partial_{z}\right\}
$$

gives a basis of Killing vector fields in \mathbb{E}^{3}.

Curves - constant angle with a Killing field

- If $\tilde{\gamma}$ is a straight line, then γ is a helix.
W.I.o.g. the line can be taken to be (parallel with) one of the coordinate axes, and this is an integral curve of a Killing vector vector field in \mathbb{E}^{3}.

Motivated by this remark, a natural question appears:

- which curves make a constant angle with a Killing vector field in \mathbb{E}^{3} ?

Curves - constant angle with a Killing field

- If $\tilde{\gamma}$ is a straight line, then γ is a helix.
W.I.o.g. the line can be taken to be (parallel with) one of the coordinate axes, and this is an integral curve of a Killing vector vector field in \mathbb{E}^{3}.

Motivated by this remark, a natural question appears:

- which curves make a constant angle with a Killing vector field in \mathbb{E}^{3} ?

Recall that we have a basis of Killing vector fields in \mathbb{E}^{3} :

$$
\left\{\partial_{x}, \partial_{y}, \partial_{z},-y \partial_{x}+x \partial_{y}, z \partial_{y}-y \partial_{z}, z \partial_{x}-x \partial_{z}\right\}
$$

Curves - constant angle with a Killing field

- If $\tilde{\gamma}$ is a straight line, then γ is a helix.
W.I.o.g. the line can be taken to be (parallel with) one of the coordinate axes, and this is an integral curve of a Killing vector vector field in \mathbb{E}^{3}.

Motivated by this remark, a natural question appears:

- which curves make a constant angle with a Killing vector field in \mathbb{E}^{3} ?

Recall that we have a basis of Killing vector fields in \mathbb{E}^{3} :

$$
\left\{\partial_{x}, \partial_{y}, \partial_{z},-y \partial_{x}+x \partial_{y}, z \partial_{y}-y \partial_{z}, z \partial_{x}-x \partial_{z}\right\}
$$

Curves - constant angle with a Killing field

- If $\tilde{\gamma}$ is a straight line, then γ is a helix.
W.I.o.g. the line can be taken to be (parallel with) one of the coordinate axes, and this is an integral curve of a Killing vector vector field in \mathbb{E}^{3}.

Motivated by this remark, a natural question appears:

- which curves make a constant angle with a Killing vector field in \mathbb{E}^{3} ?

Recall that we have a basis of Killing vector fields in \mathbb{E}^{3} :

$$
\left\{\partial_{x}, \partial_{y}, \partial_{z},-y \partial_{x}+x \partial_{y}, z \partial_{y}-y \partial_{z}, z \partial_{x}-x \partial_{z}\right\}
$$

- which curves make a constant angle with V in \mathbb{E}^{3} ?

Plane curves - constant angle with V

Theorem (Munteanu, N.)

A curve in the $x y$-plane makes constant angle θ with the Killing vector field $V=-y \partial_{x}+x \partial_{y}$ if and only of it is given by one of the following cases:
(a) or a straight line passing through the origin,
(b) either the circle $\mathbb{S}^{1}\left(r_{0}\right)$ centred in the origin and of radius r_{0},
(c) or the logarithmic spiral $\rho(\phi)=e^{\tan \theta\left(\phi-\phi_{0}\right)}$.

Sketch of proof.
For the curve p.a.l. $\gamma(s)=(\rho(s) \cos \phi(s), \rho(s) \sin \phi(s))$, the constant angle condition becomes: $\rho(s) \phi^{\prime}(s)=\cos \theta$.

- if $\theta=\frac{\pi}{2}: \rho(s) \neq 0$ and $\phi(s)=\phi_{0}$, (a),
- if $\theta=0: \rho(s)=\rho_{0}$ and $\phi(s)=\frac{s}{\rho_{0}}+\phi_{0}, \mathbf{(b)}$,
- if $\theta \neq 0: \rho(s)=s \sin \theta+s_{0}$ and $\phi(s)=\cot \theta \ln \left(s \sin \theta+s_{0}\right)+\phi_{0}$, (c).

Space curves - constant angle with V

In cylindrical coordinates: $\gamma(s)=(\rho(s) \cos \phi(s), \rho(s) \sin \phi(s), z(s))$

Theorem (Munteanu, N.)

A curve γ in the Euclidean space $\mathbb{E}^{3} \backslash O z$ makes a constant angle θ with the Killing vector field $V=-y \partial_{x}+x \partial_{y}$ if and only if, is given, in cylindrical coordinates (ρ, ϕ, z), up to vertical translations and rotations around z-axis, by: $\rho(s)=\rho_{0}+\sin \theta \int^{s} \cos \omega(\zeta) d \zeta, \phi(s)=\cos \theta \int^{s} \frac{d \zeta}{\rho(\zeta)}$,
$z(s)=\sin \theta \int^{s} \sin \omega(\zeta) d \zeta$,
where $\rho_{0} \in \mathbb{R}$ and ω is a smooth function on $I \subset \mathbb{R}$.

Examples for different values of ω

Figure: Space curve making constant angle with V (left) and its projection (right): $\omega=\omega_{0}$

Examples for different values of ω

Figure: Space curve making constant angle with V (left) and its projection (right): $\omega=m s+n$

Examples for different values of ω

$\theta=\pi / 20, \omega(\mathrm{~s})=\arccos (\mathrm{s})$

Figure: Space curve making constant angle with V (left) and its projection (right): $\omega=\arccos (s)$

Surfaces - Preliminaries

- $V=-y \partial_{x}+x \partial_{y}$ must be non-null, thus the surface M lies in $\mathbb{E}^{3} \backslash O z$;
- g the metric on M and by ∇ the associated Levi-Civita connection,
- N denotes the unit normal to the surface M;
- denote $\angle(V, N):=\theta$ - constant angle;
- If $\theta=\frac{\pi}{2}$, then M is a surface of revolution.
- If $\theta=0$, then we obtain half-planes having z-axis as boundary.
- projecting V on the tangent plane to M :

$$
V=T+\mu \cos \theta \xi
$$

where ξ is the unit normal to M, T is the tangent part, with $\|T\|=\mu \sin \theta$ and $\mu=\|V\|$.

- choose an orthonormal basis $\left\{e_{1}, e_{2}\right\}$ on the tangent plane to M s.t. $e_{1}=\frac{T}{\|T\|}$ and $e_{2} \perp e_{1}$.
- If follows that $V=\mu\left(\sin \theta e_{1}+\cos \theta \xi\right)$.

Surfaces - Basic formulas

For an arbitrary vector field X in \mathbb{E}^{3}, we have

$$
\begin{equation*}
\stackrel{\circ}{\nabla} \times V=k \times X, \tag{3}
\end{equation*}
$$

where $k=(0,0,1)$ and \times stands for the usual cross product in \mathbb{E}^{3}. Consider $\left\{e_{1}, e_{2}, k, \xi\right\}$ in a point on M and define the angles:

$$
\angle(\xi, k):=\varphi, \quad \angle\left(e_{1}, k\right):=\eta \quad \angle\left(e_{2}, k\right):=\psi,
$$

which are not independent, $\cos \varphi=-\sin \theta \sin \psi \cos \eta=\cos \theta \sin \psi$. We decompose $k \times e_{1}$ and $k \times e_{2}$ in the basis $\left\{e_{1}, e_{2}, \xi\right\}$,

$$
\begin{equation*}
k \times e_{1}=-\sin \theta \sin \psi e_{2}-\cos \psi \xi, k \times e_{2}=\sin \theta \sin \psi e_{1}+\cos \theta \sin \psi \xi \tag{4}
\end{equation*}
$$

If X is tangent to M, then

$$
\begin{align*}
\stackrel{\circ}{\nabla} x V= & X(\mu)\left(\sin \theta e_{1}+\cos \theta \xi\right) \tag{5}\\
& +\mu \sin \theta\left(\nabla_{X} e_{1}+h\left(X, e_{1}\right)\right)-\mu \cos \theta A X
\end{align*}
$$

Surfaces - Basic formulas

From (3), (5) and (4) we get

$$
e_{1}(\mu)=-\cos \theta \cos \psi, \quad e_{2}(\mu)=\sin \psi
$$

As a consequence, we obtain the shape operator:

$$
S=\left(\begin{array}{cc}
-\frac{\sin \theta \cos \psi}{\mu} & 0 \tag{6}\\
0 & \lambda
\end{array}\right)
$$

where λ is a smooth function on M, and the Levi-Civita connection:

$$
\begin{aligned}
& \nabla_{e_{1}} e_{1}=-\frac{\sin \psi}{\mu} e_{2}, \quad \nabla_{e_{1}} e_{2}=\frac{\sin \psi}{\mu} e_{1}, \\
& \nabla_{e_{2}} e_{1}=\lambda \operatorname{cotan} \theta e_{2}, \quad \nabla_{e_{2}} e_{2}=-\lambda \operatorname{cotan} \theta e_{1} .
\end{aligned}
$$

From (6) we see that e_{1} and e_{2} are principal directions on M.

Surfaces - Basic formulas

Then, using the expressions of the Levi-Civita connection we may compute the Lie bracket of e_{1} and e_{2} :

$$
\begin{equation*}
\left[e_{1}, e_{2}\right]=\frac{\sin \psi}{\mu} e_{1}-\lambda \operatorname{cotan} \theta e_{2} . \tag{7}
\end{equation*}
$$

Consequently, a compatibility condition is found computing $\left[e_{1}, e_{2}\right](\mu)$ in two ways:

$$
\begin{equation*}
-\cos \psi e_{1}(\psi)+\cos \theta \sin \psi e_{2}(\psi)=\frac{\cos \theta \sin \psi \cos \psi}{\mu}+\lambda \operatorname{cotan} \theta \sin \psi \tag{8}
\end{equation*}
$$

Coordinates $(x, y, z) \mapsto(\rho \cos \phi, \rho \sin \phi, z)$

From now on we use cylindrical coordinates, such that the parametrization of the surface M may be thought as

$$
\begin{equation*}
F: D \subset \mathbb{R}^{2} \longrightarrow \mathbb{E}^{3} \backslash O z, \quad(u, v) \mapsto(\rho(u, v), \phi(u, v), z(u, v)) . \tag{9}
\end{equation*}
$$

The Euclidean metric in \mathbb{E}^{3} becomes a warped metric
$\langle\rangle=,d \rho^{2}+d z^{2}+\rho^{2} d \phi^{2}$
Note that the Killing vector field V coincides with ∂_{ϕ}.
The basis $\left\{e_{1}, e_{2}, \xi\right\}$ may be expressed in terms of the new coordinates as:

$$
\begin{align*}
e_{1} & =-\cos \theta \cos \psi \partial_{\rho}+\frac{\sin \theta}{\mu} \partial_{\phi}+\cos \theta \sin \psi \partial_{z} \\
e_{2} & =\sin \psi \partial_{\rho}+\cos \psi \partial_{z} \tag{10}\\
\xi & =\sin \theta \cos \psi \partial_{\rho}+\frac{\cos \theta}{\mu} \partial_{\phi}-\sin \theta \sin \psi \partial_{z}
\end{align*}
$$

Classification theorem

Theorem (Munteanu, N.)

Let M be a surface isometrically immersed in $\mathbb{E}^{3} \backslash O z$ and consider the Killing vector field $V=-y \partial_{x}+x \partial_{y}$. Then M makes a constant angle θ with V if and only if is one of the following surfaces, up to vertical translations and rotations about z-axis:
(a) a half-plane with z-axis as boundary,
(b) a rotational surface around z-axis,

Classification theorem

Theorem (Munteanu, N.)

Let M be a surface isometrically immersed in $\mathbb{E}^{3} \backslash O z$ and consider the Killing vector field $V=-y \partial_{x}+x \partial_{y}$. Then M makes a constant angle θ with V if and only if is one of the following surfaces, up to vertical translations and rotations about z-axis:
(c) a right cylinder over a logarithmic spiral given by:
$F(u, z)=\left(u \cos \theta, \log \left(c u^{-\tan \theta}\right), z\right)$, $c \in \mathbb{R}^{*}$

For $\theta=\frac{\pi}{3}$; and $c=3$ we get this figure:

Classification theorem

Theorem (Munteanu, N.)

Let M be a surface isometrically immersed in $\mathbb{E}^{3} \backslash O z$ and consider the Killing vector field $V=-y \partial_{x}+x \partial_{y}$. Then M makes a constant angle θ with V if and only if is one of the following surfaces, up to vertical translations and rotations about z-axis:
(d) the Dini's surface defined in cylindrical coordinates (ρ, ϕ, z) by

$$
\begin{array}{r}
F(u, v)=\left(-\frac{\cos \theta \sin (c u)}{c},-\frac{c v \tan \theta}{\cos \theta}-\tan \theta \log \left(\tan \frac{c u}{2}\right),\right. \\
\left.v-\frac{\cos \theta \cos (c u)}{c}\right), \tag{11}
\end{array}
$$

where c is a nonzero real constant.

Dini's surface - parametrization...

... from cylindrical back to Euclidean coordinates

$$
\begin{aligned}
F(u, v)= & \left(-\frac{\cos \theta \sin (c u)}{c} \cos \left(-\frac{c v \tan \theta}{\cos \theta}-\tan \theta \log \left(\tan \frac{c u}{2}\right)\right)\right. \\
& -\frac{\cos \theta \sin (c u)}{c} \sin \left(-\frac{c v \tan \theta}{\cos \theta}-\tan \theta \log \left(\tan \frac{c u}{2}\right)\right) \\
& \left.v-\frac{\cos \theta \cos (c u)}{c}\right)
\end{aligned}
$$

$$
c u \mapsto u_{1} \text { and }-\frac{c v \tan \theta}{\cos \theta}-\tan \theta \log \left(\tan \frac{c u}{2}\right) \mapsto u_{2}
$$

$$
x\left(u_{1}, u_{2}\right)=-\frac{\cos \theta}{c} \sin u_{1} \cos u_{2},
$$

$$
y\left(u_{1}, u_{2}\right)=-\frac{\cos \theta}{c} \sin u_{1} \sin u_{2},
$$

$$
z\left(u_{1}, u_{2}\right)=-\frac{\cos \theta}{c}\left(\cos u_{1}+\log \left(\tan \frac{u_{1}}{2}\right)\right)-\frac{\cos \theta}{c \tan \theta} u_{2} .
$$

Figure: $\theta=\frac{\pi}{3}, c=\frac{\sqrt{3}}{2}$

More over Dini's surface

- This surface is named after Ulisse Dini (1845 1918), who obtained it studying helicoidal surfaces.
- Dini's surface is a helicoidal surface with axis Oz:

$$
F(\rho, \phi)=(\rho \cos \phi, \rho \sin \phi, \mathrm{h} \phi+\Lambda(\rho)),
$$

where $(\Lambda \circ \rho)(u)=-\frac{\cos \theta}{c}\left(\log \left(\tan \frac{c u}{2}\right)+\cos (c u)\right)$
and the pitch equals to $\mathrm{h}=-\frac{\cos \theta}{c \tan \theta}$.

- It may be obtained twisting the pseudosphere of radius $\frac{\cos \theta}{c}$.
- It has constant negative Gaussian curvature depending on the constant angle θ, $K=-c^{2} \tan ^{2} \theta, c \in \mathbb{R}^{*}$.

Figure: $\theta=\frac{\pi}{3}, c=\frac{\sqrt{3}}{2}$

Final remarks

Proposition (Munteanu, N.)

The parametric curves of Dini's surface are circular helices(v-param) and spherical curves(u-param).

Corollary (Munteanu, N.)

Looking backward, the u-parameter curves make the constant angle $\frac{\pi}{2}-$ θ with the Killing vector field V and the affine function ω (appearing in Theorem of space curves) is given by $\omega(s)=c s, c \in \mathbb{R}^{*}$.

Let M make a constant angle with the Killing vector field V, and:

- M is totally geodesic iff it is a vertical plane with the boundary $O z$;
- M is minimal not totally geodesic iff it is a catenoid about z-axis;
- M is flat iff it is a vertical plane with the boundary z-axis, a flat rotational surface or a right cylinder over a logarithmic spiral.

Final remarks

Figure: Pseudosphere

Figure: Dini's surface

Articles

The problems of

- curves making constant angle with a rotational Killing vector field in \mathbb{E}^{3}
- surfaces making constant angle with a rotational Killing vector field in \mathbb{E}^{3} are studied in :

目 M.I. Munteanu, N. Surfaces in \mathbb{E}^{3} making constant angle with Killing vector fields, Internat. J. Math., 23 (2012) 6, 1250023:1-16.

CAS in Heisenberg group Nil_{3}

$$
\mathbb{R}^{3}: \quad(\mathbf{x}, \mathbf{y}, \mathbf{z}) *(\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{z}})=\left(\mathbf{x}+\overline{\mathbf{x}}, \mathbf{y}+\overline{\mathbf{y}}, \mathbf{z}+\overline{\mathbf{z}}+\frac{\mathbf{x} \overline{\mathbf{y}}}{\mathbf{2}}-\frac{\overline{\mathbf{x}} \mathbf{y}}{\mathbf{2}}\right) .
$$

Remark that the mapping

$$
\mathbb{R}^{\mathbf{3}} \rightarrow\left\{\left.\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \right\rvert\, \mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}\right\}:(\mathbf{x}, \mathbf{y}, \mathbf{z}) \mapsto\left(\begin{array}{ccc}
1 & x & z+\frac{x y}{2} \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)
$$

is an isomorphism between $\left(\mathbb{R}^{3}, *\right)$ and a subgroup of $\operatorname{GL}(3, \mathbb{R})$. For every $\tau \neq 0$: left-invariant Riemannian metric on $\left(\mathbb{R}^{3}, *\right)$ $g=d x^{2}+d y^{2}+4 \tau^{2}\left(d z+\frac{y d x-x d y}{2}\right)^{2}$. After the change of coordinates $(x, y, 2 \tau z) \mapsto(x, y, z), g=d x^{2}+d y^{2}+(d z+\tau(y d x-x d y))^{2}$

$$
\operatorname{Nil}_{3}=\left(\mathbb{R}^{3}, *\right) \text { with } \mathbf{g} .
$$

Some authors: only if $\tau=\frac{1}{2}$.

CAS in Heisenberg group Nil_{3}

The following vector fields form a left-invariant orthonormal frame on Nil_{3} :

$$
e_{1}=\partial_{x}-\tau y \partial_{z}, \quad e_{2}=\partial_{y}+\tau x \partial_{z}, \quad e_{3}=\partial_{z}
$$

The geometry of Nil_{3} can be described in terms of this frame.
\qquad

CAS in Heisenberg group Nil_{3}

The following vector fields form a left-invariant orthonormal frame on Nil_{3} :

$$
e_{1}=\partial_{x}-\tau y \partial_{z}, \quad e_{2}=\partial_{y}+\tau x \partial_{z}, \quad e_{3}=\partial_{z}
$$

The geometry of Nil_{3} can be described in terms of this frame.
The Killing vector field e_{3} plays an important role in the geometry of Nil_{3}.

CAS in Heisenberg group Nil_{3}

The following vector fields form a left-invariant orthonormal frame on Nil_{3} :

$$
e_{1}=\partial_{x}-\tau y \partial_{z}, \quad e_{2}=\partial_{y}+\tau x \partial_{z}, \quad e_{3}=\partial_{z}
$$

The geometry of Nil_{3} can be described in terms of this frame.
The Killing vector field e_{3} plays an important role in the geometry of Nil_{3}.

Definition

We say that a surface in the Heisenberg group Nil_{3} is a constant angle surface if the angle θ between the unit normal and the direction e_{3} is the same at every point.

- cannot have $\theta=0$ - contradiction with: $\left[e_{1}, e_{2}\right]=2 \tau e_{3},\left[e_{2}, e_{3}\right]=0$ $\left[e_{3}, e_{1}\right]=0$, since $\tau \neq 0$.

CAS in Heisenberg group Nil_{3}

Theorem (Fastenakels, Munteanu, Van der Veken)

Let M be a constant angle surface in the Heisenberg group Nil3. Then M is isometric to an open part of one of the following types of surfaces:
(i) a Hopf-cylinder,
(ii) a surface given by

$$
\begin{aligned}
& r(u, v)=\left(\frac{1}{2 \tau} \tan \theta \sin u+f_{1}(v),-\frac{1}{2 \tau} \tan \theta \cos u+f_{2}(v),\right. \\
& \left.-\frac{1}{4 \tau} \tan ^{2} \theta u-\frac{1}{2} \tan \theta \cos u f_{1}(v)-\frac{1}{2} \tan \theta \sin u f_{2}(v)-\tau f_{3}(v)\right)
\end{aligned}
$$

with $\left(f_{1}^{\prime}\right)^{2}+\left(f_{2}^{\prime}\right)^{2}=\sin ^{2} \theta$ and $f_{3}^{\prime}(v)=f_{1}^{\prime}(v) f_{2}(v)-f_{1}(v) f_{2}^{\prime}(v)$.

- J. Fastenakels, M.I. Munteanu, J. Van der Veken, Constant Angle Surfaces in the Heisenberg group, Acta Math. Sinica(Engl. Ser.), 27 (2011) 4, 747-756.

CAS in Solvable Lie groups

... to be continued...

Thank you for attention!

[^0]: ${ }^{1}$ eigenvector of the shape operator
 ${ }^{2}$ eigenvalue of the shape operator

