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Introduction

Constant Angle Surfaces

A constant angle surface (CAS in short) is an oriented surface for which
its normal makes a constant angle with a fixed direction, which is chosen
in each case as a preferred direction in the ambient space:

O R direction in M? x R, M? x Ry

@ nposition vector in E3 and E3

@ Killing vector field in E3

Q Killing vector field e3 = 9, in Nil3

@ left invariant vector field in G(u1, 12), in particular in
8013 = G(—l, 1)
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Constant Angle Surfaces and Principal Directions

A property of CAS:

When the ambient is of the form M2 x R, a favored direction is R. It is
known that for a constant angle surface in E3, S? x R or in H? x R, the
projection of % (where t is the global parameter on R) onto the tangent
plane of the immersed surface, denoted by T, is a principal direction® with
the corresponding principal curvature? identically zero.

Study surfaces endowed with a principal direction T which will be called a
canonical principal direction (CPD in short).

leigenvector of the shape operator
2eigenvalue of the shape operator
A.l.Nistor (KUL) CAS Granada, May 31, 2012 3/43



Constant angle with R direction in Product Spaces CAS in M? x R

Results - CAS in M2 x R

[4 F. Dillen, J. Fastenakels, J. Van der Veken, L. Vrancken, Constant
angle suraces in S?> x R, Monatsh. Math. 152 (2)(2007), 89-96.

[+ F. Dillen, M.I. Munteanu, Constant Angle Surfaces in H? x R, Bull.
Braz. Math. Soc. 40 (1) (2009) 1, 85-97.

(4 M.l. Munteanu, N., A new approach on constant angle surfaces in E3,
Turkish J. Math. 33 (2) (2009), 169-178.
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Constant angle with R direction in Product Spaces CPD in M x R

Results - CPD in M? x R

[3 F. Dillen, J. Fastenakels, J. Van der Veken, Surfaces in S? x R with a
canonical principal direction, Ann. Glob. Anal. Geom., 35(2009) 4,
381-396.

[4 F. Dillen, M.I. Munteanu, N., Surfaces in H? x R with a canonical
principal direction, Taiwanese J. Math., 15 (2011) 5, 2265-2289.

(1 M.l. Munteanu, N., Complete classification of surfaces with a

canonical principal direction in the Euclidean space E3, Cent. Eur. J.
Math., 9(2011)2, 378-389.
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M? x R

CAS&CPD in M? x R; - Preliminaries

e M? x R; the product of M?(c) - a 2-dimensional space form of constant
sectional curvature ¢ and Ry
e (., )={(, )z — dt? - the Lorentzian metric
e the surface M is given by L : M — M? x R
e ¢ is a 0-unit normal vector field to M, (£,&) = € {—1,1}.
@ 0 = —1, & is timelike iff M is spacelike
@ 6 =1, £ is spacelike iff M is timelike
e 0, := (0/0t), t € Ry is a unitary timelike vector field on M? x Ry,

© = cosh @ (M is spacelike) or © = sinh 6 (M is timelike).
o for every tangent vector field X on M:

VxT = OSX, (1)
X(©) = —6(SX, T). (2)
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Constant angle with R direction in Product Spaces

CAS&CPD in Lorentzian Product spaces M? x R

Preliminaries - more about angles

Recall that 0; is timelike in (M? x Ry, { , )).
If M is a spacelike surface, then ¢ is timelike, and we will consider it with
the same time-orientation as 0, i.e. future-directed, (0:,&) < 0.

e The angle 0 between two unitary timelike vectors was defined for the
first time in 1984, as:

cosh = —(0¢,€).
If M is a timelike surface, then £ is spacelike.

e The angle 6 between a timelike and a spacelike unitary vectors was
defined for the first time in 2005, as:

sinh @ = (0, &).

[4 G. Birman, K. Nomizu, Trigonometry in Lorentzian geometry, Amer.
Math. Monthly, 91(1984)9, 543-549.

@ E. NeSovi¢, M.Petrovi¢ - TorgaSev, L. Verstraelen, Curves in Lorentzian
spaces, Boll. Unione Mat. Ital., serie 8, 8-B(2005)3, 685-696.
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M? x R

Spacelike surfaces in S?> x R; and H? x R;

e constant angle spacelike surfaces in Minkowski 3—space (when ¢ = 0)

have been classified in

4 R. Lépez, M.I. Munteanu, Constant angle surfaces in Minkowski
space, Bull. Belg. Math. Soc. - Simon Stevin , 18 (2011) 2, 271-286.

e we extend this study to constant angle spacelike surfaces in S? x Ry
(c=1)and H? x Ry (c = —1).

e we study canonical principal directions for spacelike surfaces in the
ambient space M? x R;.
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Constant angle with R direction in Product Spaces

CAS&CPD in Lorentzian Product spaces M? x R

Spacelike surfaces in S> x R; and H? x R;

Theorem (Fu, N.)

Let M be a spacelike surface immersed into Lorentzian product space
M?2(c) x Ry, with c = —1,1. Then, M is a constant angle spacelike surface
if and only if the immersion L is locally given by:
(a) f c=1, then L: M — S? x Ry — R},
L(u,v) = (cos(ucosh)f(v) + sin(ucosh8)f(v) x f'(v), —usinh6),
where f is a unit speed curve in S?.
(b) If c=—1,then L: M — H? x Ry — Rj,
L(u,v) = (cosh(ucosh 8)f(v)+sinh(ucosh )f(v)X f'(v), —usinh§),
where f is a unit speed curve in H?.

In both cases 6 # 0 denotes the constant hyperbolic angle.

If @ =0, then O; is a normal vector field and M is an open part of the
spacelike surface: o S? x {ty} for c = 1
o H? x {to} for c = —1.
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Constant angle with R direction in Product Spaces

CAS&CPD in Lorentzian Product spaces M? x R

Spacelike surfaces in S* x R; and H? x R;

Theorem (Fu, N.)

Let L: M — M?(c) xRy, ¢ = —1,1 be a spacelike surface and let § be the
hyperbolic angle function. Then, T is a canonical principal direction for M
if and only if M is parameterized as:

(a) f c=1, then L: M — §? x R; — R},
L(u,v) = (cosqﬁ(u) f(v) +sin¢(u) N,c(v),x(u)>, where f is a

regular curve on S? and N¢(v) = % is the normal of f.

(b) If ¢ = —1, then L:M—>H2><]R1;>R‘2‘,
L(u,v) = (cosh ¢(u) f(v) + sinhp(u) Nf(V),X(U)), where f is a

regular curve on H? and N¢(v) = % is the normal of f.

Moreover, ¢(u) = /'u cosh §(7)d7 and x(u) = —/ sinh §(7)dr.

v
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Constant angle with R direction in Product Spaces

CAS&CPD in Lorentzian Product spaces M? x R

CPD for spacelike surfaces in E3

Theorem (N.)

Let L: M — Ei’ be a spacelike surface isometrically immersed in E‘;’ and

let O(p) # O be the hyperbolic angle function. Then, M has a canonical

principal direction if and only if M is parametrized by:
(c.1) L(u,v) =

u u

(cos v,sin v,O) /cosh O(r)dr — (0,0, 1) /sinh@(7’)d7’+7(v),

where

v(v) = (/w(v)sinv dv,—/w(v) cosv dv, 0),1/} € C¥(M),
(c.2) L(u,v) =

u u

(cos v, sin vo, 0) /cosh 6(r)dr — (0,0, 1) /sinh O(T)dT + vo,
where 9 = (— sin vp, COS vy, 0), and vy is a real constant.

A.l.Nistor (KUL)
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Constant angle with R direction in Product Spaces

CAS&CPD in Lorentzian Product spaces M? x R

CPD for spacelike surfaces in E3 with H =0

Theorem (N.)

The only maximal spacelike surfaces in IE‘;’ with a canonical principal direc-
tion are the catenoids of 1st kind, L : M — E3,

L(u,v) = (\/ u?> —m?cosv, \Vu?—m?sinv, min(u+u?— m2)) ,

m € R*.

Under the assumption of flatness, we obtain the generalized cylinders from
case (c.2) of the classification theorem.

A.l.Nistor (KUL) CAS Granada, May 31, 2012 12 /43



Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M? x R

The catenoid of 1st kind

The catenoid of 1st kind may
be obtained rotating the
curve

(msinh (% —In m> , 0, t)

around the Oz axis.

A.l.Nistor (KUL)

Figure: m=1, t € [-3,3], v € [0, 27]
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M? x R

Timelike surfaces in S? x R; and H? x R;

e constant angle timelike surfaces in Minkowski 3—space (when ¢ = 0)

have been classified in

[4 F. Giiler, G. Saffak, E. Kasap, Timelike constant angle surfaces in
Minkowski space R{’, Int. J. Contemp. Math. Sci., 6(2011)44,
2189-2200.

e we study constant angle timelike surfaces in S?> x Ry (¢ = 1) and
H2 x Ry (c = —1).

e we study canonical principal directions for timelike surfaces in the
ambient space M? x Rj.
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M? x R

Timelike CAS S? x R; and H? x R,

Theorem (Fu, N.)

Let L : M — M?(c) x Ry be a timelike surface immersed into Lorentzian
product space M?(c) x Ry. Then M is a constant angle timelike surface if
and only if the immersion L is locally given by:
(a) fc =1, then L: M — S? x Ry,
L(u,v) = (cos(usinh6)f(v) + sin(usinh 6)f(v) x f'(v), ucoshf),
where f is a unit speed curve in S?,
(b) If ¢ = —1, then L:M— H? x Ry,
L(u,v) = (cosh(usinh§)f(v) + sinh(usinh 0)f(v) X f'(v), ucoshf),
where f is a unit speed curve in H?.

In both cases 6 # 0 denotes the constant hyperbolic angle.

If & =0, then O, is a tangent vector field, has no normal component, and
M is an open part of v x Ry, where v € M?(c), c € {—1,1}.
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M? x R

CPD for timelike surfaces in M? x R;

Theorem (Fu, N.)

Let L : M — M?(c) x Ry be a timelike surface and let 6 be the hyperbolic
angle function. Then, T is a canonical principal direction for M if and only
if M is parametrized as:
(a) Ifc=1, then L: M — S% x Ry,
L(u,v) = (cosx(u) f(v) +sinx(u) Ne(v), gf)(u)), where f is a
f(v)xf'(v)

regular curve on S? and N¢(v) = T

is the normal of f.

(b) If c=—1, then L: M — H? x Ry,

L(u,v) = (cosh x(u) F(v) + sinh x(u) Ne(v), ¢(u)), where f is a
F(v)RF (v)
FW)F )

Moreover, ¢(u) = /-u cosh O(7)d7 and x(u) = /u sinh O(7)dT.

regular curve on H? and N¢(v) = is the normal of f.

4
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M? x R

CPD for timelike surfaces in M? x R;

Theorem (Fu, N.)

Let L : M — M?(c) x Ry be a timelike surface and let 6 be the hyperbolic
angle function. Then, T is a canonical principal direction for M if and only
if M is parametrized as:

(c) Ifc=0, then L: M — E3,
(c1) L(u,v) = (x(u)cosv, x(u)sinv, ¢(u)) +(v),
where y(v) = (— /w(v) sinv dv, /w(v) cosv dv, 0),
and 1 is a smooth function,

(c.2) L(u,v)= (X(u) cos vp, x(u)sin v, o(u)) + YoV,
where v = (— sin vy, COS Vg, 0), and vy is a real constant.

Moreover, ¢(u) = /u cosh §(7)d7 and x(u) = /u sinh §(7)dT.
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M? x R

CPD for timelike surfaces in E3 - minimality

Corollary (Fu, N.)

The only flat timelike surfaces M immersed in E‘;’ endowed with a canonical
principal direction are given by the cylindrical surfaces parametrized in case
(c.2) of previous Theorem.

Theorem (Fu, N.)

The only minimal timelike surfaces M immersed in E3 endowed with a
canonical principal direction are given by the catenoids of 3rd kind para-
metrized as:

t [
L(t,v) = (mcos—cos Vv, mcos — sin v, t), m € R*.
m m
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M? x R

The catenoid of 3rd kind...

. may be obtained rotating the
curve:

t
(mcos—,O, t), m e R*,
m

around the Oz axis.

Figure: m=1, t € [0,27], v € [0, 27]
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M? x R

Preprints

The problems of

- CAS for spacelike and timelike surfaces in S? x Ry and H? x R;
- CPD for spacelike and timelike surfaces in M? x R,
are studied in :

[4 Y. Fu, N. Constant angle property and canonical principal directions
for surfaces in M?(c) x Ry, preprint 2012.

- CPD for spacelike surfaces in E3:

[4 N., A note on spacelike surfaces in Minkowski 3-space, preprint 2011.
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Constant angle with the position vector

Logarithmic spirals = constant slope surfaces

Logarithmic spiral: planar curve having the property that the angle ¢
between its tangent and the radial direction at every point is constant.
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Constant angle with the position vector Constant slope surfaces in E3

Constant angle with the position vector

In other words, the logarithmic spiral is the curve whose tangent makes a
constant angle 6 with the position vector in every point.

Question - surfaces:

Passing from curves to surfaces, find all surfaces in the Euclidean
3-space making a constant angle with the position vector.
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Constant angle with the position vector
Answer: constant slope surfaces

Theorem (Munteanu)

Let r : M — E3 be an isometric immersion. Then M is of constant slope if
and only if either it is an open part of the Euclidean 2-sphere centered
in the origin, or it can be parameterized by

r(u,v) = usind(cosp(u) f(v)+sinp(u) f(v) x f(v))

where 0 is a constant (angle) different from 0, p(u) = cotflogu and f is
a unit speed curve on the Euclidean sphere S°.

@ O = 0: the position vector is normal to the surface, M is an open part
of the Euclidean 2-sphere;

@ =7 : Mis a cone with the vertex in origin, or a plane passing
through origin.

A.l.Nistor (KUL)
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Constant angle with the position vector Constant slope surfaces in E3

0=3 0=1s
f(v) = (cosv,sinv,0) f(v) = (cos? v, cos vsin v,sin v)

parametric lines: blue: logarithmic spiral

black: the spherical curve f.
CAS Granada, May 31, 2012 21 /43




Constant angle with the position vector Constant slope surfaces in E3

Constant slope surfaces

[4 M.l. Munteanu, From Golden Spirals to Constant Slope Surfaces, J.
Math.Phys., 51 (2010) 7, 073507:1-9.

[4 Y. Fu, D. Yang, On constant slope spacelike surfaces in 3-dimensional
Minkowski space, J. Math. Analysis Appl., 385 (2012) 1, 208-220.

3 Y. Fu, X. Wang, Classification of Timelike Constant Slope Surfaces in
3-Dimensional Minkowski Space, Res. Math. 2012.
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Constant angle with a Killing vector field in E?

Preliminaries

Constant angle with a Killing vector field -
Preliminaries

o B? = (R3,< ) >)v

° % - Levi-Civita connection corresponding to (, ) in E3,
e V is Killing iff it satisfies the Killing equation:

<VXV7 Y> + <VYV7X> - 07

for any vector fields X, Y in R3,
e The set

{axv 8y» 0z, *yaxﬂanya Zay*yaza Zaxfxaz}

gives a basis of Killing vector fields in E3.

A.l.Nistor (KUL) Granada, May 31, 2012
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Constant angle with a Killing vector field in E? Classification results for curves

Curves - constant angle with a Killing field

e If 7 is a straight line, then ~ is a helix.
W.l.o.g. the line can be taken to be (parallel with) one of the coordinate
axes, and this is an integral curve of a Killing vector vector field in E3.

Motivated by this remark, a natural question appears:
e which curves make a constant angle with a Killing vector field in E3?
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Constant angle with a Killing vector field in E? Classification results for curves

Curves - constant angle with a Killing field

e If 7 is a straight line, then v is a helix.
W.l.o.g. the line can be taken to be (parallel with) one of the coordinate
axes, and this is an integral curve of a Killing vector vector field in E3.

Motivated by this remark, a natural question appears:
e which curves make a constant angle with a Killing vector field in E3?

Recall that we have a basis of Killing vector fields in E3:

{0x, 0y, 0, —yOx + x0y, 20, — y0,, z0x — x0;}
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Constant angle with a Killing vector field in E? Classification results for curves

Curves - constant angle with a Killing field

e If 7 is a straight line, then v is a helix.
W.l.o.g. the line can be taken to be (parallel with) one of the coordinate
axes, and this is an integral curve of a Killing vector vector field in E3.

Motivated by this remark, a natural question appears:
e which curves make a constant angle with a Killing vector field in E3?

Recall that we have a basis of Killing vector fields in E3:

Oy, Oy, Oz, —y0x + x0y, z0, — y0z, z0x — x0;
% y y
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Constant angle with a Killing vector field in E? Classification results for curves

Curves - constant angle with a Killing field

e If 7 is a straight line, then ~ is a helix.
W.l.o.g. the line can be taken to be (parallel with) one of the coordinate
axes, and this is an integral curve of a Killing vector vector field in E3.

Motivated by this remark, a natural question appears:
e which curves make a constant angle with a Killing vector field in E37?

Recall that we have a basis of Killing vector fields in E3:
{0x, 0y, 0,, —yOx +x0,, 20, — y0,, z0x — x0,}

e which curves make a constant angle with V' in E3?
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Constant angle with a Killing vector field in E? Classification results for curves

Plane curves - constant angle with V

Theorem (Munteanu, N.)

A curve in the xy-plane makes constant angle 6 with the Killing vector field
V = —y0x + x0, if and only of it is given by one of the following cases:

(a) or a straight line passing through the origin,
(b) either the circle S*(ry) centred in the origin and of radius rg,
(c) or the logarithmic spiral p(¢) = etan? (#—¢o)

Sketch of proof.

For the curve p.a.l. ¥(s) = (p(s) cos ¢(s), p(s)sin@(s)), the constant
angle condition becomes: p(s)¢’(s) = cos 6.

o if 0 =7: p(s) #0and ¢(s) = o, (a),

o if 6 =0: p(s) = po and ¢(s) = > + ¢o, (b),

o if 0 #0: p(s) =ssinf + sp and ¢(s) = cotfIn(ssinb + sp) + ¢o, ().
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Constant angle with a Killing vector field in E? Classification results for curves

Space curves - constant angle with V

In cylindrical coordinates: ~(s) = (p(s) cos ¢(s), p(s)sing(s), z(s))

Theorem (Munteanu, N.)

A curve 7 in the Euclidean space E3\ Oz makes a constant angle @ with the
Killing vector field V' = —yd, + xd, if and only if, is given, in cylindrical
coordinates (p, ¢, z), up to vertical translations and rotations around z-axis,
) S
d
by: p(s) = po +sin9/cosw(§)d§, o(s) = cosH/ (CC)’
p
S

2(s) = sin® [ sinw(c)d.

where pg € R and w is a smooth function on /| C R.
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Constant angle with a Killing vector field in E? Classification results for curves

Examples for different values of w

0=n/20, w(s)=4

4005

Figure: Space curve making constant angle with V (left) and its projection
(right): w = wp
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Constant angle with a Killing vector field in E? Classification results for curves

Examples for different values of w

0=7/20, w(s)=3s+5

005

0.00

-0.05 «‘ 005

0.00 0.05

Figure: Space curve making constant angle with V (left) and its projection
(right): w=ms+n
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Constant angle with a Killing vector field in E? Classification results for curves

Examples for different values of w

6=7/20, w(s) = arccos(s)

0015

L L
0015 0.020

Figure: Space curve making constant angle with V (left) and its projection
(right): w = arccos(s)

A.l.Nistor (KUL) CAS Granada, May 31, 2012
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Constant angle with a Killing vector field in E? Surfaces making constant angle with a Killing vector field

Surfaces - Preliminaries

o V = —y0, + xd, must be non-null, thus the surface M lies in E3 \ Oz;
e g the metric on M and by V the associated Levi-Civita connection,

e [V denotes the unit normal to the surface M;

e denote /(V/, N) := 0 - constant angle;

o If = 7, then M is a surface of revolution.

e If & =0, then we obtain half-planes having z—axis as boundary.

e projecting V on the tangent plane to M:
V =T+ pcosbg,

where £ is the unit normal to M, T is the tangent part, with

IT]| = psinf and = [|V|.

e choose an orthonormal basis {e;, &2} on the tangent plane to M s.t.
e = HLT-H and e L ey.

o If follows that V = p(sinfe; + cos6¢).
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Constant angle with a Killing vector field in E? Surfaces making constant angle with a Killing vector field

Surfaces - Basic formulas

For an arbitrary vector field X in E3, we have
Ux V =kxX, (3)

where k = (0,0,1) and x stands for the usual cross product in [E3.
Consider {e1, e, k,&} in a point on M and define the angles:

4(57 k) =¥, é(ela k) =1 4(627 k) = 1/]7
which are not independent, cosp = —sinfsinvy cosn = cosfsin.
We decompose k x e; and k x e in the basis {e1, &2, &},

kxe; = —sinfsiny e —cosy&, kxey =sinfsiny e;+cosfsinyl. (4)
If X is tangent to M, then

%XV = X(u)(sin061+c059§> (5)

-+ psin 0<Vxel + h(X, el)) — pcosBAX.
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Constant angle with a Killing vector field in E? Surfaces making constant angle with a Killing vector field

Surfaces - Basic formulas
From (3), (5) and (4) we get

e1(p) = —cosfcostp, e(u)=-sin.

As a consequence, we obtain the shape operator:

__sinfcos 0
o) (6)

where ) is a smooth function on M, and the Levi-Civita connection:

sin 1)
—— e

sin
2, Veg&2=— ¢

Vel e =

)

Veel = A cotanf ey, Vg,e = —\ cotand e;.

From (6) we see that e; and e are principal directions on M.
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Constant angle with a Killing vector field in E?

Surfaces making constant angle with a Killing vector field

Surfaces - Basic formulas

Then, using the expressions of the Levi-Civita connection we may compute
the Lie bracket of e; and e;:

siny

[e1, &2] = e; — A cotanf ep. (7)

Consequently, a compatibility condition is found computing [e1, e2](11) in
two ways:

_ cosflsinycosyp
1

—cos ) e1(1))+cosBsiny ex(v)) + A cotanfsin. (8)
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Coordinates (x, y, z) — (pcos ¢, psin ¢, z)

From now on we use cylindrical coordinates, such that the parametrization
of the surface M may be thought as

F:DcCR?>—E3\ 0z, (uv)— (p(u, v), ¢(u,v), z(u, v)) (9)

The Euclidean metric in E* becomes a warped metric
(,)=dp? + dz* + p?d¢?
Note that the Killing vector field V' coincides with ;.

The basis {e1, &2, &} may be expressed in terms of the new coordinates as:

in6
et = —cosfcostp d,+ sn 0y + cosBsiny 0,
i
e = siny 0, + cost) O, (10)
cos

§ = sinfcosy 0, +

O0p —sinfsiny 0.
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Classification theorem

Theorem (Munteanu, N.)

Let M be a surface isometrically immersed in [£3\ Oz and consider the Killing
vector field V = —y0, + x0,. Then M makes a constant angle 6 with V' if
and only if is one of the following surfaces, up to vertical translations and
rotations about z—axis:

(a) a half-plane with z—axis as boundary,

(b) a rotational surface around z—axis,
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Classification theorem

Theorem (Munteanu, N.)

Let M be a surface isometrically immersed in [E3\ Oz and consider the Killing
vector field V = —y0, + x0,. Then M makes a constant angle 6 with V' if
and only if is one of the following surfaces, up to vertical translations and
rotations about z—axis:

(c) a right cylinder over a logarithmic spiral given by :

F(u,z) = (ucosb, log(cu="?), z),
cecR*

For 0 = 3;and c =3
we get this figure:
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Classification theorem

Theorem (Munteanu, N.)

Let M be a surface isometrically immersed in [E3\ Oz and consider the Killing
vector field V' = —y0, + x0,. Then M makes a constant angle 6 with V' if
and only if is one of the following surfaces, up to vertical translations and
rotations about z—axis:

(d) the Dini’s surface defined in cylindrical coordinates (p, ¢, z) by

cosfsin(cu)  cvtand

cu
F(u,v) = < —tan@log(tan ?) ,

o cos@cos(cu)) )

c ’ cosf

C

where ¢ is a nonzero real constant.

v

A.l.Nistor (KUL) CAS Granada, May 31, 2012 33 /43



Surfaces making constant angle with a Killing vector field

Constant angle with a Killing vector field in E?

Dini’s surface - parametrization...

from cylindrical back to Euclidean coordinates

Osi tan 6
F(u,v) = (—7(:05 sin(cu) cos (— cvian? tan 6 log (tan ke
c cos 0 2

cosOsin(cu) . cvtand cu
—————~sin{ — —tanflog (tan—
cos 0 2

c
cos 6 cos(cu) )
c

cu — uy and —%:ga —tanflog (tan %) — Uy

€950 in uy cos uo,

x(u1, ) = —
y(ui, w) = Cos95|n uy sin uo,
z(up, up) = —Cose(cosu1+log(tan %)) - Cctf’:nee up. - NG
Figure: 6 = 3, c = %5
34 /43
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More over Dini’s surface

e This surface is named after Ulisse Dini (1845 -
1918), who obtained it studying helicoidal surfaces.
e Dini's surface is a helicoidal surface with axis Oz:

F(p,¢) = (pcos¢, psind, ho+ A(p)),

where (Ao p)(u) = —<s (Iog (tan &) +cos(cu)>

C

cos 6
ctan@"

and the pitch equals to h = —
e It may be obtained twisting the pseudosphere of
radius €=?

e It has constant negative Gaussian curvature
depending on the constant angle 6,
K = —c?tan?6, c € R*.

A.l.Nistor (KUL) CAS

Figure: 0 = %

Granada, May 31, 2012
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Constant angle with a Killing vector field in E? Surfaces making constant angle with a Killing vector field

Final remarks

Proposition (Munteanu, N.)

The parametric curves of Dini's surface are circular helices(v-param) and
spherical curves(u—param).

Corollary (Munteanu, N.)

Looking backward, the u—parameter curves make the constant angle 5 —

0 with the Killing vector field V' and the affine function w (appearing in
Theorem of space curves) is given by w(s) = cs, ¢ € R*.

Let M make a constant angle with the Killing vector field V/, and:
o M is totally geodesic iff it is a vertical plane with the boundary Oz;
@ M is minimal not totally geodesic iff it is a catenoid about z—axis;

e M is flat iff it is a vertical plane with the boundary z—axis, a flat
rotational surface or a right cylinder over a logarithmic spiral.
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Final remarks

Figure: Pseudosphere

Figure: Dini's surface

Source: http://virtualmathmuseum.org/galleryS.html
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Constant angle with a Killing vector field in E? Articles

Articles

The problems of

- curves making constant angle with a rotational Killing vector field in E3
- surfaces making constant angle with a rotational Killing vector field in E*
are studied in :

[ M.l. Munteanu, N. Surfaces in E3 making constant angle with Killing
vector fields, Internat. J. Math., 23 (2012) 6, 1250023:1-16.
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CAS in Heisenberg group Nil;

Xy X
R®: (xy,2) % (X,y,2) = <x+x, y+Y, z+z+2y—2y>.

Remark that the mapping

1 b 1 z+ %
R3 — 0 c a,bceR;:(x,y,z)— | O y
0 1 0 1

o = o
O = X

is an isomorphism between (R3, %) and a subgroup of GL(3, R).
For every 7 # 0: left-invariant Riemannian metric on (R3, x)

2
g = dx? + dy? + 472 (dz + M) . After the change of coordinates
(x,y,272) — (x,y,2), g = dx® + dy? + (dz + 7(y dx — x dy))?
Nilz = (R3, %) with g.

Some authors: only if 7 = %
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CAS in Heisenberg group Nil;

The following vector fields form a left-invariant orthonormal frame on Nils:
e1 =0 —Ty0;, e =0,+71x0;, e =0;.

The geometry of Nilz can be described in terms of this frame.
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CAS in Heisenberg group Nil;

The following vector fields form a left-invariant orthonormal frame on Nils:
e1 =0 —Ty0;, e =0,+71x0;, e =0;.
The geometry of Nilz can be described in terms of this frame.

The Killing vector field plays an important role in the geometry of
Nils.

Definition

We say that a surface in the Heisenberg group Nils is a constant angle
surface if the angle 6 between the unit normal and the direction e3 is the
same at every point.

- cannot have 6 = 0 - contradiction with: [e1, &3] = 27e3, [e2,e3] =0
[e3,e1] =0, since 7 # 0.
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CAS in Heisenberg group Nil;

Theorem (Fastenakels, Munteanu, Van der Veken)

Let M be a constant angle surface in the Heisenberg group Nils. Then M
is isometric to an open part of one of the following types of surfaces:
(i) a Hopf-cylinder,

(ii) a surface given by
r(u,v) = % tan@sinu+ f(v), —5 tan6 cosu + H(v),

— % tan?f u — %tanﬁcos ufi(v) — %tan@sin ufr(v) — Tﬁ(v))

with ()2 + (£)? = sin?60 and £(v) = f{(v)f(v) — A(v)(v).

[§ J. Fastenakels, M.I. Munteanu, J. Van der Veken, Constant Angle

Surfaces in the Heisenberg group, Acta Math. Sinica(Engl. Ser.), 27
(2011) 4, 747-756.
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CAS in Solvable Lie groups

... to be continued...
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The end

Thank you for attention !
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