
Surfaces making constant angle with certain
vector fields in 3-spaces

Ana-Irina Nistor

Universidad de Granada - May 30, 2012

A.I.Nistor (KUL) CAS Granada, May 31, 2012 1 / 43



Outline

Outline

1 Introduction

2 Constant angle with R direction in Product Spaces
CAS in M2 × R
CPD in M2 × R
CAS&CPD in Lorentzian Product spaces M2 × R1

3 Constant angle with the position vector
Constant slope surfaces in E3

4 Constant angle with a Killing vector field in E3

5 CAS in Heisenberg group

6 CAS in Solvable Lie groups

A.I.Nistor (KUL) CAS Granada, May 31, 2012 2 / 43



Introduction

Constant Angle Surfaces

A constant angle surface (CAS in short) is an oriented surface for which
its normal makes a constant angle with a fixed direction, which is chosen
in each case as a preferred direction in the ambient space:

1 R direction in M2 × R, M2 × R1

2 position vector in E3 and E3
1

3 Killing vector field in E3

4 Killing vector field e3 = ∂z in Nil3
5 left invariant vector field in G (µ1, µ2), in particular in

Sol3 = G (−1, 1)
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Introduction

Constant Angle Surfaces and Principal Directions

A property of CAS:
When the ambient is of the form M2 × R, a favored direction is R. It is
known that for a constant angle surface in E3, S2 × R or in H2 × R, the
projection of ∂

∂t (where t is the global parameter on R) onto the tangent
plane of the immersed surface, denoted by T , is a principal direction1 with
the corresponding principal curvature2 identically zero.

Study surfaces endowed with a principal direction T which will be called a
canonical principal direction (CPD in short).

1eigenvector of the shape operator
2eigenvalue of the shape operator
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Constant angle with R direction in Product Spaces CAS in M2 × R

Results - CAS in M2 × R

F. Dillen, J. Fastenakels, J. Van der Veken, L. Vrancken, Constant
angle suraces in S2 × R, Monatsh. Math. 152 (2)(2007), 89–96.

F. Dillen, M.I. Munteanu, Constant Angle Surfaces in H2 × R, Bull.
Braz. Math. Soc. 40 (1) (2009) 1, 85–97.

M.I. Munteanu, N., A new approach on constant angle surfaces in E3,
Turkish J. Math. 33 (2) (2009), 169–178.
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Constant angle with R direction in Product Spaces CPD in M2 × R

Results - CPD in M2 × R

F. Dillen, J. Fastenakels, J. Van der Veken, Surfaces in S2 × R with a
canonical principal direction, Ann. Glob. Anal. Geom., 35(2009) 4,
381–396.

F. Dillen, M.I. Munteanu, N., Surfaces in H2 × R with a canonical
principal direction, Taiwanese J. Math., 15 (2011) 5, 2265-2289.

M.I. Munteanu, N., Complete classification of surfaces with a
canonical principal direction in the Euclidean space E3, Cent. Eur. J.
Math., 9(2011)2, 378–389.

A.I.Nistor (KUL) CAS Granada, May 31, 2012 5 / 43



Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M2 × R1

CAS&CPD in M2 × R1 - Preliminaries

• M2 ×R1 the product of M2(c) - a 2-dimensional space form of constant
sectional curvature c and R1

• 〈 , 〉 = 〈 , 〉M2 − dt2 - the Lorentzian metric
• the surface M is given by L : M → M2 × R1

• ξ is a δ-unit normal vector field to M, 〈ξ, ξ〉 = δ ∈ {−1, 1}.
δ = −1, ξ is timelike iff M is spacelike

δ = 1, ξ is spacelike iff M is timelike

• ∂t := (∂/∂t), t ∈ R1 is a unitary timelike vector field on M2 × R1,

∂t = T + Θξ

Θ = cosh θ (M is spacelike) or Θ = sinh θ (M is timelike).
• for every tangent vector field X on M:

∇XT = ΘSX , (1)

X (Θ) = −δ〈SX ,T 〉. (2)
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M2 × R1

Preliminaries - more about angles

Recall that ∂t is timelike in (M2 × R1, 〈 , 〉).
If M is a spacelike surface, then ξ is timelike, and we will consider it with
the same time-orientation as ∂t , i.e. future-directed, 〈∂t , ξ〉 < 0.
• The angle θ between two unitary timelike vectors was defined for the
first time in 1984, as:

cosh θ = −〈∂t , ξ〉.
If M is a timelike surface, then ξ is spacelike.
• The angle θ between a timelike and a spacelike unitary vectors was
defined for the first time in 2005, as:

sinh θ = 〈∂t , ξ〉.

G. Birman, K. Nomizu, Trigonometry in Lorentzian geometry, Amer.
Math. Monthly, 91(1984)9, 543–549.
E. Nes̆ović, M.Petrović - Torgas̆ev, L. Verstraelen, Curves in Lorentzian
spaces, Boll. Unione Mat. Ital., serie 8, 8-B(2005)3, 685–696.
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M2 × R1

Spacelike surfaces in S2 × R1 and H2 × R1

• constant angle spacelike surfaces in Minkowski 3−space (when c = 0)
have been classified in

R. López, M.I. Munteanu, Constant angle surfaces in Minkowski
space, Bull. Belg. Math. Soc. - Simon Stevin , 18 (2011) 2, 271–286.

• we extend this study to constant angle spacelike surfaces in S2 × R1

(c = 1) and H2 × R1 (c = −1) .

• we study canonical principal directions for spacelike surfaces in the
ambient space M2 × R1.
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M2 × R1

Spacelike surfaces in S2 × R1 and H2 × R1

Theorem (Fu, N.)

Let M be a spacelike surface immersed into Lorentzian product space
M2(c)×R1, with c = −1, 1. Then, M is a constant angle spacelike surface
if and only if the immersion L is locally given by:

(a) If c = 1, then L : M → S2 × R1 ↪→ R4
1,

L(u, v) =
(
cos(u cosh θ)f (v) + sin(u cosh θ)f (v)× f ′(v),−u sinh θ

)
,

where f is a unit speed curve in S2.

(b) If c = −1, then L : M → H2 × R1 ↪→ R4
2,

L(u, v) =
(
cosh(u cosh θ)f (v)+sinh(u cosh θ)f (v)� f ′(v),−u sinh θ

)
,

where f is a unit speed curve in H2.

In both cases θ 6= 0 denotes the constant hyperbolic angle.

If θ = 0, then ∂t is a normal vector field and M is an open part of the
spacelike surface: • S2 × {t0} for c = 1

• H2 × {t0} for c = −1.
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M2 × R1

Spacelike surfaces in S2 × R1 and H2 × R1

Theorem (Fu, N.)

Let L : M → M2(c)×R1, c = −1, 1 be a spacelike surface and let θ be the
hyperbolic angle function. Then, T is a canonical principal direction for M
if and only if M is parameterized as:

(a) If c = 1, then L : M → S2 × R1 ↪→ R4
1,

L(u, v) =
(

cosφ(u) f (v) + sinφ(u) Nf (v), χ(u)
)
, where f is a

regular curve on S2 and Nf (v) = f (v)×f ′(v)√
〈f ′(v),f ′(v)〉

is the normal of f .

(b) If c = −1, then L : M → H2 × R1 ↪→ R4
2,

L(u, v) =
(

coshφ(u) f (v) + sinhφ(u) Nf (v), χ(u)
)
, where f is a

regular curve on H2 and Nf (v) = f (v)�f ′(v)√
〈f ′(v),f ′(v)〉

is the normal of f .

Moreover, φ(u) =

∫ u

cosh θ(τ)dτ and χ(u) = −
∫ u

sinh θ(τ)dτ .
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M2 × R1

CPD for spacelike surfaces in E3
1

Theorem (N.)

Let L : M → E3
1 be a spacelike surface isometrically immersed in E3

1 and
let θ(p) 6= 0 be the hyperbolic angle function. Then, M has a canonical
principal direction if and only if M is parametrized by:

(c.1) L(u, v) =(
cos v , sin v , 0

) u∫
cosh θ(τ)dτ −

(
0, 0, 1

) u∫
sinh θ(τ)dτ + γ(v),

where

γ(v) =
(∫

ψ(v) sin v dv ,−
∫
ψ(v) cos v dv , 0

)
, ψ ∈ C∞(M),

(c.2) L(u, v) =(
cos v0, sin v0, 0

) u∫
cosh θ(τ)dτ −

(
0, 0, 1

) u∫
sinh θ(τ)dτ + vγ0,

where γ0 =
(
− sin v0, cos v0, 0

)
, and v0 is a real constant.
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M2 × R1

CPD for spacelike surfaces in E3
1 with H = 0

Theorem (N.)

The only maximal spacelike surfaces in E3
1 with a canonical principal direc-

tion are the catenoids of 1st kind, L : M → E3
1,

L(u, v) =
(√

u2 −m2 cos v ,
√

u2 −m2 sin v , m ln(u +
√

u2 −m2)
)
,

m ∈ R∗.

Remark

Under the assumption of flatness, we obtain the generalized cylinders from
case (c.2) of the classification theorem.
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M2 × R1

The catenoid of 1st kind

The catenoid of 1st kind may
be obtained rotating the
curve(

m sinh
( t

m
− lnm

)
, 0, t

)
around the Oz axis.

Figure: m = 1, t ∈ [−3, 3], v ∈ [0, 2π]
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M2 × R1

Timelike surfaces in S2 × R1 and H2 × R1

• constant angle timelike surfaces in Minkowski 3−space (when c = 0)
have been classified in

F. Güler, G. Şaffak, E. Kasap, Timelike constant angle surfaces in
Minkowski space R3

1, Int. J. Contemp. Math. Sci., 6(2011)44,
2189–2200.

• we study constant angle timelike surfaces in S2 × R1 (c = 1) and
H2 × R1 (c = −1) .

• we study canonical principal directions for timelike surfaces in the
ambient space M2 × R1.
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M2 × R1

Timelike CAS S2 × R1 and H2 × R1

Theorem (Fu, N.)

Let L : M → M2(c) × R1 be a timelike surface immersed into Lorentzian
product space M2(c)× R1. Then M is a constant angle timelike surface if
and only if the immersion L is locally given by:

(a) If c = 1, then L : M → S2 × R1,
L(u, v) =

(
cos(u sinh θ)f (v) + sin(u sinh θ)f (v)× f ′(v), u cosh θ

)
,

where f is a unit speed curve in S2,

(b) If c = −1, then L : M → H2 × R1,
L(u, v) =

(
cosh(u sinh θ)f (v) + sinh(u sinh θ)f (v) � f ′(v), u cosh θ

)
,

where f is a unit speed curve in H2.

In both cases θ 6= 0 denotes the constant hyperbolic angle.

If θ = 0, then ∂t is a tangent vector field, has no normal component, and
M is an open part of γ × R1, where γ ∈ M2(c), c ∈ {−1, 1}.
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M2 × R1

CPD for timelike surfaces in M2 × R1

Theorem (Fu, N.)

Let L : M → M2(c)× R1 be a timelike surface and let θ be the hyperbolic
angle function. Then, T is a canonical principal direction for M if and only
if M is parametrized as:

(a) If c = 1, then L : M → S2 × R1,

L(u, v) =
(

cosχ(u) f (v) + sinχ(u) Nf (v), φ(u)
)
, where f is a

regular curve on S2 and Nf (v) = f (v)×f ′(v)√
〈f ′(v),f ′(v)〉

is the normal of f .

(b) If c = −1, then L : M → H2 × R1,

L(u, v) =
(

coshχ(u) f (v) + sinhχ(u) Nf (v), φ(u)
)
, where f is a

regular curve on H2 and Nf (v) = f (v)�f ′(v)√
〈f ′(v),f ′(v)〉

is the normal of f .

Moreover, φ(u) =

∫ u

cosh θ(τ)dτ and χ(u) =

∫ u

sinh θ(τ)dτ .
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M2 × R1

CPD for timelike surfaces in M2 × R1

Theorem (Fu, N.)

Let L : M → M2(c)× R1 be a timelike surface and let θ be the hyperbolic
angle function. Then, T is a canonical principal direction for M if and only
if M is parametrized as:

(c) If c = 0, then L : M → E3
1,

(c.1) L(u, v) =
(
χ(u) cos v , χ(u) sin v , φ(u)

)
+ γ(v),

where γ(v) =
(
−
∫
ψ(v) sin v dv ,

∫
ψ(v) cos v dv , 0

)
,

and ψ is a smooth function,

(c.2) L(u, v) =
(
χ(u) cos v0, χ(u) sin v0, φ(u)

)
+ γ0v ,

where γ0 =
(
− sin v0, cos v0, 0

)
, and v0 is a real constant.

Moreover, φ(u) =

∫ u

cosh θ(τ)dτ and χ(u) =

∫ u

sinh θ(τ)dτ .
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M2 × R1

CPD for timelike surfaces in E3
1 - minimality

Corollary (Fu, N.)

The only flat timelike surfaces M immersed in E3
1 endowed with a canonical

principal direction are given by the cylindrical surfaces parametrized in case
(c.2) of previous Theorem.

Theorem (Fu, N.)

The only minimal timelike surfaces M immersed in E3
1 endowed with a

canonical principal direction are given by the catenoids of 3rd kind para-
metrized as:

L(t, v) =
(
m cos

t

m
cos v ,m cos

t

m
sin v , t

)
, m ∈ R∗.
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Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M2 × R1

The catenoid of 3rd kind...

... may be obtained rotating the
curve:(

m cos
t

m
, 0, t

)
, m ∈ R∗,

around the Oz axis.

Figure: m = 1, t ∈ [0, 2π], v ∈ [0, 2π]

A.I.Nistor (KUL) CAS Granada, May 31, 2012 18 / 43



Constant angle with R direction in Product Spaces CAS&CPD in Lorentzian Product spaces M2 × R1

Preprints

The problems of
- CAS for spacelike and timelike surfaces in S2 × R1 and H2 × R1

- CPD for spacelike and timelike surfaces in M2 × R1

are studied in :

Y. Fu, N. Constant angle property and canonical principal directions
for surfaces in M2(c)× R1, preprint 2012.

- CPD for spacelike surfaces in E3
1:

N., A note on spacelike surfaces in Minkowski 3-space, preprint 2011.
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Constant angle with the position vector Constant slope surfaces in E3

Constant angle with the position vector

Logarithmic spirals =⇒ constant slope surfaces

Logarithmic spiral: planar curve having the property that the angle θ
between its tangent and the radial direction at every point is constant.
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Constant angle with the position vector Constant slope surfaces in E3

Constant angle with the position vector

In other words, the logarithmic spiral is the curve whose tangent makes a
constant angle θ with the position vector in every point.

Question - surfaces:

Passing from curves to surfaces, find all surfaces in the Euclidean
3-space making a constant angle with the position vector.
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Constant angle with the position vector Constant slope surfaces in E3

Constant angle with the position vector

Answer: constant slope surfaces

Theorem (Munteanu)

Let r : M −→ E3 be an isometric immersion. Then M is of constant slope if
and only if either it is an open part of the Euclidean 2-sphere centered
in the origin, or it can be parameterized by

r(u, v) = u sin θ
(
cosϕ(u) f (v) + sinϕ(u) f (v)× f ′(v)

)
where θ is a constant (angle) different from 0, ϕ(u) = cot θ log u and f is

a unit speed curve on the Euclidean sphere S2.

θ = 0: the position vector is normal to the surface, M is an open part
of the Euclidean 2-sphere;

θ = π
2 : M is a cone with the vertex in origin, or a plane passing

through origin.
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Constant angle with the position vector Constant slope surfaces in E3

Examples

θ = π
5 θ = π

15
f (v) = (cos v , sin v , 0) f (v) = (cos2 v , cos v sin v , sin v)

parametric lines: blue: logarithmic spiral
black: the spherical curve f .
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Constant angle with the position vector Constant slope surfaces in E3

Constant slope surfaces

M.I. Munteanu, From Golden Spirals to Constant Slope Surfaces, J.
Math.Phys., 51 (2010) 7, 073507:1–9.

Y. Fu, D. Yang, On constant slope spacelike surfaces in 3-dimensional
Minkowski space, J. Math. Analysis Appl., 385 (2012) 1, 208–220.

Y. Fu, X. Wang, Classification of Timelike Constant Slope Surfaces in
3-Dimensional Minkowski Space, Res. Math. 2012.
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Constant angle with a Killing vector field in E3 Preliminaries

Constant angle with a Killing vector field -
Preliminaries

• E3 = (R3, 〈 , 〉),
•

◦
∇ - Levi-Civita connection corresponding to 〈 , 〉 in E3,

• V is Killing iff it satisfies the Killing equation:

〈
◦
∇XV ,Y 〉+ 〈

◦
∇Y V ,X 〉 = 0,

for any vector fields X , Y in R3.
• The set

{∂x , ∂y , ∂z , −y∂x + x∂y , z∂y − y∂z , z∂x − x∂z}

gives a basis of Killing vector fields in E3.
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Constant angle with a Killing vector field in E3 Classification results for curves

Curves - constant angle with a Killing field

• If γ̃ is a straight line, then γ is a helix.
W.l.o.g. the line can be taken to be (parallel with) one of the coordinate
axes, and this is an integral curve of a Killing vector vector field in E3.

Motivated by this remark, a natural question appears:
• which curves make a constant angle with a Killing vector field in E3?
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Constant angle with a Killing vector field in E3 Classification results for curves

Curves - constant angle with a Killing field

• If γ̃ is a straight line, then γ is a helix.
W.l.o.g. the line can be taken to be (parallel with) one of the coordinate
axes, and this is an integral curve of a Killing vector vector field in E3.

Motivated by this remark, a natural question appears:
• which curves make a constant angle with a Killing vector field in E3?

Recall that we have a basis of Killing vector fields in E3:

{∂x , ∂y , ∂z , −y∂x + x∂y , z∂y − y∂z , z∂x − x∂z}
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Constant angle with a Killing vector field in E3 Classification results for curves

Curves - constant angle with a Killing field

• If γ̃ is a straight line, then γ is a helix.
W.l.o.g. the line can be taken to be (parallel with) one of the coordinate
axes, and this is an integral curve of a Killing vector vector field in E3.

Motivated by this remark, a natural question appears:
• which curves make a constant angle with a Killing vector field in E3?

Recall that we have a basis of Killing vector fields in E3:

{∂x , ∂y , ∂z , −y∂x + x∂y , z∂y − y∂z , z∂x − x∂z}

• which curves make a constant angle with V in E3?
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Constant angle with a Killing vector field in E3 Classification results for curves

Plane curves - constant angle with V

Theorem (Munteanu, N.)

A curve in the xy -plane makes constant angle θ with the Killing vector field
V = −y∂x + x∂y if and only of it is given by one of the following cases:

(a) or a straight line passing through the origin,

(b) either the circle S1(r0) centred in the origin and of radius r0,

(c) or the logarithmic spiral ρ(φ) = etan θ (φ−φ0).

Sketch of proof.
For the curve p.a.l. γ(s) = (ρ(s) cosφ(s), ρ(s) sinφ(s)), the constant
angle condition becomes: ρ(s)φ′(s) = cos θ.
• if θ = π

2 : ρ(s) 6= 0 and φ(s) = φ0, (a),
• if θ = 0: ρ(s) = ρ0 and φ(s) = s

ρ0
+ φ0, (b),

• if θ 6= 0: ρ(s) = s sin θ + s0 and φ(s) = cot θ ln(s sin θ + s0) + φ0, (c).
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Constant angle with a Killing vector field in E3 Classification results for curves

Space curves - constant angle with V

In cylindrical coordinates: γ(s) =
(
ρ(s) cosφ(s), ρ(s) sinφ(s), z(s)

)
Theorem (Munteanu, N.)

A curve γ in the Euclidean space E3 \Oz makes a constant angle θ with the
Killing vector field V = −y∂x + x∂y if and only if, is given, in cylindrical
coordinates (ρ, φ, z), up to vertical translations and rotations around z-axis,

by: ρ(s) = ρ0 + sin θ

s∫
cosω(ζ)dζ, φ(s) = cos θ

s∫
dζ

ρ(ζ)
,

z(s) = sin θ

s∫
sinω(ζ)dζ,

where ρ0 ∈ R and ω is a smooth function on I ⊂ R.
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Constant angle with a Killing vector field in E3 Classification results for curves

Examples for different values of ω

Θ = Π� 20, ΩHsL = 4
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Figure: Space curve making constant angle with V (left) and its projection
(right): ω = ω0
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Constant angle with a Killing vector field in E3 Classification results for curves

Examples for different values of ω

Θ = Π� 20, ΩHsL = 3 s + 5
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Figure: Space curve making constant angle with V (left) and its projection
(right): ω = ms + n
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Constant angle with a Killing vector field in E3 Classification results for curves

Examples for different values of ω

Θ = Π� 20, ΩHsL = arccosHsL
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Figure: Space curve making constant angle with V (left) and its projection
(right): ω = arccos(s)
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Constant angle with a Killing vector field in E3 Surfaces making constant angle with a Killing vector field

Surfaces - Preliminaries

• V = −y∂x + x∂y must be non-null, thus the surface M lies in E3 \ Oz ;
• g the metric on M and by ∇ the associated Levi-Civita connection,
• N denotes the unit normal to the surface M;
• denote ∠(V ,N) := θ - constant angle;

If θ = π
2 , then M is a surface of revolution.

If θ = 0, then we obtain half-planes having z−axis as boundary.

• projecting V on the tangent plane to M:

V = T + µ cos θξ,

where ξ is the unit normal to M, T is the tangent part, with
‖T‖ = µ sin θ and µ = ‖V ‖.
• choose an orthonormal basis {e1, e2} on the tangent plane to M s.t.
e1 = T

‖T‖ and e2 ⊥ e1.

• If follows that V = µ(sin θe1 + cos θξ).
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Constant angle with a Killing vector field in E3 Surfaces making constant angle with a Killing vector field

Surfaces - Basic formulas

For an arbitrary vector field X in E3, we have
◦
∇X V = k × X , (3)

where k = (0, 0, 1) and × stands for the usual cross product in E3.
Consider {e1, e2, k, ξ} in a point on M and define the angles:

∠(ξ, k) := ϕ, ∠(e1, k) := η ∠(e2, k) := ψ,

which are not independent, cosϕ = − sin θ sinψ cos η = cos θ sinψ.
We decompose k × e1 and k × e2 in the basis {e1, e2, ξ},

k×e1 = − sin θ sinψ e2−cosψξ, k×e2 = sin θ sinψ e1+cos θ sinψξ. (4)

If X is tangent to M, then
◦
∇X V = X (µ)

(
sin θe1 + cos θξ

)
(5)

+ µ sin θ
(
∇X e1 + h(X , e1)

)
− µ cos θAX .
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Constant angle with a Killing vector field in E3 Surfaces making constant angle with a Killing vector field

Surfaces - Basic formulas

From (3), (5) and (4) we get

e1(µ) = − cos θ cosψ, e2(µ) = sinψ.

As a consequence, we obtain the shape operator:

S =

(
− sin θ cosψ

µ 0

0 λ

)
, (6)

where λ is a smooth function on M, and the Levi-Civita connection:

∇e1e1 = −sinψ

µ
e2, ∇e1e2 =

sinψ

µ
e1,

∇e2e1 = λ cotanθ e2, ∇e2e2 = −λ cotanθ e1.

From (6) we see that e1 and e2 are principal directions on M.
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Constant angle with a Killing vector field in E3 Surfaces making constant angle with a Killing vector field

Surfaces - Basic formulas

Then, using the expressions of the Levi-Civita connection we may compute
the Lie bracket of e1 and e2:

[e1, e2] =
sinψ

µ
e1 − λ cotanθ e2. (7)

Consequently, a compatibility condition is found computing [e1, e2](µ) in
two ways:

−cosψ e1(ψ)+cos θ sinψ e2(ψ) =
cos θ sinψ cosψ

µ
+λ cotanθ sinψ. (8)

A.I.Nistor (KUL) CAS Granada, May 31, 2012 31 / 43



Constant angle with a Killing vector field in E3 Surfaces making constant angle with a Killing vector field

Coordinates (x , y , z) 7→ (ρ cos φ, ρ sin φ, z)

From now on we use cylindrical coordinates, such that the parametrization
of the surface M may be thought as

F : D ⊂ R2 −→ E3 \ Oz , (u, v) 7→
(
ρ(u, v), φ(u, v), z(u, v)

)
. (9)

The Euclidean metric in E3 becomes a warped metric
〈 , 〉 = dρ2 + dz2 + ρ2dφ2

Note that the Killing vector field V coincides with ∂φ.

The basis {e1, e2, ξ} may be expressed in terms of the new coordinates as:

e1 = − cos θ cosψ ∂ρ +
sin θ

µ
∂φ + cos θ sinψ ∂z ,

e2 = sinψ ∂ρ + cosψ ∂z , (10)

ξ = sin θ cosψ ∂ρ +
cos θ

µ
∂φ − sin θ sinψ ∂z .
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Constant angle with a Killing vector field in E3 Surfaces making constant angle with a Killing vector field

Classification theorem

Theorem (Munteanu, N.)

Let M be a surface isometrically immersed in E3\Oz and consider the Killing
vector field V = −y∂x + x∂y . Then M makes a constant angle θ with V if
and only if is one of the following surfaces, up to vertical translations and
rotations about z−axis:

(a) a half-plane with z−axis as boundary,

(b) a rotational surface around z−axis,
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Constant angle with a Killing vector field in E3 Surfaces making constant angle with a Killing vector field

Classification theorem

Theorem (Munteanu, N.)

Let M be a surface isometrically immersed in E3\Oz and consider the Killing
vector field V = −y∂x + x∂y . Then M makes a constant angle θ with V if
and only if is one of the following surfaces, up to vertical translations and
rotations about z−axis:

(c) a right cylinder over a logarithmic spiral given by :

F (u, z) =
(
u cos θ, log(cu− tan θ), z

)
,

c ∈ R∗

For θ = π
3 ; and c = 3

we get this figure:
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Constant angle with a Killing vector field in E3 Surfaces making constant angle with a Killing vector field

Classification theorem

Theorem (Munteanu, N.)

Let M be a surface isometrically immersed in E3\Oz and consider the Killing
vector field V = −y∂x + x∂y . Then M makes a constant angle θ with V if
and only if is one of the following surfaces, up to vertical translations and
rotations about z−axis:

(d) the Dini’s surface defined in cylindrical coordinates (ρ, φ, z) by

F (u, v) =

(
−cos θ sin(cu)

c
, −cv tan θ

cos θ
− tan θ log

(
tan

cu

2

)
,

v − cos θ cos(cu)

c

)
, (11)

where c is a nonzero real constant.
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Constant angle with a Killing vector field in E3 Surfaces making constant angle with a Killing vector field

Dini’s surface - parametrization...

... from cylindrical back to Euclidean coordinates

F (u, v) =

�
−

cos θ sin(cu)

c
cos

�
−

cv tan θ

cos θ
− tan θ log

�
tan

cu

2

��
,

−
cos θ sin(cu)

c
sin

�
−

cv tan θ

cos θ
− tan θ log

�
tan

cu

2

��
,

v −
cos θ cos(cu)

c

�

cu 7→ u1 and − cv tan θ
cos θ − tan θ log

(
tan cu

2

)
7→ u2

x(u1, u2) = − cos θ
c

sin u1 cos u2,

y(u1, u2) = − cos θ
c

sin u1 sin u2,

z(u1, u2) = − cos θ
c

�
cos u1 + log

�
tan u1

2

��
− cos θ

c tan θ
u2.

Figure: θ = π
3 , c =

√
3

2
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Constant angle with a Killing vector field in E3 Surfaces making constant angle with a Killing vector field

More over Dini’s surface

• This surface is named after Ulisse Dini (1845 -
1918), who obtained it studying helicoidal surfaces.
• Dini’s surface is a helicoidal surface with axis Oz :

F (ρ, φ) =
(
ρ cosφ, ρ sinφ, hφ+ Λ(ρ)

)
,

where (Λ ◦ ρ)(u) = − cos θ
c

(
log
(
tan cu

2

)
+cos(cu)

)
and the pitch equals to h = − cos θ

c tan θ .

• It may be obtained twisting the pseudosphere of
radius cos θ

c .
• It has constant negative Gaussian curvature
depending on the constant angle θ,
K = −c2 tan2 θ, c ∈ R∗.

Figure: θ = π
3 , c =

√
3

2
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Constant angle with a Killing vector field in E3 Surfaces making constant angle with a Killing vector field

Final remarks

Proposition (Munteanu, N.)

The parametric curves of Dini’s surface are circular helices(v -param) and
spherical curves(u−param).

Corollary (Munteanu, N.)

Looking backward, the u−parameter curves make the constant angle π
2 −

θ with the Killing vector field V and the affine function ω (appearing in
Theorem of space curves) is given by ω(s) = cs, c ∈ R∗.

Let M make a constant angle with the Killing vector field V , and:

M is totally geodesic iff it is a vertical plane with the boundary Oz ;

M is minimal not totally geodesic iff it is a catenoid about z−axis;

M is flat iff it is a vertical plane with the boundary z−axis, a flat
rotational surface or a right cylinder over a logarithmic spiral.
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Constant angle with a Killing vector field in E3 Surfaces making constant angle with a Killing vector field

Final remarks

Figure: Pseudosphere

Figure: Dini’s surface

Source: http://virtualmathmuseum.org/galleryS.html

A.I.Nistor (KUL) CAS Granada, May 31, 2012 37 / 43



Constant angle with a Killing vector field in E3 Articles

Articles

The problems of
- curves making constant angle with a rotational Killing vector field in E3

- surfaces making constant angle with a rotational Killing vector field in E3

are studied in :

M.I. Munteanu, N. Surfaces in E3 making constant angle with Killing
vector fields, Internat. J. Math., 23 (2012) 6, 1250023:1-16.
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CAS in Heisenberg group

CAS in Heisenberg group Nil3

R3 : (x, y, z) ∗ (x, y, z) =

(
x + x, y + y, z + z +

xy

2
− xy

2

)
.

Remark that the mapping

R3 →


 1 a b

0 1 c
0 0 1

 ∣∣∣∣∣∣ a,b, c ∈ R

 : (x, y, z) 7→

 1 x z + xy
2

0 1 y
0 0 1


is an isomorphism between (R3, ∗) and a subgroup of GL(3,R).
For every τ 6= 0: left-invariant Riemannian metric on (R3, ∗)
g = dx2 + dy2 + 4τ2

(
dz + y dx−x dy

2

)2
. After the change of coordinates

(x , y , 2τz) 7→ (x , y , z), g = dx2 + dy2 + (dz + τ(y dx − x dy))2

Nil3 = (R3, ∗) with g.

Some authors: only if τ = 1
2 .
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CAS in Heisenberg group

CAS in Heisenberg group Nil3

The following vector fields form a left-invariant orthonormal frame on Nil3:

e1 = ∂x − τy∂z , e2 = ∂y + τx∂z , e3 = ∂z .

The geometry of Nil3 can be described in terms of this frame.

The Killing vector field e3 plays an important role in the geometry of
Nil3.

Definition

We say that a surface in the Heisenberg group Nil3 is a constant angle
surface if the angle θ between the unit normal and the direction e3 is the
same at every point.

- cannot have θ = 0 - contradiction with: [e1, e2] = 2τe3, [e2, e3] = 0
[e3, e1] = 0, since τ 6= 0.
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CAS in Heisenberg group

CAS in Heisenberg group Nil3

Theorem (Fastenakels, Munteanu, Van der Veken)

Let M be a constant angle surface in the Heisenberg group Nil3. Then M
is isometric to an open part of one of the following types of surfaces:

(i) a Hopf-cylinder,

(ii) a surface given by

r(u, v) =
(

1
2τ tan θ sin u + f1(v), − 1

2τ tan θ cos u + f2(v),

− 1
4τ tan2 θ u − 1

2 tan θ cos uf1(v)− 1
2 tan θ sin uf2(v)− τ f3(v)

)
with (f ′1)

2 + (f ′2)
2 = sin2 θ and f ′3(v) = f ′1(v)f2(v)− f1(v)f ′2(v).

J. Fastenakels, M.I. Munteanu, J. Van der Veken, Constant Angle
Surfaces in the Heisenberg group, Acta Math. Sinica(Engl. Ser.), 27
(2011) 4, 747–756.
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CAS in Solvable Lie groups

CAS in Solvable Lie groups

... to be continued...

A.I.Nistor (KUL) CAS Granada, May 31, 2012 42 / 43



The end

Thank you for attention !
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